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sing texture to analyze and manage large
ollections of remote sensed image and video data

hawn Newsam, Lei Wang, Sitaram Bhagavathy, and Bangalore S. Manjunath

We describe recent research into using the visual primitive of texture to analyze and manage large
collections of remote sensed image and video data. Texture is regarded as the spatial dependence of
pixel intensity. It is characterized by the amount of dependence at different scales and orientations, as
measured with frequency-selective filters. A homogeneous texture descriptor based on the filter outputs
is shown to enable �1� content-based image retrieval in large collections of satellite imagery, �2� semantic
labeling and layout retrieval in an aerial video management system, and �3� statistical object modeling
in geographic digital libraries. © 2004 Optical Society of America
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. Introduction

emote sensed data, such as satellite imagery or aer-
al videography, are being acquired at increasing
ates because of technological advances in airborne
nd spaceborne optical sensing systems. The full
alue of these data sets is not being realized, how-
ver, because of the prohibitive cost of manual anal-
sis, both in terms of time and money. It has been
oped that automated analysis methods with com-
uters would help clear this information bottleneck.
lthough progress has been made, the rate of analy-
is still lags the rate of acquisition. Further ad-
ancements in the automated analysis of remote
ensed data sets are urgently needed.
Most research into automating the analysis has

ocused on the spectral dimension. This has been
he case even though the data are intrinsically spa-
ial. Other research has primarily focused on ex-
loiting the spatial dimension to localize the analysis
r detect well-structured objects.1,2 The research
resented in this paper represents our recent efforts
oward using spatial information to help automate
he analysis and management of remote sensed im-
ge and video data.
The basis of the approach is to consider the spatial
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elationships of pixel intensities in remote sensed
mage and video data as the visual primitive of tex-
ure. The analysis of image texture has received
ignificant research attention during the past several
ecades, perhaps only second to color.3–8 Yet devel-
ping effective descriptors for such a fundamental
mage feature remains a challenge.

There are generally two approaches to analyzing
exture quantitatively. The first approach explicitly
nalyzes the spatial dependence of pixel intensity in
he texture. Examples of this approach include co-
ccurrence matrices4 and methods based on Markov
andom fields �MRFs�.5–7 In the second approach
he structure in the texture is inferred by analyses of
he distribution of frequencies with appropriate fil-
ers. The former is more precise and intuitive in the
isual characterization of the texture. However, in
ractice, it fails to accommodate the pixel variations
mong textures that are considered similar. The
atter is more useful for similarity retrieval because it
s a global approximation of the image structure. It
s the approach taken by the research presented in
his paper. In particular, orientation and scale-
elective filters are used to characterize what can be
onsidered as the direction and coarseness of a tex-
ure.

We begin this paper by describing the Gabor filters
hat form the basis of the texture analysis. We pro-
ide details on how orientation and scale-selective
lters are constructed by varying the modulation of
abor functions. In the remainder of the paper we
escribe how the outputs of Gabor filter banks enable
exture-based analysis and management of remote
ensed imagery. Specifically, a homogeneous tex-
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ure descriptor recently standardized by the Moving
icture Experts Group �MPEG� is used to perform
ontent-based similarity retrieval in large collections
f aerial and satellite imagery. The descriptor also
rovides a semantic labeling of aerial videography in
video database management system. This label-

ng enables similarity retrieval based on the semantic
ayout of the video frames. Finally, the filter out-
uts enable an object-based representation for re-
ote sensed imagery. In particular, the

haracteristic textures, or texture motifs, of objects
hat defy traditional modeling approaches are
earned by use of a statistical approach.

. Texture Analysis with Gabor Filters

se of filters based on Gabor functions to analyze
exture is motivated by several factors. First, the
abor representation can be shown to be optimal in

he sense that it minimizes the joint two-dimensional
ncertainty in space and frequency.9 Second, the

act that Gabor functions can be used to model the
eceptive fields of simple cells in the mammalian vi-
ual cortex10 is psychovisual evidence that Gabor-like
ltering takes place early on in the human visual
ystem.
A bank of orientation and scale-selective filters are

onstructed as follows.8 A two-dimensional Gabor
unction g�x, y� and its Fourier transform G�u, �� can
e written as

g� x, y� � � 1
2��x�y

�exp��
1
2 � x2

�x
2 �

y2

�y
2� � 2�jWx� ,

(1)

�u, �� � exp��
1
2 ��u � W�2

�u
2 �

�2

��
2�� , (2)

here �u � 1�2��x and �� � 1�2��y. A class of
elf-similar functions referred to as Gabor wavelets is
ow considered. Let g�x, y� be the mother wavelet.

filter dictionary can be obtained by appropriate
ilations and translations of g�x, y� through the gen-
rating function:

rs� x, y� � a�sg� x�, y��, a � 1,

s � 0, . . . , S � 1, r � 1,. . .R,

x� � a�s� x cos 	 � y sin 	�,

y� � a�s��x sin 	 � y cos 	�, (3)

here 	 � �r � 1���R. The indices r and s indicate
he orientation and scale of the filter, respectively.

is the total number of orientations and S is the total
umber of scales in the filter bank. The scale factor
�s in Eqs. �3� is meant to ensure that the energy is
ndependent of s.

Although the size of the filter bank is application
ependent, experimentation has shown that a bank
f filters tuned to combinations of five scales, at oc-
ave intervals, and six orientations, at 30-deg inter-
als, is sufficient for the analysis of remote sensed
magery. See Ref. 8 for more details on the filter
ank construction.

. Homogeneous Texture Descriptor

he homogeneous texture descriptor is a compact
epresentation of the Gabor filter outputs.11 It is a
eature vector formed when the first and second mo-
ents of the filter outputs are computed for a spa-

ially homogeneous image or image region.
epresenting texture as a point in this multidimen-
ional feature space is useful because closeness in the
eature space turns out to correspond well with visual
imilarity. The visual similarity between images
ith respect to texture can be quantitatively com-
uted with a distance function. These distances can
e used to perform content-based similarity retrieval
examples to follow�. Furthermore, machine learn-
ng techniques can be used to estimate the distribu-
ions of texture classes from manually labeled
xamples. We can label new images using these dis-
ributions.

The homogeneous texture descriptor is formed as
ollows. Suppose f11�x, y�, . . . , fRS�x, y� are the out-
uts of a filter bank tuned to R orientations and S
cales. The feature vector f is then

f � 
�11, �11, �12, �12, . . . , �1S, �1S, . . . , �RS, �RS�

(4)

here �rs and �rs are the mean and standard devia-
ion of frs�x, y�, respectively. This descriptor was
ecently standardized by the International Stan-
ards Organization MPEG-7 Multimedia Content
escription Interface Standard12 with the minor
odification that the mean and standard deviation of

he filter outputs are computed in the frequency do-
ain for reasons of efficiency.

. Similarity Retrieval

ow-level visual primitives have been used for some
ime to perform content-based similarity retrieval in
mage data sets.13–16 The homogeneous texture de-
criptor is particularly effective for similarity re-
rieval in remote sensed imagery. We compute the
isual similarity between images by defining a dis-
ance measure in the 2RS-dimensional texture fea-
ure space. Euclidean distance is commonly used so
hat the similarity between images I�1� and I�2� is
omputed as

d
I�1�, I�2�� � � f �1� � f �2��2. (5)

query-by-example paradigm can be used to perform
ontent-based similarity retrieval in image data sets.
e compute the nearest-neighbor queries by return-

ng those images with the least distance to the query.
e compute the range queries by returning those

mages whose distances to the query image are
maller than some specified threshold.
To localize the descriptor, large satellite or aerial

mages are typically divided into tiles measuring
4 
 64 or 128 
 128 pixels. This tiling results in
arge data sets because of the size of the original
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 211
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mages. We compute the homogeneous texture de-
criptor for each tile by applying a Gabor filter bank
uned to combinations of five scales and six orienta-
ions. The output of the 30 filters is summarized by

60-component feature vector, as described above.
imilarity retrieval is performed when we compute
he distances between a query tile and the rest of the
ata set.
Figure 1 shows an example of a range query for a

ata set of approximately 400,000, 64 
 64 pixel tiles
rom seven satellite images with 1-m resolution.
he query tile is the rightmost tile on the freeway

the tiles are indicated with a white border�. The
ther tiles are the results of a range query. Note
hat high precision and recall are achieved because
nly the remaining freeway tiles are retrieved. Fig-
re 2 shows an example of a nearest-neighbor query

or the same data set. The top-left tile is the query
ile. The other tiles are those closest to the query
mong the 400,000 tile data set.
Euclidean distance results in a visual similarity
easure that is orientation sensitive. Orientation-

nvariant similarity measurement is possible by use
f the following distance function:

dRI
I
�1�, I�2�� � min

r�R
� f�r�

�1� � f �2��2. (6)

ere, f�r� indicates the feature vector f circularly
hifted by r rotations. Conceptually, this distance
unction computes the best match between rotated
ersions of the images. Figure 3 shows an example
f an orientation-invariant nearest-neighbor search

ig. 1. Results of a range query in a satellite image. The right-
ost tile is the query tile. The other tiles are the results.
12 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
y use of the same query tile as in Fig. 2. Again, the
op-left tile is the query tile.

Similarity retrieval examples such as these dem-
nstrate that the descriptor provides meaningful an-
otation of remote sensed imagery. In fact, the
escriptor was accepted to the MPEG-7 standard af-
er extensive experimentation and testing with an
valuation data set that included a large collection of
erial images. A demonstration of content-based
imilarity retrieval by use of the MPEG-7-compliant
omogeneous texture descriptor is available on line.17

. Semantic Image Labeling

he above similarity retrieval examples demonstrate
hat the homogeneous texture descriptor provides an
ffective low-level perceptual description of remote
ensed imagery. Low-level descriptions are limited,
owever, in their ability to support the kinds of
igher-level interaction that are ultimately required.

ig. 2. Results of a nearest-neighbor query in a data set of sat-
llite images. The top-left tile is the query tile. The other tiles
re the results.

ig. 3. Results of an orientation-invariant nearest-neighbor
uery. The top-left tile is the query tile. The other tiles are some
f the results.
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n this section we describe how statistical machine
earning techniques can be used to extend this low-
evel description to provide a more meaningful se-

antic level of interaction.
The approach has two salient components. First,

he statistical distributions of texture feature vectors
orresponding to different semantic classes are
earned. This allows novel image regions to be se-

antically labeled. Second, a MRF model is used to
heck for inconsistencies in the spatial arrangement
f this labeling. The two components are imple-
ented in a video management system that allows

sers to interact with aerial videography data sets
ased on the spatial layouts of video frames.

. Semantic Labeling

he statistical distribution of texture features corre-
ponding to different semantic classes, such as roads,
uildings, and fields, can be learned with a labeled
raining set. In the proposed approach, this train-
ng set consists of image or video frame tiles that have
een manually assigned semantic labels from a pre-
etermined set of classes. The tiles are also anno-
ated by use of the homogeneous texture descriptor.
he premise of the approach is that, because �1� vi-
ually similar textures form clusters in the sparse
eature space and �2� there is a wide variation in
isual appearance within each semantic class, then
aussian mixture models �GMMs� can be used to
odel the feature distributions conditioned on the

lass labels. In particular, under the assumption
hat each semantic class forms K clusters in the fea-
ure space, we model the distribution of features Y �
d �d � 60� for a class as a mixture of K Gaussians
sing the following density function:

P� y		m� � �
j�1

K

�mj

1

�2��d	�mj	�1�2 exp��

1
2

� y

� �mj�
T�mj

�1� y � �mj�� , (7)

here 	m � ��mj, �mj, �mj�j�1
K is the parameter set

or the semantic class m. �mj are the mixture coef-
cients, �mj � Rd is the mean of the jth Gaussian,
nd �mj is the covariance matrix of the jth Gaussian.

. Spatial Layout Consistency

e labeled the image tiles using the set of trained
MMs and a maximum-likelihood classifier. This

abeling is rarely perfect, however. An effective way
o improve its accuracy is to impose constraints on
he spatial arrangement of the labels. Inconsisten-
ies can be ruled out, such as a tile labeled parking lot
eing surrounded by tiles labeled water. In this par-
icular approach we use MRFs to model the spatial
istribution of the class labels. The label of a block
t site s is modeled as a discrete-valued random vari-
ble Xs, taking values from the semantic label set M
�1, 2, . . . , M�, and the set of random variables X �

X , s � S� constitutes a random field where S is the
s
attice of image blocks. The random field X is mod-
led as a MRF with a Gibbs distribution18:

p� x� �
1
Z

exp
�U� x��, (8)

here x is a realization of X. The Gibbs energy func-
ion U�x� can be expressed as the sum of clique po-
ential functions:

U� x� � �
c�Q

Vc� x�, (9)

here Q is the set of all cliques in a neighborhood.
he MRF model is reinforced when we incorporate
he class-conditioned feature likelihoods into the en-
rgy function, as follows:

U� x� � �
s�S

� �
s��Ns

��LPs�s� � �LPs� , (10)

here LPs�s� � log
ps�s��xs, xs��� and LPs �
og
p�ys		xs

��. Ns is the set of neighbors of the site s
nd � and � are the weights of LPs and LPs�s�, re-
pectively. LPs�s� represents the spatial relation-
hip between neighboring sites s and s� where s�s�
ndicates the direction of neighborhood. LPs repre-
ents the conditional probability density of feature
ector ys given the label xs. ps�s��xs, xs�� is the joint
robability of xs and xs� along the direction s�s� and
an be approximated with a co-occurrence matrix
rom the labeled training set. For each type of clique
�s�, a co-occurrence matrix is constructed from the
oint probabilities Pr�i, j� between pairs of semantic
abels i and j in a given direction r.

To simplify the model, a second-order pair-site
eighborhood system is used. Each site thus has
ight neighbors. Four types of clique are considered,
herein s�s� makes angles of 0, 45, 90, and 135 deg
ith respect to the x axis. In any neighborhood,

liques along the same direction are considered
quivalent. Four co-occurrence matrices are con-
tructed along these four directions of label distribu-
ion.

. Spatial Layout Retrieval

n this step, a representation termed semantic layout
s used to characterize an image or video frame based
n the spatial arrangement of its labeled tiles. For
etrieval purposes, the similarity between the query
mage and each stored image can be determined from
heir semantic layouts. Let the semantic layout of
he query image be Xq and that of the stored image be
I. To improve the retrieval performance, a soft
lassification scheme is adopted. For a given image
ile, the labels with the three largest local conditional
robabilities are selected to represent this tile. All
andidate labels are stored along with the feature
ectors for future retrieval. The modified semantic
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 213
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ayout similarity between the query image and each
tored image is given by

S3 � �
s�S

��
j�1

3

a1 aj�� xs, j
q, xs,1

1��
� �

s�S
��

j�1

3

a2 aj�� xs, j
q, xs,2

I��
� �1 � �

i�1

3

�� xs,i
q, xs,1

I��
� �

s�S
��

j�1

3

a3 aj�� xs, j
q, xs,3

I��
� �1 � �

i�1

3

�� xs,i
q, xs,1

I��
� �1 � �

i�1

3

�� xs,i
q, xs,2

I�� , (11)

here ai � 1⁄2i�1, i � 1, 2, 3, are the weights for
ifferent label similarities, and xs, j

q is the jth candi-
ate label of the query image tile at site s.
In Eq. �11�, we computed the similarity measure by

omparing each candidate label of a query image tile
o all the candidate labels of the corresponding stored
mage tile. This approach to similarity retrieval is
xpected to perform better than existing methods
hat do not consider the underlying semantics.

The similarity measure in Eq. �11� is effective only
hen all images are of the same size. To compare

he layouts of images of any size, a semantic histo-
ram can be computed for each image. This is sim-
lar to the image histogram where the inputs are
emantic labels instead of image intensities. As
ong as the semantic label set is the same, two
ifferent-sized images can be compared by use of
heir semantic histograms.

Examples of semantic layout retrieval in a proto-
ype video management system are shown in Figs. 4
nd 5. In each example, the top frame is the query
nd the remaining frames are the results. The se-
antic labeling of the query is shown. Observe that

he retrieved frames can be visually quite different
rom the query even though their semantic layouts
re similar. These results could not be achieved by
low-level description alone. The combination of
MM and MRF models is thus shown to capture the

emantic layout of the frames.

. Geospatial Object Modeling

o far, the texture descriptor has been used for sim-
larity retrieval in large collections of remote sensed
mage or video data. In this section we describe how
he texture features enable an object-based represen-
ation for remote sensed imagery.19 Such a repre-
entation allows users to interact with the data at a
ore intuitive level. In the proposed approach, geo-

patial objects that consist of multiple characteristic
extures are modeled by mixtures of Gaussians.
he model parameters are estimated with unsuper-
14 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
ised learning techniques �unlike in Section 3 where
he parameters are estimated from labeled training
ets�. The goal is to use the models to locate and
atalog new objects instances in remote sensed imag-
ry.
The focus is on modeling geospatial objects that

ave characteristic textures but lack structure or
ell-defined boundaries. Examples of such objects

nclude harbors, golf courses, and mobile home parks.
hese objects defy traditional object modeling ap-
roaches, such as template matching, so new ap-
roaches are needed. With the proposed technique
e model the objects by statistically characterizing

he common textures, or texture motifs, such as the
ows of boats and water in harbors or the grass fair-
ays and trees in golf courses.
The texture motifs are learned by use of the Gabor

exture features extracted from sample object in-
tances. An RS-dimensional feature vector c is ex-

ig. 4. Example of a spatial layout retrieval in a prototype video
anagement system. The top frame is the query. The lower

our frames are the results.
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racted for each pixel with a filter bank of R
rientations and S scales. �Note that the analysis is
one at the pixel level, not at the tile level.� Under
he assumptions that �1� the pixels for a class of ob-
ects are generated by one of N possible texture motifs
nd �2� these motifs have Gaussian distributions in
he feature space, the probability density function of
can be expressed as a mixture distribution:

p�c� � �
j�1

N

P� j� p�c	 j�, (12)

here p�c	 j� is the conditional likelihood of the fea-
ure c being generated by motif j, and P� j� is the prior
robability of motif j. The number of motifs N along
ith distribution means and covariance matrices are

he parameters that completely specify the class
odel.
The expectation maximization algorithm20 is used

ig. 5. Example of a spatial layout retrieval in a prototype video
anagement system. The top frame is the query. The lower

our frames are the results.
ig. 6. Model parameters are learned from a sample set with the
xpectation maximization algorithm.
Fig. 7. Motif labeling with a MAP classifier.
ig. 8. Harbor image and its corresponding labeling. The gray
evel indicates the motif.
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 215
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o estimate the GMM parameters from a set of sam-
le object instances, as shown in Fig. 6. It is impor-
ant to note that the characteristic textures are
etermined solely from the distribution of the texture
eatures.

A trained GMM can then be used to label the motifs
or an object instance, as shown in Fig. 7. A maxi-

um a posteriori �MAP� classifier assigns label i* to
pixel with feature vector c according to

i* � arg max
1�i�N


P�i	c��. (13)

he posterior probabilities P�i	c� are computed with
he Bayes rule.

Figures 8 and 9 show the motif assignments for two
arbor regions. The gray level indicates the motif

abel. The consistency between the two assign-
ents demonstrates that the proposed approach suc-

essfully learns the textures common to harbor
bjects. Subsequent analysis can use this knowl-
dge to detect novel object instances in new remote
ensed imagery to automatically update an object
atalog �commonly known as a gazetteer�. Such an
pproach is currently being investigated for the Al-
xandria Digital Library of geographic data at the
niversity of California at Santa Barbara.21

. Conclusion

e have described recent research into use of texture
o analyze and manage large collections of remote
ensed image and video data. A texture descriptor
ased on the outputs of scale and orientation-
elective Gabor filters is shown to enable �1� content-
ased image retrieval in large collections of satellite
magery, �2� semantic labeling and layout retrieval in

ig. 9. Second harbor image and its corresponding labeling. The
ray level indicates the motif.
16 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
n aerial video management system, and �3� statis-
ical object modeling in geographic digital libraries.
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