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Abstract—1In this paper, we apply the theory of hypothesis testing
to the steganalysis, or detection of hidden data, in the least signifi-
cant bit (LSB) of a host image. The hiding rate (if data is hidden)
and host probability mass function (PMF) are unknown. Our main
results are as follows.

a) Two types of tests are derived: a universal (over choices of
host PMF) method that has certain asymptotic optimality
properties and methods that are based on knowledge or es-
timation of the host PMF and, hence, an appropriate likeli-
hood ratio (LR).

b) For a known host PMF, it is shown that the composite
hypothesis testing problem corresponding to an unknown
hiding rate reduces to a worst-case simple hypothesis testing
problem.

¢) Using the results for a known host PMF, practical tests based
on the estimation of the host PMF are obtained. These are
shown to be superior to the state of the art in terms of receiver
operating characteristics as well as self-calibration across
different host images. Estimators for the hiding rate are also
developed.

Index Terms—Approximate log-liklihood ratio test, hypothesis
testing, LSB hiding, steganalysis, universal asymptotic optimality.

1. INTRODUCTION
A. Background and Motivation

RIVEN by applications such as watermarking and doc-

ument authentication, there has been a spurt of activity
in the area of data hiding in multimedia objects such as image,
video, and audio (see, for example, [1]-[6], and the references
therein). Unfortunately, applications such as steganography
(that is, hidden communication) also have the potential of being
misused. Many steganography tools are/were also available
in the public domain (see [7] and [8]), and many are easy to
create. Naturally, there is an interest in knowing if such hiding
can be reliably detected. This detection problem is referred to
as steganalysis and is the focus of this paper.

Data hiding is used to convey information by making imper-
ceptible changes to a host object, which can be deciphered by a
receiver that knows the hiding scheme and the specific parame-
ters used by the encoder. While research in data hiding is well
advanced, steganalysis is still in its infancy. The main reason
for this is that in its full generality, steganalysis is an ill-posed
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problem: The original host in which information is embedded
is unknown, the rate of hiding (if data is hidden) is not known,
and the number of steganography schemes is large. Even a con-
vincing statistical characterization of a “natural” image (i.e., one
without hidden data) is not available. Despite the intrinsic diffi-
culty of the problem of steganalysis, its importance has led to a
number of attempts at developing steganalysis tools. These at-
tempts have focused mainly on the detection of the simple yet
popular technique of hiding in the least significant bit (LSB) of
the host, either in the pixel or transform domain, or its variants
such as Outguess [9]. See [10] for a survey of the few steganal-
ysis methods available in the open literature. These methods can
be roughly divided into two categories.

1) Intuition regarding the characteristics of a natural image
is employed to develop statistics that can discriminate be-
tween images with and without hidden data ([7] and [10]
fall into this category). Aside from the issue of whether the
statistics employed by these methods are the “best” ones,
the important question of how to calibrate these methods
by choosing parameters such as decision thresholds (e.g.,
to guarantee a certain probability of false alarm) is dif-
ficult to answer within a purely intuitive framework. In-
deed, the “right” parameter choice for a given method may
often depend on the data itself.

Standard supervised learning methods are employed, with
intuition regarding the characteristics of a natural image
and the disturbance induced by hiding guiding the se-
lection of the feature set. Such a scheme is exemplified
in [11] and is perhaps the first published attempt at em-
ploying learning for steganalysis. As in all applications of
supervised learning, the difficult problem here is to choose
an appropriate feature set.

Prior work on mathematical derivation and analysis of steganal-
ysis for LSB hiding includes [12] and [13]. In [13], reasonable
properties for the values taken by pairs of pixels in natural im-
ages are postulated, and the embedding rate is estimated. The
authors of [13] also employ their framework to explain the in-
tuition behind the RS scheme in [10]. The key feature of the RS
scheme in [10] and [13] is the exploitation of spatial continuity
(or memory) in the images.

We consider an alternative approach to steganalysis, using
the classical tools of hypothesis testing [14], [15]. If good sta-
tistical models for image characteristics and the hiding process
are available, then, in principle, this approach can have the fol-
lowing benefits.

2)

a) An optimal decision statistic can be obtained in the form
of a likelihood ratio test (LRT).

b) The performance of an optimal decision rule, even in an
idealized setting, can provide benchmarks that indicate
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the intrinsic difficulty of the steganalysis problem (e.g.,
if it is impossible to achieve a probability of error better
than 30% for an optimal rule in an idealized setting, then
we cannot expect the performance of suboptimal rules in
practical settings to be better).

¢) The hypothesis testing approach allows for a degree of
self-calibration. For example, if we want to minimize a
convex combination of the false alarm and miss probabil-
ities, then Bayesian hypothesis testing can be employed
to set a threshold, independent of the data, against which
we can compare the optimal decision statistic.

As we will see, however, even for the simple setting of LSB
hiding, the application of hypothesis testing is not straightfor-
ward since the original host statistics and the rate of hiding (if
any data is hidden) are unknown. To fit within the standard hy-
pothesis testing framework, we have to constrain our design.
We employ the histogram of the host data as our starting point.
This is optimal only if the host coefficients are independent
and identically distributed (i.i.d.), which does not hold for nat-
ural images in either the pixel or the transform domain. Despite
this suboptimal choice, we are able to get some of the benefits
a)-c) mentioned above. The decision rules obtained outperform
the state of the art in histogram-based steganalysis, represented
by Stegdetect [7], and can be calibrated to work well over a
large class of images. In addition, we also consider the ideal-
ized model of an i.i.d. host with a known density to motivate the
structure of the decision rule when the hiding rate is unknown
and to obtain insight into the achievable limits of steganalysis
for LSB hiding. As shown in our numerical results, however,
there is a price to be paid for not using the memory inherent in
natural images: Our histogram-based scheme does not perform
as well as the RS scheme [10], which exploits spatial continuity
in the image. Nevertheless, our success in outperforming his-
togram-based schemes motivates further research into system-
atic application of detection-theoretic techniques to exploit spa-
tial memory.

B. Outline of Paper

In Section II, we describe a common statistical model for
LSB hiding and the host. We assume the host symbols to be
i.i.d., although most of our results extend to block i.i.d. (that is
M -dependent data) host. The hiding scheme is also assumed
to be memoryless. Since the host probability mass function
(PMF) is not known, we can take two approaches: Develop
hypothesis tests that are optimal uniformly over the possible
host PMFs, or develop tests based on perfect knowledge of
host PMF and, in practice, use estimates in place of the true
PMEF. We explore both of these possibilities in this paper. In
Section III-A, we cast the steganalysis problem in Hoeffding’s
framework [16] and develop a scheme, which does not assume
any knowledge about the host PMF and the hiding rate. This
detector has some asymptotic optimality properties uniformly
over the unknown host PMF, and in this sense, it may be termed
universal. This formulation is in fact valid for any memoryless
hiding scheme, although in this paper, we analyze the detector
(see Proposition 1) for the case of LSB hiding only. While
this formulation of steganalysis is widely applicable, it ignores
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the fact that in many cases, we have good models (or we can
get good estimates) of the host PMF. With this in mind, in
Section III-B, we consider a composite hypothesis testing
problem associated with steganalysis when the host PMF is
known but the hiding rate is unknown; practical tests based on
this formulation and estimates of the host PMF are developed in
Section IV. In Proposition 2 of Section III-B, we prove that the
composite hypothesis testing problem is solved by a worst-case
simple hypothesis testing problem. We use this fact to develop
practical tests in Section IV. In Section III-C, we also provide a
performance analysis for a class of detection schemes, which is
used in Section III-D to compare various detection methods. A
number of practical tests and their performance on a database
of 4000 digital ortho quarter quad (DOQQ) images are reported
in Section IV. In this section, we also develop estimators of the
rate of hiding and demonstrate performance improvements over
Stegdetect [7]. The conclusions are given in Section V, and all
the theoretical results are proved in Appendixes A and B.
Notation: We use capital letters to denote random variables
and corresponding lowercase letters to denote their realiza-
tions. We use bold letters to denote vectors and matrices.
Most of the data we consider takes values in the finite set
A :={0,1,...,255}. For a random variable X taking values
in A, we denote the PMF by the 256-dimensional column

~11t
;n(()X)7...7 pg‘;g} , where the superscript ¢

denotes transpose. The set of all the PMFs on A is denoted by

vector p(¥) =

P :{p = [popl .. -p255]t c R256 SuCh that Pi Z 0

255
i=0,1,...,255, and Y p; = 1}.
1=0

By Q(t), we denote the complementary Gaussian function
> 1 —u2
t) = ——exp | — | du.
o= [ e ()

II. STATISTICAL MODEL FOR LSB HIDING

In this section, we provide a probabilistic description of the
host and the LSB hiding mechanism, which is central to the
study of statistical steganalysis tools. As a first step, we con-
sider the case of independent and identically distributed (i.i.d.)
data samples. This model is commonly used in steganography
[6]. For steganography schemes that hide data in the DCT or
wavelet domain (see, for example, [2]), this is a good model as
these transforms are known to significantly decorrelate the data.
Since the host samples are assumed to be i.i.d., without loss of
generality, we assume the data to be one-dimensional. Suppose
the i.i.d. host is { H,,})_,, where the intensity values H,, are
represented by 8 bits, that is, H,, € A = {0,1,...,255}. We
wish to model the situation where data is being hidden in the
LSB of the host at a rate R bits per host sample. We assume
that over different data sets, the hider changes the host samples
where data is hidden to make the task of the detector tougher.
Thus, for the detector, the locations of the hidden bits appear
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random. We capture this situation by assuming that the hidden
data {D,,}_, isi.i.d., and

L
2

P(D,, =NULL) =(1 — R),
The hider does not hide in host sample H,, if D, = NULL;
otherwise, the hider replaces the LSB of H,, with D,,. With this
model for rate R LSB hiding, if the PMF of H,, is p(H ), then

the PMF p%H) of the data after LSB hiding at rate R is given by
H R\ ) R (m
pih= (1= 5 ) o + 5ol
H R (m R\ (m
Pl =0+ (1= 5) il
[=0,1,...,127. (1)
(H

In vector notation, we write pj, ) = Qrp'™), where Qp, is a
256 x 256 matrix corresponding to the above linear operation.
The above statistical model can be easily extended to take
higher order dependence into consideration. Consider, for ex-
ample, the joint PMF of neighboring pixels. If we denote this by
the 256 x 256 matrix P, then upon i.i.d. LSB hiding with rate R
as described above, the joint PMF is Pr = QrPQp. Clearly,
this extends to any arbitrary order of dependence. In this paper,
however, we only consider the case of i.i.d. observations.

III. HYPOTHESIS TESTING FORMULATION OF STEGANALYSIS

The theory of hypothesis testing (see, for example, [15]),
which has been successfully applied in many areas such as
communications and signal processing, also provides a natural
framework for steganalysis. In this approach, the observed data
(say, an image) is viewed as a realization of a random process.
A random process is completely characterized by its probability
law, and therefore, the two hypotheses (presence or absence of
hidden data) can be distinguished by estimating the probability
law of the observed data. An advantage of this approach is that
it enables us to study the limits of steganalysis. In this section,
for the i.i.d. host and i.i.d. LSB hiding described in Section II,
we study two hypothesis testing formulations of steganalysis.

1) In Section III-A, we study asymptotically (as number of

data samples N — oo) optimal hypothesis tests without
any knowledge about the host PMF. Our goal here is to
set up a universal framework for steganalysis, which is
applicable for a number of hiding schemes, and exemplify
it with LSB hiding.
Another engineering approach is to first derive optimal
tests when the host PMF is known and in practice use an
estimate in place of the true host PMF. With this in mind,
we study the composite hypothesis testing formulation of
steganalysis when the host PMF is known in Section I1I-B;
the lessons learned are used in Section I'V to design prac-
tical steganalysis schemes, which do not assume knowl-
edge of the host PMF.

Further analysis and comparison of these detection scheme are
given in the remainder of the section.

2)
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A. Asymptotically Optimal Steganalysis with Unknown Host
PMF

Suppose the observed data { X, }_; is i.i.d. with PMF p(¥)
and takes values in the alphabet A = {0,1,...,255}. We wish
to decide between two possibilities: No data is hidden (hypoth-
esis Hy) or data is hidden at some rate R, where Ry < R < R,
(hypothesis H1). The parameters 0 < Ry < R; < 1 are speci-
fied by the user. In this section, we consider the case where the
host PMF p®) is unknown. Recall that P is the set of PMFs on
A. Let Pr := QrP be the image of P under the linear map
Q. Since LSB hiding at rate R results in a transformation of
the host PMF by the linear map @y, Pr is the set of possible
PMFs for the data after hiding at rate R. It is easy to see that
Pr C Pgr for R > R’ [see (12) in Appendix A]. Thus, the
hypothesis that data is hidden at a rate R, where Rg < R < R;
is the composite hypothesis

Hy:p™O € U Pr = Pr, -

Ro<R<R,

The hypothesis that data is not hidden is
Ho : p) = pH) | where pf!) € P\ Pg, is unknown.

We next derive detectors that do not depend on p(*).
A detector 6y is characterized by the acceptance region
Ay € AN of hypothesis H;:

6]\7(131,...,$N) ="Hq, if (xl,...,xN) € An

="Hq, otherwise

where {x,,}]_, is a realization of {X,,}"_,. The performance
of the detector is given by the two error probabilities:

Pi(6x) := P(Miss) = P(8x (X1, ..., Xn) = Ho|H)

sup P ((X1,...,Xn) € AV \ Ay)
P EePR,

and

P5(6y) := P(False alarm)
=P(On(X1,...,XN) = Hi|Ho)
:P((X17"'7X]\7) € AN)

where the PMF of X7 under H, is some unknown p<H ) €
P\ Pr,. In the Neyman—Pearson formulation of the optimal
detection problem, for given « > 0, we minimize P5(dx) over
detectors 6 that satisfy P;(6x) < «. Unfortunately, the solu-
tion to this problem in general depends on the host PMF p(f),
which is not known in our case. However, if instead we cast the
problem in terms of the rate of decay of the error probabilities
(as N — 00), then we do get an asymptotically optimal de-
tector that works for all p(#) € P\ Pg,. This formulation is
due to Hoeffding [16], which we describe next. (A generaliza-
tion of Hoeffding’s formulation was recently proposed in [17]
and [18], but we do not consider it here.) We are seeking detec-
tors that maximize the rate of exponential decay of P, subject
to a minimum guarantee on the exponential rate of decay of P;:



DABEER et al.: DETECTION OF HIDING IN THE LEAST SIGNIFICANT BIT

Fig. 1.

Schematic of the test (2).

Given A > 0, amongst all sequences of detectors {6y} satis-
fying

. 1
lim inf — - log(P1(8n)) 2 A
we seek a sequence which maximizes
. 1
1}\rrri)1£10f -N log(P2(6n))

for all p#) € P \ Pgr, - Let g be the empirical PMF (normalized
histogram) of the observed data and D(q||p) denote the Kull-
back-Leibler (K-L) divergence between the PMFs ¢ and p:

Dlalp) =3 avox <]§_> .

From [16, Th. 3.1], we know that an optimal (in the above
asymptotic sense) test declares data to be hidden whenever

D(a|[Pr,) = jmin D(qllp) < A

@

Thus, the decision statistic simply computes the K-L distance
of the empirical PMF ¢ from the set of PMFs Ppg, corresponding
to the feasible PMFs after hiding at rate R > Ry (see Fig. 1).
This detector can be termed universal since it optimizes the error
exponent corresponding to P; for all p(H#) € P\ ‘PR, - Toimple-
ment the optimal test, we need to solve the optimization problem
in (2). We note that Pp, is convex and closed, and D(q||p) is
convex in p. Therefore, a unique solution exists and is given by
the following proposition.

Proposition 1: Let p* = argminpep, D(q||p). Then, for
k=0,1,...,127

a) if (Ro/(2— Ro)) < (q2e41/q2) < ((2 = Ro)/Ro),

then

* *
Por = 92k,  Por+1 = 92k+1

b) if (gar+1/g2x) < (L20/(2 — Ro)), then
. R
Por = (1 - 7(]) (q2k + G2x41)

Ry
Popy1 = 7((1% + q2k41)
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¢) if (qar+1/q2k) > ((2 — Ro)/Ry), then

« Io
Doy, = 7((121« + G2k+41)
. Ry
Dags1 = <1 - 7) (q2r + q21+1)

where we interpret 0/0 to be 1.

The proof is given in Appendix A.

The above detection problem is well-posed only if p(#) is not
in Pg, . It is easy to see that p{!) € P, if and only if

Ro <7“1(€H) < 2— Ry

2— Ry — Ry
where
(H) Pgﬂl
TR ) k=0,1,...,127.

Doy

Equivalently, the test (2) makes sense if and only if

2r . . (H) 1
Ry > T 7= min {mklnrk ,7man T}(CH) } .
Thus, for a Binomial(255, 1/2) host, the above test is meaningful
for Ry > 1/128 only. This is the hit we have to take for not
knowing anything about the host PMF.

Even though the test (2) does not depend on the knowledge of
the host PMF, its performance depends on the host PMF. Con-
sider the error exponent of the probability of false alarm, which
is given by [16, Th. 3.1]

min D('u,||p(H))

. . 1
o) = lyninf 7 log(Pa(ow)) =

where

A(XN) == {u € P: D(u||Pg,) < A}.

Thus, the further away p) is from A()), the better the perfor-
mance will be. To get an asymptotically reliable test (for which
the probability of errors decays to zero as N — o00), we want
both A and e(\) to be positive (see Fig. 1). A necessary and suf-
ficient condition for e()) to be positive is that p(') ¢ A(\).
As we increase the rate of decay A of the probability of a miss,
A()) grows to fill up P, and hence, the rate of decay e()) of
the probability of false alarm decreases. Therefore, the test (2)
is reliable only for A € (0, A, (p#))) for some A, (p(H)) > 0.

We note that the above formulation of steganalysis is appli-
cable to any memoryless hiding scheme—only the definition of
the set Pp, in the optimization problem (2) changes as per the
hiding scheme. If the hiding scheme is such that Pp, is convex,
then (2) is a convex optimization problem. While Proposition 1
gives a closed-form solution to the optimization problem in the
case of LSB hiding, in general, we have to use numerical tech-
niques to solve (2) [19].

Even though the approach we have taken so far is promising,
it has a limitation. Note that in this approach, we always com-
pete p{H) against all of Pr, - However, for steganalysis, it seems
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natural that p(*) should compete only with p%H). This, how-

ever, leads to tests based on p(F). Although p(*) is not known
in practice, in specific situations, we may have access to good
models/estimates for it. With this in mind, we next consider the
other extreme case when the host PMF is known exactly (but
the hiding rate is still unknown).

B. Optimal Composite Hypothesis Testing with Known Host
PMF

In this section, we consider the case when the host PMF is
known to the detector. The analysis of optimal schemes in this
section is used in Section IV to design practical steganalysis
schemes that do not assume knowledge of the host PMF.

We use Hp to represent the hypothesis that data is hidden at
rate R. The steganalysis problem in this notation is to distin-
guish between H, and

K(Ro,Rl) = {HR : Ro S R S Rl}

The hypothesis that data is hidden is thus composite, whereas
the hypothesis that nothing is hidden is simple. In the absence
of an a priori distribution on R when data is hidden, we can take
the following two approaches.
a) We can use the generalized LRT (GLRT) ([15]), which
declares data to be hidden whenever

min

RUSRSRlD(q”pR> D (qlp™) <T

3)

where T is the threshold to be chosen, and q is the em-
pirical PMF of the observed data. The GLRT is known to
have some asymptotically optimal properties [20].

b) We can derive optimal detectors in a Neyman—Pearson
framework: For given « > 0, minimize

PMiss) = sup P(6(X4,...

Ro<R<R;

. Xn) = Ho|HR)

over detectors 6 that satisfy

P(False Alarm) = P(6(X,4, ...,
<a.

Xn) = K(Ro, R1)|Ho)

In general, the minimization in (3) has to be carried out numer-
ically. In contrast, approach b) leads to simple tests in our case,
and we pursue it in detail below. Practical tests based on both
these approaches are compared in Section IV.

From [14, Th. 7, pp. 91], we know the following for frame-
work b) above.

1) An optimal detector exists.

2) Consider an apriori probability distribution 7 on [Rg, R1].
With this a priori distribution, the optimal detector is the
well-known LRT. If for a fixed P(False alarm) level «,
this test results in a lower P(Miss) for any other distribu-
tion 7’ on [Rp, R1], then r is said to be the least favorable
distribution. If a least favorable distribution exists, then
[14, Th. 7 pp. 91] tells us that the corresponding LRT is
the optimal detector.
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Therefore, one way to find the optimal detector is to find the

least favorable distribution. Intuitively, for steganalysis, the

worst-case corresponds to the smallest hiding rate. The following

proposition shows that this intuition is accurate for sufficiently

large data lengths N and sufficiently small hiding rates. A de-

tailed discussion is given after the statement of the proposition.
Proposition 2: Suppose

(H)

>0, 1=0,...,255

and

(H)
(H) _ Pog41
ko (H)

Doy

# 1, forsome k£ =0,1,...,127.

Consider the composite hypothesis testing problem for
distinguishing between Hy and K(Rg, R1). We restrict our
attention to detectors that operate in the region P(Miss) < 0.5,
P(False Alarm) < 0.5. Then, there exists No, R. > 0such that
for N > Ny, R; < R, the unique least favorable distribution is
aunitmass at R. Therefore, if ¢ denotes the empirical PMF of the
observed data, the optimal detector for N > Ny and R; < R,
is the corresponding LRT, which accepts K (R, R;) if

SmmM%ZD@ng—DMMWU
255 (H)

ax log (pg‘T)) <T(@) @

PRy,k

k=0

where T'(«) is a threshold chosen to obtain P(False Alarm)
a.

The proof is given in Appendix B.

The main conclusion of the above result is that the com-
posite hypothesis testing problem associated with steganalysis
can be replaced by the simple hypothesis testing problem: test
Hy versus H g, . Even though we have established the result only
for sufficiently small rates of hiding, in simulations, we have
found the results to be meaningful for higher rates as well.

By Stein’s lemma [21, Th. 12.8.1], we know that for small
a, the error exponent of P(Miss) (as N — oo) is (approxi-
mately) given by D (p(H) ||P§{j)> . Using the definition of pgj),
it is easy to see that D ( p(*) ||p$g)) is of the order of R3. This
shows that as R decreases, the performance of even the optimal
test degrades rapidly: For a two-fold decrease in R, we need
a four-fold increase in data size to maintain the same perfor-
mance. Thus, for low hiding rates, the steganalysis problem
is inherently difficult.

C. Asymptotic Performance of Hypothesis Tests

In Sections III-A and B, we used error exponents to make
qualitative remarks about the performance of the tests. In this
section, our goal is to provide approximate expressions for
P(Miss) and P(False Alarm) for large N and for a wide class
of decision statistics. Our motivation is two-fold.

* Evaluating the error probabilities by simulation is time
consuming. On the other hand, the approximate expres-
sions (8) and (9) can be computed with hardly any effort
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and provide a quick way of comparing different schemes
for a fixed host PMF.

* Our proof of Proposition 2 is based on these approxima-
tions.

We restrict our attention here to distinguishing between Hy
and Hp. We note that for i.i.d. data, the empirical PMF gq is a
sufficient statistic for testing hypothesis H versus Hg. There-
fore, we are interested in tests that accept Hg if S(q) < T. We
note thatqg = N1 Zﬁ;l Z,, where Z, is a 256-dimensional
column vector whose kth entry is 1 if the data X,, = k and is
zero otherwise. The {Z,,} are i.i.d., and straightforward com-
putations show that E[Z;] = png), and the covariance matrix
of Z, is X'i := diag gpg{) — png) png))t under hypothesis
Hp. An application of the law of large numbers then gives us

lim ¢ = p%H)

N—oo

almost surely under Hp. 5)

In addition, applying the central limit theorem, we get that under
Hp

x/ﬁ(q—p;’”) — N(0, Zp). 6)

Here, “=>" denotes convergence in distribution, and N (0, X)
denotes the Gaussian distribution with zero mean and correla-
tion matrix X. Now, suppose S : R?® — R is differentiable at
pg%H). Then, we know from an old result of Mann and Wald (see
[22, Prop. 6.4.3, pp. 211]) that

VN(S(q) = n(R)) = N(0,5%(R))

umw=5@$U
o%(R) =ub X pug, up:= VS|p(H). @)

We are interested in finding expressions for the probabili-
ties of errors for the detector based on S(q). Unfortunately, for
large N and fixed R € (0, 1], this goal cannot be met by the
above asymptotic normality result; such goals lie in the large
deviations regime [23], which is too complicated for our pur-
pose. Fortunately, in practice, we are interested in small R, typ-
ically around 0.05. In this case, the two alternative hypotheses
are close, and the asymptotic normality result provides good ap-
proximations to the error probabilities. (Rigorously, this is es-
tablished by choosing R = O(1/v/N) as N — oo; see our
proof of Proposition 2.) Therefore, using the Gaussian approx-
imation for N large and R small, we have

P(False Alarm) = P(S(q) < T'|Ho)

zQ(¢Nm@—Tv

a(0) ®)

and
P(Miss) = P(S(q) > T|Hx)

zQ<¢N@—nm»)

) ©)

where Q(t) is the complementary Gaussian function defined
previously.
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Fig. 2. Comparison between the universal test (Ro = 0.5) and the LRT test
for binomial(15,1/2) data of length 1024 and hiding rate R = 0.5. Any practical
scheme would perform between these two limits.

D. Comparison of Detectors

In this section, we compare three schemes for detecting LSB
hiding: the universal scheme (2), the LRT (4), and Stegdetect
[7].

In Fig. 2, we compare the test (2) with the LRT (4) when the
host is i.i.d. Binomial(15,1/2). We note that these tests represent
two extremes: Equation (2) does not assume any knowledge of
the host PMF and competes p) with all of Pr, whereas (4)
assumes exact knowledge of the host PMF and competes p(*)
only with pg]). Therefore, we expect any practical test to per-
form between these two tests. Not surprisingly, (2) is worse than
(4). In addition, as stated after Proposition 1, in this case, (2) is
useful only for hiding rates greater than 1/128. The price for
generality is that in specific instances where we may have good
models, the performance is far from optimal.

Next, consider the statistic of a test called Stegdetect [7]:

127

Scregdetect(q) = Z (G241 — (I2k)2
stegdetec L .
i—o 12k + q2k+1

Strictly speaking, Stegdetect [7] is also tuned to specifics of par-
ticular hiding schemes such as Outguess [9]. However, its main
element is the above statistic, which does not depend on the host
PMF. If Sgtegdetect(q) is less than a threshold T', then Stegde-
tect declares data to be hidden; otherwise, no data is hidden. We
know that after hiding at R = 1

(H)

)
(H) _ (H) _ Pop” T Poria
Prok = PR2k+1 = - 5

0<k<127.

The Stegdetect statistic is a measure of closeness of the adja-
cent bins {2k, 2k + 1}—the smaller the statistic, the closer
these bins are, and the higher the chances that data is hidden.
We next compare Stegdetect with the optimal LRT (4). By
choosing the host PMF to be Binomial(255, 6), # € (0,1) and
using (8) and (9) for these two tests, we have observed that
Stegdetect performs very close to the optimal LRT; we have
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observed the same result for host PMFs randomly chosen to be
a mixture of binomials. (However, we do not have a theoretical
proof that this is the case whenever the PMF is a mixture of
binomials.) While the Stegdetect statistic does not depend
on the host PMF and, for a given host PMF, its performance
appears to be close to the LRT, the choice of threshold required
to guarantee a target performance depends on the host PMF,
as shown by the following example. Suppose our target is to
minimize P(Miss) + P(False Alarm). In Fig. 3, we plot the
sum of the P(Miss) + P(False Alarm) as a function of the
threshold for the LRT and Stegdetect for the Binomial(255,0.5)
and Binomial(255,0.8) host PMFs. For the LRT, the threshold
T = 0 minimizes P(Miss) + P(False Alarm) for any host
PMF, whereas for Stegdetect, the minimizing threshold T
depends on the host PMF.

To summarize, if the host PMF is known, then there is little
loss in using the suboptimal Stegdetect. In practice, this means
that if we have good models for the host PMF and lookup tables
for choosing the threshold (depending on the host PMF), then
Stegdetect performs close to the LRT. However, the host PMF
usually varies substantially over image databases, and hence, we
are more interested in completely data driven tests that attain the
target performance—both the statistic and the threshold have to
be chosen based on the data to achieve the desired performance.
With this in mind, we note two points, which motivate our work
in Section IV.

e The LR depends on the host PMF, but the threshold 7'
can be chosen independent of the host PMF. For example,
to minimize P(Miss) + P(False Alarm), we can choose
T =0.

» The Stegdetect statistic does not depend on the host PMF,
but to obtain a target performance, 7" has to be chosen de-
pending on the host PMF. Thus, Stegdetect does not re-
solve the problem of not knowing the host PMF—it simply
transfers it to the choice of the threshold. This aspect does
not appear to have been realized in the literature (see, for
example, [7]).
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Stegdetect statistic does not depend on host PMF, but the threshold is sensitive to the host PMF, unlike LRT.

IV. PRACTICAL TESTS

Our goal in this section is to develop practical hypothesis tests
for steganalysis and evaluate their performance for a database
of 4000 DOQQ images. (We also briefly state the performance
for scanned images and digital camera images.) We note that
the images in the database have different histograms—thus, in
probabilistic terms, we are evaluating the performance of the
hypothesis tests for a nonergodic source. Based on our discus-
sion so far, we can take three directions.

* We can use the universal test (2).

e We can estimate the host PMF and use (4) with this esti-

mate in place of the true PMF.

* We can use Stegdetect.
While the test (2) is applicable in a wider range of scenarios
than (4) and Stegdetect, we have found that the latter two ap-
proaches give better performance for the specific case of LSB
hiding. Hence, we only report the experiments for them. In par-
ticular, we exhibit new tests based on the estimation of the LR
and demonstrate their superiority over Stegdetect. We also com-
pare with the RS analysis scheme, which, unlike our focus here,
uses memory in the image.

A. Estimating LR

We note from Proposition 2 that we only need to develop tests
for testing Hy versus Hg, where R is the smallest rate amongst
the possible rates for which the user is testing. A problem with
the optimal LRT is that we do not know the host PMF in prac-
tice. However, there are two factors that help us to develop good
practical tests based on the optimal LRT.

1) The hiding rate in practice is very low, and therefore, we
can estimate the host PMF well. We show below that a
number of simple estimates of the host PMF based on the
assumption that the host PMF is “smooth” work well.

2) For the optimal LRT, the threshold that minimizes
aP(Miss) + (1 — a)P(False Alarm) for a € [0, 1] does
not depend on the host.



DABEER et al.: DETECTION OF HIDING IN THE LEAST SIGNIFICANT BIT

N —— Approximate LRT
N — - Stegdetect

09R < -

0.8 > h

0.6 < |

0.5 ~ 4

P(Miss)

0.4 ~ .

0.3 ~ 4

0.1 ~ 4

I I L T =

0.6

0 I I I L
0.2 0.3 0.4

1
0.5

P(False alarm)

P(Miss)

3053

0.5 T T T T T T

|
! — - Stegdetect

045 \ hl

04F .

0.35- \ q

L L ! I I I L

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0
0 0.05

0.1 0.5

P(False alarm)

Fig. 4. Approximate LRT with half-half filter estimate versus stegdetect: At high rates (right side; R = 0.5) as well as low rates (left side; R = 0.05), the
approximate LRT is superior. The same hiding rate r was used for all the test images with hidden data.

With the above motivation, we propose to form an estimate f)(H )

of the host PMF p(*) and then form the decision statistic

) =D (alp™).

1) For natural images, the PMF is usually low pass. On
the other hand, random LSB hiding introduces high-fre-
quency components in the histogram. Hence, one simple
estimate ﬁ(H ) is to pass the empirical PMF ¢ through
a lowpass two-tap FIR filter with taps (0.5, 0.5), which
we refer to as the half-half filter below. We note that
normalization is required after the filtering.

Another regularity constraint that we can impose on the
host PMF is that the local slope is preserved, that is

H
=3 (p;(c+)2 -p

This regularity constraint can be written as Ap(®) = 0
for a suitable 64 x 256 matrix. Under this regularity con-
straint, a natural estimate of p(#) is to project ¢ onto the
null space of A. We again need normalization and removal
of negative components after this filtering.

We also propose a nonlinear approach that, unlike the
above two approaches, adapts to the underlying host
PME. We note that LSB hiding only affects the eighth bit.
Suppose we only consider the “coarse” image with 7-bit
pixels corresponding to the seven most significant bits. By
appending the remaining eighth bit, we can go from this
coarse image to the original image. We assume that the ad-
dition of the eighth bit is such that it preserves the shape of
the histogram of the coarse 7-bit image. More precisely, we
impose the regularity constraint that the host PMF is such
that we can obtain it by spline interpolation of the PMF of
the coarse image. The estimate iJ(H corresponding to this
regularity constraint is obtained by first subsampling q,
then interpolating using splines, and then normalizing.
We refer to all these tests as the approximate LRT.

S(a) = D (alQzp™

(10)

2)

(H) (H)

(H)
Prys — Py

k+1), k=0,4,8,... 252,

3)

B. Simulation Results

We next state a number of simulation results for 4000 images
from a DOQQ image set and discuss them in light of the results
of Section III.

Comparison with Stegdetect: In Fig. 4, we compare the
approximate LRT based on the half-half filter for estimating p
with Stegdetect. For each point on the curve, the threshold has
been fixed over the entire database. Clearly, our test signifi-
cantly outperforms Stegdetect for small as well as high rates;
at R = 0.05, Stegdetect is as bad as random guessing. Based
on the discussion in Section III-D, it appears that for a fixed
host PMF, both these tests perform closely. However, for the
database of images we have used, the host PMF varies substan-
tially from image to image. Thus, these simulations suggest
that Stegdetect is more sensitive to the choice of the threshold
than the approximate LRT. This is not surprising since we
know that to attain a target performance, the choice of the
threshold in the LRT does not depend on the host PMF. For
example, by choosing T' = 0 for the approximate LRT in the
case when the hiding rate is 0.05, we found the operating point
to be P(Miss) = 0.4043 and P(False Alarm) = 0.3219. From
Fig. 4, we can verify that the tangent to the operating curve
at this point is of slope approximately 1, as predicted by the
theory. To summarize, our test is definitely closer to the goal of
obtaining data driven tests than Stegdetect. In particular, with
T = 0, for small hiding rates typically encountered in practice,
we obtain performance that is close to that expected theoreti-
cally. We have observed that the story remains unchanged if we
hide in the LSB of the DCT coefficients of JPEG compressed
images (with quality factor 75).

Performance at small hiding rates: We note from Fig. 4
that for low hiding rates such as R = 0.05, the performance
is not good. In fact, this is true even in the ideal case when
the host is generated i.i.d. from a known PMEF, the hiding rate
is known, and the optimal LRT is employed. Based on the
discussion after Proposition 2, we know that as the hiding rate
decreases, the performance of even the optimal LRT degrades
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Difference between the approximate GLRT and our worst case approximate LRT is small, especially at low hiding rates. (R = 0.05 case is on left side,

whereas the R = 0.5 case is on the right side. The same hiding rate was used for all the test images with hidden data.)

rapidly. Evaluating the error exponent D (p(H )||p§%H)) given
by Stein’s lemma [21, Theorem 12.8.1], for a Binomial(255,
0.5) host PMF, we see that to obtain the same performance as
the R = 0.5 case, for R = 0.05, we need images that are about
99.43 times larger.

Comparison with approximate GLRT: In principle, instead
of the simple hypothesis tests as above, we could use the GLRT
(3) with the host PMF replaced by its estimate: Data is declared
hidden if

min

A<H>)_ () <
i D (alf”) - Dalp™) < T

(1)

The minimization in (11) is carried out by searching over the
entire range of R. As shown in Fig. 5, this approximate GLRT
performs very close to the (simple) approximate LRT we have
developed (which uses Ry instead of the above minimization),
especially at low hiding rates. This is not surprising given Propo-
sition 2, which states that for small hiding rates, the optimal com-
posite hypothesis testing problem considered in Section III-B is
solved by the simple hypothesis testing problem. Due to the nu-
merical minimization required in the approximate GLRT, it is
also more computationally intensive than the approximate LRT.
However, we note that the GLRT also furnishes an estimate of
the hiding rate: We can use the argument R that minimizes (11)
as an estimate of the actual embedding rate. We find that this
works reasonably well in practice (see Fig. 6).

Effect of different PMF estimates: We have compared the
approximate LRT based on spline estimates of p(*) and based
on the half-half lowpass filter. There is very little difference in
performance. We have observed that the local slope-preserving
filter is slightly worse.

Comparison with RS analysis: Our focus in this paper is
to develop a fundamental understanding of steganalysis by con-
sidering schemes that do not exploit host memory. In order to
understand the possible scope for improvement by exploiting
host memory, in Fig. 7, we compare the approximate LRT with
RS analysis [10]. The RS scheme provides an estimate of the un-
known rate of hiding. To obtain the performance curve in Fig. 7,

1 T T T T T T T T T

-—- Estimate : i
— Actual :

0.9
0.8 -

05F : : S : e

Estimated rate

0.4 e e
03| ; : OPNes - : : : i
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True hiding rate

Fig. 6. Minimizing rate in (11) serves as an estimate of the true hiding rate.

R =0.05, DOQQ database
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Fig. 7. RS analysis, which uses host memory, is slightly better than our
memoryless approximate LRT on the DOQQ database. A hiding rate of 0.05

was used for all the test images with hidden data.
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we compare this threshold with different thresholds (fixed over
the database at each point on the performance curve). Since the
RS scheme takes advantage of host memory, it performs better
than our scheme, which is close to optimal only if we decide
not to use memory. The gain of the RS scheme over our method
varies over image databases; for the DOQQ database of aerial
images used for our simulation, the performance gain is rela-
tively small, whereas larger gains are observed for other image
types such as scanned images and digital camera photographs.
This strongly motivates further investigation into developing
systematic parametric and nonparametric frameworks for ste-
ganalysis using host memory.

Performance for other types of images: We have also tested
the approximate LRT on 128 scanned images and 3000 digital
camera images. We have found that the performance for R =
0.05 degrades for these databases (compared with the DOQQ
database), although it is much better than Stegdetect. As ex-
pected, the performance is worse than RS analysis, and the gap
in difference in performance is greater than in Fig. 7 for the
DOQQ database.

V. CONCLUSION

In this paper, we studied steganalysis of LSB hiding using
hypothesis testing. The main conclusions are as follows.

1) The steganalysis problem can be cast in the framework of
[16] to obtain a universal detector. However, in specific
situations where the host PMF can be estimated well, the
approach based on the estimation of the LR is preferable;
this is the case with LSB hiding for the DOQQ database
with which we experimented.

2) When the host PMF is known, the optimal composite hy-
pothesis testing problem reduces to a worst case simple
hypothesis testing problem.

3) For low hiding rate, the host PMF can be estimated well
under a smoothness assumption by a number of simple
methods. These can then be plugged into the optimal LRT
to obtain approximate LRT. These tests perform close to
the computationally intensive GLRT, especially at low
hiding rates.

4) For a fixed host PMF, Stegdetect performance is close to
the optimal LRT and to our approximate LRT, but for most
image databases, the PMF varies significantly from image
to image. Since the threshold required in Stegdetect to at-
tain a target performance depends on the host PMF, and
for image databases, the performance of Stegdetect de-
grades substantially. In comparison, the approximate LRT
significantly outperforms Stegdetect since the threshold
can be chosen independent of the host PMF.

5) For low hiding rates (less than 0.05), even in the ideal
case with known PMF, i.i.d. simulated host, and known
hiding rate, the performance of even the optimal LRT is
not good; accordingly, practical tests applied to real data
also do not give good performance for low hiding rates.
This demonstrates the intrinsic difficulty of steganalysis
for low hiding rates. Of course, the performance for nat-
ural images can be improved by using memory, as in [10]
and [13].
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An important area for future investigation is the exploitation
of memory in the host samples for steganalysis since image
coefficients have substantial local dependencies in both the
pixel and transform domains. In principle, one could approxi-
mate such dependence by modeling blocks of host samples as
i.i.d. and then applying methods similar to those in this paper.
However, this would result in substantial increase in computa-
tional complexity. It is also unclear whether multidimensional
densities can be estimated accurately with the amount of data
available and what kind of smoothness assumptions, if any,
would apply to such densities. Clearly, much more effort is
required in models that lead to more economical representa-
tions of host memory that are amenable to a hypothesis testing
framework.

Finally, a major effort is required to develop systematic
approaches to steganalysis of other prevalent hiding strategies,
such as variants of LSB hiding that employ memory in the
hiding process [9] or methods such as quantization index
modulation [1], [2].

APPENDIX A
PROOF OF PROPOSITION 1

For simplicity, we denote Ry by R. Recall that our goal is
to minimize the function D(q||p), which is convex in p, over
the convex set Pr. We assume R < 1; the proof for R = 1 is
straightforward. From the definition of Pg, it is easy to verify
that
2-R

P41 , k=0,1,...,127.
D2k R

R
iff <
PEPrI 5 R =

12)

If both g2 and go41 are zero, then the corresponding terms
from D(q||p) drop out, and therefore, in the following, we as-
sume qor + qok+1 7# 0. From the definition of D(q||p), our
problem is the same as maximizing

255 255
L(p) = Z qx log(pr) subject to Zpk =1
k=0 k=0
R Pt _ 2—R
< < 1=0,1,2,...,127.
2-R~ py ~ R’ P S

The trick to solving this problem is to solve it for each pair pay,
par+1- To this end, consider the following parametrization of
PR:

Pr = U{{p >0 pok + pors1 = ok(qr + qory1)}

R Pusr1 _ 2—R
>0: < <
Xﬂ{p— "R~ pw = R

where the union is over all @ = [ay, . .., a127]" > o such that

127

Z ar(qer + @2r41) = 1.
k=0
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We first maximize L(p) for a fixed and then over « satisfying
these constraints. We write

127

L(p) = Z[Q% log(p2k) + qak+1log(pak+1)]-
k=0

To carry out the maximization, we need the following lemma.

Lemma 1: Suppose a,b > 0,a+b#0,¢c> 1,and 3 > 0.
Consider the problem of maximizing F(z1,22) = alog(z1) +
blog(z2) subject to the conditions z7 + o = B(a + b) and
1/¢ < x1/xz2 < c. The solution is given by

1 b
z] =fa, xz5=pbif - < - <c¢
C a
3 b b b
groBlatt) . Blath) b
1+e¢ 1+¢ a
. cBla+bd) . Pla+bd) . b
O prat e

The proof of this lemma is simple: We substitute 2o = 3(a+
b)—x1 in F(x1, x9) and then maximize with respect to =1 under
the remaining constraints. We skip the details.

Now, from Lemma 1, under the constraints

Dok + Pak+1 = o (qor + G2r41)
R < D2k+1 < (2—-R)

and
(2-R) D2k R

we get

@21 log(p2r) + q2r+1 log(p2r+1)
< (gar + q2r+1) log(ar) + qax log (p3;,)
+ qart110g (P3ry1)

where p* is as specified in the statement of Proposition 1. There-
fore

127 255
L(p) <> (qor + q2641) log(ew) + Y _ arlog (p}) .-
k=0 =0

Under the constraints on a, it is easy to see that the above right-
hand side is maximized for a;, = 1 for all k, and this completes
the proof.

APPENDIX B
PROOF OF PROPOSITION 2

For simplicity of notation, we denote p#) by p and r,(CH) by
7. Consider the log of the LR

Strr(q) = D(qllpg,) — D(gllp) = a'q

where a is a column vector whose kth entry is log(pr /pr, .« ). In
this proof, we repeatedly use the following estimates for small
R(]Z

ask = Ry (L - pz’““) +0 (R) (13a)

2pak

a%Hzm(ﬁgifﬁ)+ow@. (13b)
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We note that the false alarm probability P(SpLrr(g) < T'|Ho)
does not depend on the unknown hiding rate under H;. There-
fore, to prove the result, we wish to show that for a given
threshold T, Fiy(T|Hg) = P(Siirr(q) > T|Hp) is de-
creasing for Ry < 6 < R; so that the unit mass at Ry is
the least favorable distribution. (We note that Fi(t|Hy) is
the complementary distribution function of Srrrr(g) under
hypothesis Hy.) To do so, we first obtain an approximation for
Fn(T|Hg) when Ry, Ry are small and N is large; this is a
rigorous derivation of the discussion in Section III-C. By the
Berry—Esseen estimate for the rate of convergence in the central
limit theorem ([24, Th. 4.9, pp. 126]), under hypothesis Hy

_o(vEZ=rO)| 3 _EIWFT
kMNM)CKYN o (0) Ngwﬁmmﬂﬁ?

where Wi = a'(Z; — py), and where Z is as defined in Sec-
tion III-C. At the end of the proof, we show that

E [[W4 ]

< constant
(E[w2])*?

(14)

where the constant does not depend on 6. Now, if Ry, Ry =
O(1/V/N), then it is easy to check using (13) that u(f) =
O(1/N), and o(§) = O(1/v/N). Therefore, choosing T =
O(1/N), we get that

VN(T — u(6))

AT

= 0(1).
It follows that for sufficiently large N and sufficiently small R,
Ry

constant

VN

Thus, for sufficiently small Ry, R;, and N sufficiently large,
we can approximate P(Miss|Hy) by Q(vn(f)). Next, we show
that the similar approximations hold for derivatives with respect
to . From the above, we know that

|Fn(THg) — Q(yn(0))] <

5)

B(6,T)
Fn(T|Hy) = 0)) + .
~(T|Hp) = Q(n(0)) VN
Since we have N data samples, ¢ = [Ko/N, ..., Ko55/N]* for
some random positive integers K, . . . , K355, that s, q is of type
N. Furthermore
ko koss 1"
Plg=|—=,..., H
q |:N7 ’ N | 6
N!

_ ko . koss
- ko!"'mk255!p9’0 p9,255

which is infinitely differentiable in 6. Since

>

{PMFsW:SyLrr (W)>T}

FN(T|H9) = P[q:'u.|H9]

and there are only finite number of type-N PMFs, we get that
Fn(T|Hy) is also infinitely differentiable. From the contin-
uous differentiability of vn(#) and Q(t), we get that B(6,T)
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is continuously differentiable in #. Under the assumption Ry =
co/\/ﬁ, Ry = cl/\/ﬁ, and 7' = T,/ N for some constants co,
c1, Tp, it can be checked from the Edgeworth expansion [25, pp.
229], using estimates like (14) for higher moments in place of
the third moment, that dB(6,T)/df is bounded independently
of T and 6. Thus, we get that for sufficiently large NV

dFN(T|He) _ dQ(yn(0))
db de B

constant

VN

From approximations (15) and (16), it suffices to show that
Q(yn(0)) is decreasing with 6.

Since the Q-function is monotonically decreasing, we need
to establish that G(6) := yn/VN = (T — u(f))/o(h) is in-
creasing, that is, its derivative is non-negative for 8 € [Ry, R1].
Taking the derivative of G(0)

(16)

W00 + (e (T2)
G =~ =0 = o5

Our goal is to show that V'(#) is nonpositive in the desired re-
gion. We begin by obtaining an expression for V().

Let w be the vector such that war = par — pory1 and
Wak4+1 = Pak+1—P2k- Then, itis easy to see that p, = p—6w/2,
and hence, p(0) = p(0) + 6, where 5 = —a'w/2. Substi-
tuting for @ and w, we get

127 R, 1—R,
! B) 4 (o,
b== por(ri — 1) log 2 2
22 R

We note that each summand is negative, so that § < 0 and
w(0) is decreasing. Hence, the restriction P(Miss) < 0.5 and
P(False Alarm) < 0.5 implies that

u(Ro) < T < p(0). (17)

Similarly, we obtain
o?(0) = a(0) + bl + ch?
where

b= — Lo (ding(w) + 2p')a, = 5.

Putting ¢ = u(0) — T, we obtain

V() = (% - ¢c> 0+ (502(0) - %) .

From (17), we know that ¢ > 0. We showed above that 8 < 0
and ¢ = 32 > 0. Therefore, to prove that V (#) < 0, it suffices
to show that b > 0. We note that

1
b= — Eatdiag(w)a —2(a'p)p

127
1

T2 Z(p2k+1 — P2k) (a’%k+1 - a%k) —2D(pllpr, )8
k=0
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Using (13), we know that D(p||pp,) = O(R3), 8 = O(Ry),
and

R} & P2k+1 + D2k
=203 (pans ) LI o ()
s PoyPok+1

Thus, for R sufficiently small, b is positive, and this proves that
V(0) < 0. The proof is complete, except that we still have to
show (14).

Proof of (14): We note that

|[W1| < 21nl?x |ak| < constant - Ry

where we have used (13), and the constant does not depend
on # since aj does not depend on f. Therefore, we get that
E [|[W:|*] < constant - Rj. To prove (14), we now show that
E [W?] > constant - R3. Since ¢ > 0 and b > 0 for sufficiently
small Ry, 02(f) > o%(0) for sufficiently small Rg. Using (13)

E[W2) =0%(0) > o%(0) = L0 o (r3)
where
127 )
U(p) = kZ:O {(p2k + Pokt1) <7“k + . 2) } .

Since 7, # 1 for at least some k, U(p) > 0, and we get
E[W?] > constant - R2.
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