Using texture to analyze and manage large
collections of remote sensed image and video data
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We describe recent research into using the visual primitive of texture to analyze and manage large
collections of remote sensed image and video data. Texture is regarded as the spatial dependence of
pixel intensity. It is characterized by the amount of dependence at different scales and orientations, as
measured with frequency-selective filters. A homogeneous texture descriptor based on the filter outputs
is shown to enable (1) content-based image retrieval in large collections of satellite imagery, (2) semantic
labeling and layout retrieval in an aerial video management system, and (3) statistical object modeling

in geographic digital libraries. © 2004 Optical Society of America
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1. Introduction

Remote sensed data, such as satellite imagery or aer-
ial videography, are being acquired at increasing
rates because of technological advances in airborne
and spaceborne optical sensing systems. The full
value of these data sets is not being realized, how-
ever, because of the prohibitive cost of manual anal-
ysis, both in terms of time and money. It has been
hoped that automated analysis methods with com-
puters would help clear this information bottleneck.
Although progress has been made, the rate of analy-
sis still lags the rate of acquisition. Further ad-
vancements in the automated analysis of remote
sensed data sets are urgently needed.

Most research into automating the analysis has
focused on the spectral dimension. This has been
the case even though the data are intrinsically spa-
tial. Other research has primarily focused on ex-
ploiting the spatial dimension to localize the analysis
or detect well-structured objects.l:2 The research
presented in this paper represents our recent efforts
toward using spatial information to help automate
the analysis and management of remote sensed im-
age and video data.

The basis of the approach is to consider the spatial
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relationships of pixel intensities in remote sensed
image and video data as the visual primitive of tex-
ture. The analysis of image texture has received
significant research attention during the past several
decades, perhaps only second to color.>-8 Yet devel-
oping effective descriptors for such a fundamental
image feature remains a challenge.

There are generally two approaches to analyzing
texture quantitatively. The first approach explicitly
analyzes the spatial dependence of pixel intensity in
the texture. Examples of this approach include co-
occurrence matrices* and methods based on Markov
random fields (MRFs).5~7 In the second approach
the structure in the texture is inferred by analyses of
the distribution of frequencies with appropriate fil-
ters. The former is more precise and intuitive in the
visual characterization of the texture. However, in
practice, it fails to accommodate the pixel variations
among textures that are considered similar. The
latter is more useful for similarity retrieval because it
is a global approximation of the image structure. It
is the approach taken by the research presented in
this paper. In particular, orientation and scale-
selective filters are used to characterize what can be
considered as the direction and coarseness of a tex-
ture.

We begin this paper by describing the Gabor filters
that form the basis of the texture analysis. We pro-
vide details on how orientation and scale-selective
filters are constructed by varying the modulation of
Gabor functions. In the remainder of the paper we
describe how the outputs of Gabor filter banks enable
texture-based analysis and management of remote
sensed imagery. Specifically, a homogeneous tex-



ture descriptor recently standardized by the Moving
Picture Experts Group (MPEG) is used to perform
content-based similarity retrieval in large collections
of aerial and satellite imagery. The descriptor also
provides a semantic labeling of aerial videography in
a video database management system. This label-
ing enables similarity retrieval based on the semantic
layout of the video frames. Finally, the filter out-
puts enable an object-based representation for re-
mote sensed imagery. In particular, the
characteristic textures, or texture motifs, of objects
that defy traditional modeling approaches are
learned by use of a statistical approach.

2. Texture Analysis with Gabor Filters

Use of filters based on Gabor functions to analyze
texture is motivated by several factors. First, the
Gabor representation can be shown to be optimal in
the sense that it minimizes the joint two-dimensional
uncertainty in space and frequency.® Second, the
fact that Gabor functions can be used to model the
receptive fields of simple cells in the mammalian vi-
sual cortex!? is psychovisual evidence that Gabor-like
filtering takes place early on in the human visual
system.

A bank of orientation and scale-selective filters are
constructed as follows.® A two-dimensional Gabor
function g(x, y) and its Fourier transform G(u, v) can
be written as
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where o, = 1/2m0, and ¢, = 1/270,. A class of

self-similar functions referred to as Gabor wavelets is
now considered. Let g(x, y) be the mother wavelet.
A filter dictionary can be obtained by appropriate
dilations and translations of g(x, y) through the gen-
erating function:

g(x,y) =a gx',y"), a>1
se€0,...,8S-1,re1,.. R,

x'"=a (x cos 0 +y sin 0),

b

y' =a*(—x sin 6 + y cos 0), 3)

where 6 = (r — 1)w/R. The indices r and s indicate
the orientation and scale of the filter, respectively.
R is the total number of orientations and S is the total
number of scales in the filter bank. The scale factor
a”’ in Egs. (3) is meant to ensure that the energy is
independent of s.

Although the size of the filter bank is application
dependent, experimentation has shown that a bank
of filters tuned to combinations of five scales, at oc-
tave intervals, and six orientations, at 30-deg inter-
vals, is sufficient for the analysis of remote sensed

imagery. See Ref. 8 for more details on the filter
bank construction.

A. Homogeneous Texture Descriptor

The homogeneous texture descriptor is a compact
representation of the Gabor filter outputs.’* It is a
feature vector formed when the first and second mo-
ments of the filter outputs are computed for a spa-
tially homogeneous image or image region.
Representing texture as a point in this multidimen-
sional feature space is useful because closeness in the
feature space turns out to correspond well with visual
similarity. The visual similarity between images
with respect to texture can be quantitatively com-
puted with a distance function. These distances can
be used to perform content-based similarity retrieval
(examples to follow). Furthermore, machine learn-
ing techniques can be used to estimate the distribu-
tions of texture classes from manually labeled
examples. We can label new images using these dis-
tributions.

The homogeneous texture descriptor is formed as
follows. Suppose f11(x,), . . ., frs(x, y) are the out-
puts of a filter bank tuned to R orientations and S
scales. The feature vector f is then

> MRS O-RS]

(4)

where p,, and o,, are the mean and standard devia-
tion of f,.(x, v), respectively. This descriptor was
recently standardized by the International Stan-
dards Organization MPEG-7 Multimedia Content
Description Interface Standard!? with the minor
modification that the mean and standard deviation of
the filter outputs are computed in the frequency do-
main for reasons of efficiency.

f= [Mn, 0115 M125 O125 « « « 5 M1s, 0155 « -+«

B. Similarity Retrieval

Low-level visual primitives have been used for some
time to perform content-based similarity retrieval in
image data sets.13-16 The homogeneous texture de-
scriptor is particularly effective for similarity re-
trieval in remote sensed imagery. We compute the
visual similarity between images by defining a dis-
tance measure in the 2RS-dimensional texture fea-
ture space. Euclidean distance is commonly used so
that the similarity between images I'V and I? is
computed as

i, 171 = |7 = . ®

A query-by-example paradigm can be used to perform
content-based similarity retrieval in image data sets.
We compute the nearest-neighbor queries by return-
ing those images with the least distance to the query.
We compute the range queries by returning those
images whose distances to the query image are
smaller than some specified threshold.

To localize the descriptor, large satellite or aerial
images are typically divided into tiles measuring
64 X 64 or 128 X 128 pixels. This tiling results in
large data sets because of the size of the original
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results

Fig. 1.
most tile is the query tile.

The right-
The other tiles are the results.

Results of a range query in a satellite image.

images. We compute the homogeneous texture de-
scriptor for each tile by applying a Gabor filter bank
tuned to combinations of five scales and six orienta-
tions. The output of the 30 filters is summarized by
a 60-component feature vector, as described above.
Similarity retrieval is performed when we compute
the distances between a query tile and the rest of the
data set.

Figure 1 shows an example of a range query for a
data set of approximately 400,000, 64 X 64 pixel tiles
from seven satellite images with 1-m resolution.
The query tile is the rightmost tile on the freeway
(the tiles are indicated with a white border). The
other tiles are the results of a range query. Note
that high precision and recall are achieved because
only the remaining freeway tiles are retrieved. Fig-
ure 2 shows an example of a nearest-neighbor query
for the same data set. The top-left tile is the query
tile. The other tiles are those closest to the query
among the 400,000 tile data set.

Euclidean distance results in a visual similarity
measure that is orientation sensitive. Orientation-
invariant similarity measurement is possible by use
of the following distance function:

dpl”, 1%) = min £ = . ®)
Here, f,, indicates the feature vector f circularly
shifted by r rotations. Conceptually, this distance
function computes the best match between rotated
versions of the images. Figure 3 shows an example
of an orientation-invariant nearest-neighbor search
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Fig. 2. Results of a nearest- nelghbor query in a data set of sat-
ellite images. The top-left tile is the query tile. The other tiles
are the results.

by use of the same query tile as in Fig. 2. Again, the
top-left tile is the query tile.

Similarity retrieval examples such as these dem-
onstrate that the descriptor provides meaningful an-
notation of remote sensed imagery. In fact, the
descriptor was accepted to the MPEG-7 standard af-
ter extensive experimentation and testing with an
evaluation data set that included a large collection of
aerial images. A demonstration of content-based
similarity retrieval by use of the MPEG-7-compliant
homogeneous texture descriptor is available on line.1?

3. Semantic Image Labeling

The above similarity retrieval examples demonstrate
that the homogeneous texture descriptor provides an
effective low-level perceptual description of remote
sensed imagery. Low-level descriptions are limited,
however, in their ability to support the kinds of
higher-level interaction that are ultimately required.

Fig. 3. Results of an orientation-invariant nearest-neighbor
query. The top-left tile is the query tile. The other tiles are some
of the results.



In this section we describe how statistical machine
learning techniques can be used to extend this low-
level description to provide a more meaningful se-
mantic level of interaction.

The approach has two salient components. First,
the statistical distributions of texture feature vectors
corresponding to different semantic classes are
learned. This allows novel image regions to be se-
mantically labeled. Second, a MRF model is used to
check for inconsistencies in the spatial arrangement
of this labeling. The two components are imple-
mented in a video management system that allows
users to interact with aerial videography data sets
based on the spatial layouts of video frames.

A. Semantic Labeling

The statistical distribution of texture features corre-
sponding to different semantic classes, such as roads,
buildings, and fields, can be learned with a labeled
training set. In the proposed approach, this train-
ing set consists of image or video frame tiles that have
been manually assigned semantic labels from a pre-
determined set of classes. The tiles are also anno-
tated by use of the homogeneous texture descriptor.
The premise of the approach is that, because (1) vi-
sually similar textures form clusters in the sparse
feature space and (2) there is a wide variation in
visual appearance within each semantic class, then
Gaussian mixture models (GMMs) can be used to
model the feature distributions conditioned on the
class labels. In particular, under the assumption
that each semantic class forms K clusters in the fea-
ture space, we model the distribution of features Y €
R? (d = 60) for a class as a mixture of K Gaussians
using the following density function:

LS 1 1
P(y6,,) Z WWGXP[ P

- p‘mj)TEmjil(y - p-‘mj):| 9 (7)

where 6,, = {amj, Romjs Zmili—1 K is the parameter set
for the semantic class m. «,,; are the mixture coef-
ficients, (= R? is the mean of the jth Gaussian,
and EmJ is the covariance matrix of the jth Gaussian.

B. Spatial Layout Consistency

We labeled the image tiles using the set of trained
GMMs and a maximum-likelihood classifier. This
labeling is rarely perfect, however. An effective way
to improve its accuracy is to impose constraints on
the spatial arrangement of the labels. Inconsisten-
cies can be ruled out, such as a tile labeled parking lot
being surrounded by tiles labeled water. In this par-
ticular approach we use MRFs to model the spatial
distribution of the class labels. The label of a block
at site s is modeled as a discrete-valued random vari-
able X, taking values from the semantic label set M
=1{1,2, ..., M}, and the set of random variables X =
{X,, s € S} constitutes a random field where S is the

lattice of image blocks. The random field X is mod-
eled as a MRF with a Gibbs distribution?®:

p(x) = leXp[ Ulx)], (8)

where x is a realization of X. The Gibbs energy func-
tion U(x) can be expressed as the sum of clique po-
tential functions:

U(x) =D, V.(x), 9)

cER

where @ is the set of all cliques in a neighborhood.
The MRF model is reinforced when we incorporate
the class-conditioned feature likelihoods into the en-
ergy function, as follows:

Ulx)=2 | > —aLP, , -

s€S \ s'ENg

BLP,|,  (10)

where LP, . = log[p, .(x,, x,)] and LP, =
log{ p(v|6, )] N is the set of neighbors of the site s
and « and B are “the weights of LP, and LP, _,
spectively. LP___. represents the spatlal relatlon-
ship between neighboring sites s and s’ where s—s’
indicates the direction of neighborhood. LP, repre-
sents the conditional probability density of feature
vector y, given the label x,. p,_.(x,, x,) is the joint
probability of x, and x,. along the direction s—s’ and
can be approximated with a co-occurrence matrix
from the labeled training set. For each type of clique
s—s’, a co-occurrence matrix is constructed from the
joint probabilities P,(i, j) between pairs of semantic
labels i and j in a given direction r.

To simplify the model, a second-order pair-site
neighborhood system is used. Each site thus has
eight neighbors. Four types of clique are considered,
wherein s—s’ makes angles of 0, 45, 90, and 135 deg
with respect to the x axis. In any neighborhood,
cliques along the same direction are considered
equivalent. Four co-occurrence matrices are con-
structed along these four directions of label distribu-
tion.

C. Spatial Layout Retrieval

In this step, a representation termed semantic layout
is used to characterize an image or video frame based
on the spatial arrangement of its labeled tiles. For
retrieval purposes, the similarity between the query
image and each stored image can be determined from
their semantic layouts. Let the semantic layout of
the query image be X7 and that of the stored image be
X!. To improve the retrieval performance, a soft
classification scheme is adopted. For a given image
tile, the labels with the three largest local conditional
probabilities are selected to represent this tile. All
candidate labels are stored along with the feature
vectors for future retrieval. The modified semantic
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layout similarity between the query image and each
stored image is given by

3

Ss = E {E alajs(xs,jq, xs,ll):|
ses | j=1

a2aj8(xs,jq5 xs,zl)}

8(xs,iqa xs,ll):|

iz
3
E a3aj8(xs,jq’ xs,31)

seS | j=1
3
X |:1 - E 8(xs,iq’ xs,ll):|
i-1
3
X |:1 B E 8(xs,iqa xs,ZI):| ’ (11)
i=1
where a;, = %', i = 1, 2, 3, are the weights for

different label similarities, and x; ;% is the jth candi-
date label of the query image tile at site s.

In Eq. (11), we computed the similarity measure by
comparing each candidate label of a query image tile
to all the candidate labels of the corresponding stored
image tile. This approach to similarity retrieval is
expected to perform better than existing methods
that do not consider the underlying semantics.

The similarity measure in Eq. (11) is effective only
when all images are of the same size. To compare
the layouts of images of any size, a semantic histo-
gram can be computed for each image. This is sim-
ilar to the image histogram where the inputs are
semantic labels instead of image intensities. As
long as the semantic label set is the same, two
different-sized images can be compared by use of
their semantic histograms.

Examples of semantic layout retrieval in a proto-
type video management system are shown in Figs. 4
and 5. In each example, the top frame is the query
and the remaining frames are the results. The se-
mantic labeling of the query is shown. Observe that
the retrieved frames can be visually quite different
from the query even though their semantic layouts
are similar. These results could not be achieved by
a low-level description alone. The combination of
GMM and MRF models is thus shown to capture the
semantic layout of the frames.

4. Geospatial Object Modeling

So far, the texture descriptor has been used for sim-
ilarity retrieval in large collections of remote sensed
image or video data. In this section we describe how
the texture features enable an object-based represen-
tation for remote sensed imagery.'® Such a repre-
sentation allows users to interact with the data at a
more intuitive level. In the proposed approach, geo-
spatial objects that consist of multiple characteristic
textures are modeled by mixtures of Gaussians.
The model parameters are estimated with unsuper-
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Fig. 4. Example of a spatial layout retrieval in a prototype video
management system. The top frame is the query. The lower
four frames are the results.

vised learning techniques (unlike in Section 3 where
the parameters are estimated from labeled training
sets). The goal is to use the models to locate and
catalog new objects instances in remote sensed imag-
ery.

The focus is on modeling geospatial objects that
have characteristic textures but lack structure or
well-defined boundaries. Examples of such objects
include harbors, golf courses, and mobile home parks.
These objects defy traditional object modeling ap-
proaches, such as template matching, so new ap-
proaches are needed. With the proposed technique
we model the objects by statistically characterizing
the common textures, or texture motifs, such as the
rows of boats and water in harbors or the grass fair-
ways and trees in golf courses.

The texture motifs are learned by use of the Gabor
texture features extracted from sample object in-
stances. An RS-dimensional feature vector ¢ is ex-



Building

Fig. 5. Example of a spatial layout retrieval in a prototype video
management system. The top frame is the query. The lower
four frames are the results.

tracted for each pixel with a filter bank of R
orientations and S scales. (Note that the analysis is
done at the pixel level, not at the tile level.) Under
the assumptions that (1) the pixels for a class of ob-
jects are generated by one of N possible texture motifs
and (2) these motifs have Gaussian distributions in
the feature space, the probability density function of
¢ can be expressed as a mixture distribution:

N
p(e) = 2, P(j)plelj), (12)

where p(c|j) is the conditional likelihood of the fea-
ture ¢ being generated by motifj, and P() is the prior
probability of motifj. The number of motifs V along
with distribution means and covariance matrices are
the parameters that completely specify the class
model.

The expectation maximization algorithm2° is used

' Harbor
\\ Model
¥ Gabor || Expectation L MODEL

/‘ Filter Bank] | Maximization | | , 5 p()
Object Feature Unsupervised Object Class
Instance(s) Extraction Learning Model

Fig. 6. Model parameters are learned from a sample set with the
expectation maximization algorithm.

Harbor MODEL
Model ,Ll), ‘)_:", 1)0-)
‘ Gabor MAP
Filter Bank| | Classifer |
Object Feature Motif Labeled
Instance Extraction  Assignment Instance

Fig. 7. Motif labeling with a MAP classifier.

Fig. 8. Harbor image and its corresponding labeling. The gray
level indicates the motif.
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Fig.9. Second harbor image and its corresponding labeling. The
gray level indicates the motif.

to estimate the GMM parameters from a set of sam-
ple object instances, as shown in Fig. 6. It is impor-
tant to note that the characteristic textures are
determined solely from the distribution of the texture
features.

A trained GMM can then be used to label the motifs
for an object instance, as shown in Fig. 7. A maxi-
mum a posteriori (MAP) classifier assigns label i* to
a pixel with feature vector ¢ according to

i = arg n}vax[P(i|c)]. (13)

The posterior probabilities P(i|c) are computed with
the Bayes rule.

Figures 8 and 9 show the motif assignments for two
harbor regions. The gray level indicates the motif
label. The consistency between the two assign-
ments demonstrates that the proposed approach suc-
cessfully learns the textures common to harbor
objects. Subsequent analysis can use this knowl-
edge to detect novel object instances in new remote
sensed imagery to automatically update an object
catalog (commonly known as a gazetteer). Such an
approach is currently being investigated for the Al-
exandria Digital Library of geographic data at the
University of California at Santa Barbara.2!

5. Conclusion

We have described recent research into use of texture
to analyze and manage large collections of remote
sensed image and video data. A texture descriptor
based on the outputs of scale and orientation-
selective Gabor filters is shown to enable (1) content-
based image retrieval in large collections of satellite
imagery, (2) semantic labeling and layout retrieval in
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an aerial video management system, and (3) statis-
tical object modeling in geographic digital libraries.
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