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ABSTRACT

Quantization index modulation (QIM) techniques have been gain-

ing popularity in the data hiding community because of their ro-

bustness and information-theoretic optimality against a large class

of attacks. In this paper, we consider detecting the presence of

QIM hidden data, which is an important consideration when data

hiding is used for covert communication, or steganography. For a

given host distribution, we are able to quantify detectability com-

pactly in terms of a parameter related to the robustness of the hid-

ing scheme to attacks. Using detection theory we show that QIM

quickly transitions from easily detectable to virtually undetectable

as this parameter varies. We also obtain performance benchmarks

for QIM hiding in images, indicating that a scheme designed to be

robust to, say, a moderate degree of JPEG compression, should be

easily detectable. While practical application of detection theory

to images is difficult because of statistical variations across im-

ages, we employ supervised learning to show that standard QIM

schemes for images are indeed quite easily detectable. However,

it remains an open issue as to whether it is possible to devise QIM

variants that are less vulnerable to steganalysis.

1. INTRODUCTION

Quantization Index Modulation (QIM) refers to a class of data hid-

ing schemes that exploit Costa’s [1] now famous findings by em-

bedding information in the choice of quantizers. Over the past few

years, QIM-based data hiding has received increasing attention

from the data hiding community because it is more robust than es-

tablished techniques such as spread spectrum and least significant

bit (LSB) hiding. Recently proposed QIM schemes include Chen

and Wornell’s QIM and dither modulation [2], Eggers et al’s scalar

Costa scheme (SCS) [3], and application tailored implementations

such as [4, 5, 6, 7].

Given that steganography, or covert communication, is an im-

portant application of data hiding, it is natural to ask how easy it

is to detect the presence of data hidden using QIM. Thus, the sub-

ject of this paper is steganalysis (i.e., detection of steganographic

communication) of QIM-based hiding. To date, there appears to

have been little systematic investigation of this issue, a notable ex-

ception being the work of Guillon et al [8] on steganalysis of SCS,

based on modeling QIM as inducing additive quantization noise.

We employ a more detailed model of QIM in the present work, and

apply both detection theory and supervised learning techniques to

draw our conclusions.
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Section 2 studies, under idealized conditions, the fundamental

limits of steganalysis for QIM. We consider independent and iden-

tically distributed (i.i.d.) host (or cover) data, and assume that the

steganalyst knows the host distribution. Using hypothesis testing

techniques as in [9], we provide performance benchmarks for sev-

eral variants of QIM. The detectability of QIM for a given host dis-

tribution can vary widely, depending on the design level of robust-

ness against attacks. QIM is more easy to detect for distributions of

transform domain image coefficients, which exhibit a strong peak

at zero which is changed significantly by standard QIM variants.

This implies that QIM hiding in images in the transform domain

should be easily detectable. In practice, the host distribution for

an image is not known, and exhibits significant variations from

image to image. However, in Section 3, we show that standard su-

pervised learning techniques using the received distribution as the

feature approach detection-theoretic performance limits. In par-

ticular, QIM-based hiding designed to resist moderate levels of

JPEG compression is quite easily detectable. Lyu and Farid have

also used learning systems for steganalysis [10] with promising

results. However, since their feature set is chosen without regard

to the steganography scheme it is widely applicable, but takes a

performance hit due to its generality. A side-by-side comparison

would not be illuminating, since they detect non-QIM hiding. Our

conclusions are stated in Section 5.

2. OPTIMAL DETECTION OF QIM HIDING

The simplest form of quantization based data hiding quantizes the

host signal with a quantizer indexed by the message. If s is the

stego signal, m the message, and x the cover or host signal, we

have s(x, m) = qm(x). The stego signal will consist only of val-

ues in the set of quantizer outputs. This is appropriate if the signal

is expected to be quantized, for compression for example. Dither

modulation [2], can produce a stego signal covering all of the val-

ues of the host signal. Here the quantizers are shifted according to

a changing dither level, i.e. s(x, m) = qm(x + d) − d.
There exist more advanced flavors of QIM, which provide ad-

vantages to simpler versions. However most practical implemen-

tations we have seen use either simple QIM, or dither modulation,

with uniform scalar quantizers. We focus on these cases.

Let PX(x) be the probability mass function (PMF) of the host.

We assume X is i.i.d. so the 1-dimensional PMF is sufficient for

classification. Since we are using scalar quantizers and i.i.d. data,

we will use scalar notation from here on out: S = si, X = xi,

etc. We can find the PMF of S as a function of PX(x). We begin

with a non-hiding, uniform scalar quantizer. The output levels are

the integer multiples of the step-size, ∆∗, and the probability of a

given output, A, is just the sum of probabilities that are quantized



to that output. Defining the range of input values quantized to a

single output value as X ∗(a) , [a − ∆∗/2, a + ∆∗/2) then the

PMF is

PA(a) =

{

PX(x ∈ X
∗(a)),a ∈ k∆∗

0 else
(1)

Where k is any integer. If now a choice of quantizer is used to

hide binary data, B, we split the original quantizer into 2 coarser

subsets, each with step-size ∆ = 2∆∗. The quantizer associated

with sending a 1 is identical to that as for sending 0, but shifted by

∆/2. Assuming the probability of 0 is equal to 1, we have

PS(s) =

{

1
2
PX(x ∈ X (s))s ∈ k∆/2

0 else
(2)

Where X (s) , [s − ∆/2, s + ∆/2) is the analogous range for

the new ∆. Unlike standard quantization, these regions overlap

for adjacent values of s. We note at this point that if the goal of

the steganographer is to mimic an existing quantizer, for example

a compression scheme, then the hider can stop here, without using

dither modulation. In [4] and [7], the authors use this to imitate

the output of JPEG and JPEG2000 respectively. We examine the

detection of this first case below.

For dither modulation, we let D be a pseudorandom variable

uniformly distributed over [−∆/4, ∆/4) so that the output will

cover all the values of the input, and will not leave tell-tale signs

of quantization. In this range, PD(d) = 2ǫ/∆ where ǫ is the

granularity of the data. With this dithering, any s is valid, subject

to the granularity of the system. For every received S there is one

and only one valid value of d that could have made that value of

s. For any valid s, PS(s) = P (B = 0, 1) ∩ PX(x ∈ X (s)) ∩
PD(d = required). Again assuming equiprobable message data

and plugging in for PD we have

PS(s) =
ǫ

∆
PX(x ∈ X (s)) (3)

Armed with equations (1), (2), and (3) we can find the perfor-

mance of a detector operating in two scenarios. The first is dis-

tinguishing between host values that have been quantized versus

QIM data embedding (without dithering). The second case is dis-

tinguishing between an unquantized host and a host with dithered

QIM data embedded.

The optimal detector in the Neyman-Pearson sense of maxi-

mizing the probability of detection while maintaining a given false

alarm probability is the well known likelihood ratio test [11]:

δL(y) =

{

1L(y) ,

(

PS(y)
PX (y)

)

≥ τ

0 L(y) < τ

Before we analyze the performance of this detector for some

example PMFs, we can gain some insight into what will be de-

tectable simply by inspecting L(y).

Case I: Quantized host versus non-dithered QIM hiding

Here we compare to A rather than X . The yi in y are inde-

pendent, so L(y) is:

L(y) =
N
∏

i=1

1/2
∑

yi−∆/2≤x<yi+∆/2 PX(x)
∑

yi−∆/4≤x<yi+∆/4 PX(x)

Basically hiding sums over twice the range, and compensates by

halving the total. Therefore a smoothly varying PMF will be more

difficult to detect than a spikey one.

Case II: Non-quantized host versus dither modulation hiding:

N
∏

i=1

(ǫ/∆)
∑

yi−∆/2≤x<yi+∆/2 PX(x)

PX(yi)

This is exactly the ratio of the average (over ∆) to the original.

Dither modulation hiding therefore acts as a moving average filter

on the PMF. Intuitively, host PMFs with high frequency compo-

nents relative to ∆ will be much easier to detect than a smoothly

varying PMF. Indeed, as is noted in [8], a uniformly distributed

host would be impossible to detect.

Typically a steganographer will be hiding in data transformed

to make it suitable for compression. This data will generally have

values concentrated towards the mean. That is, the PMF will tend

to have a large spike at the center. See for example the histogram

of DCT coefficients of an image in Figure 1. For PMFs such as

these, the detectability is strongly linked to the concentration of

probablity near the mean compared to the step size of the quan-

tizers, or the ratio of the standard deviation σ to ∆. ∆ is directly

proportional to the robustness of the hiding.
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Fig. 1. The empirical PMF of the DCT values of an image. The

PMF looks not unlike a Laplacian, and has a large spike at zero.

To quantify this observation, we can find the performance of

the detector for a given host distribution. We cannot estimate the

average probability of error of the detector, because the priors can

not be known; who knows how many steganographers exist? As

a metric we use the sum of the probabilities of false alarm and

missed detection. For a known PMF, we find upper bounds on

these probabilities by using Chernoff bounds (for details, see for

example [11]). Chernoff bounds allow us to find a bound on the

performance even at very low probability of error, which is not

possible with simulations. We find the detectability is extremely

sensitive to the ratio σ/∆, see Figure 2. Here, we are detecting a

Laplacian PMF at rate 1. Within a short range of σ/∆, the detec-

tion metric goes from nearly certain detection to almost random

detection. Gaussian PMFs have a similar relationship.

The hider then should choose to embed in either a high vari-

ance host, or use a small ∆. However the choice of hosts may

be limited, and a smaller ∆ will weaken its robustness to exter-

nal attacks. He or she may choose then to embed less data than is

possible in order to avoid detection. We introduce a rate, R, mea-

sured in bits per host sample to characterize this. For scalar QIM,

0 < R ≤ 1. As R is reduced the detectable difference between the

hidden statistics and host statistics is diluted by the host samples

that pass unchanged. We can easily adjust equations (2) and (3) to

reflect this:

PS(s, R) = RPS(s, 1) + (1 − R)PX(s) (4)
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Fig. 2. The detector is very sensitive to the width of the PMF.

where PS(s, 1) is the previous full-embedding stego PMF.

The hypothesis that data is hidden is now composite. To detect

this, we use the generalized likelihood ratio test where L(y) is

now:

L(y) , max
R

(

PS(y, R)

PX(y)

)

To estimate error probabilities with the GLRT, we use computer

simulation rather than Chernoff bounds. Hiding at a lower rate cer-

tainly decreases the detectability. There is however a catch. The

message the sender wants to send covertly has a predetermined

length. The lower the rate, the more host samples the hider must

use to embed the message. Since this increase in the number of

samples increases the steganalyzer’s ability to detect the hidden

data, the increase in privacy caused by lowering the rate is some-

what offset. Therefore the hider may not be as safe as he or she

thought. We illustrate this with an example. Suppose a hider is

sending a 15000 bit message in 50000 host samples (R = .3) If

the host is a Gaussian with (σ/∆) = 1 the detector has an er-

ror sum of 0.070. If we hold the number of samples constant but

halve the rate to R = .15, the sum of errors is 0.366. However this

will only send 7500 bits. To send the entire message the hider will

have to use 100000 host samples. The performance taking this into

account is 0.205.

Finally, in implementing these schemes on real world data,

certain adjustments must be made to the basic scheme. For exam-

ple both [4] and [7] exclude low-valued coefficients from embed-

ding, to avoid visual distortion of the final image. Furthermore,

as we mentioned above the host data typically has a characteris-

tically sharp increase of probability near the mean, which will be

noticeably smoothed by hiding. Setting a low-valued threshold for

embedding also helps avoid this obvious artifact. This threshold-

ing however leaves a new characteristic effect on the PMF near the

low-values. The derivation of this modified stego PMF is straight-

forward but lengthy and is skipped here for brevity.

3. STEGANALYSIS WITH SUPERVISED LEARNING

In the steganalytic method described in the previous section, it is

assumed that the statistics of the host are known. This is obviously

not the case in real world detection. Also, a hiding implementation

will often allow a range of step-sizes, ∆, for embedding which is

also unknown. The LRT gives us a “best-case” bound on detection.

For practical tests, we must assume no prior knowledge.

There is an alternative method, the supervised learning method,

which makes no assumptions about the statistics or ∆. Instead, it

finds the difference between cover images and images with hidden

content entirely from the data through training.

There are usually four steps in any supervised learning proce-

dures: data set construction, feature extraction, training and test-

ing. We describe these steps as follows:

Data set construction: For standard supervised learning tasks,

a training and a testing set are needed. In our work, we use im-

ages from three distinctively different image collections: digital

orthophoto quarter-quadrangle (DOQQ) aerial images, Corel Pho-

toCD (CPCD) images, and images taken with a Canon digital cam-

era (CADC). From each collection, we create a training set and a

testing set each consisting of 500 randomly chosen images. Within

each set, we hide a random bit stream in half of the images, and

therefore, each set contains natural host images and images with

hidden content. The task is to distinguish these two classes of im-

ages by training a classifier on the training data set and checking

the prediction accuracy of the classifier on the testing set.

Feature extraction: Before training takes place, raw data, or

images in our case, need to be represented by a set of attributes, or

features. We assume that our classifier is targeted to a particular

implementation of QIM, and choose the features to match. For our

testing, we tested on a QIM implementation, [4], that embeds in

the 8x8 blockwise DCT coefficents of an image. Since the DCT

tends to decorrelate the intensity values, our model of an i.i.d. X
as given in the previous section is justified. We therefore use a

histogram as an empirical PMF for our feature vector. We com-

pute the histogram with 300 bins over all the coefficients that are

typically embedded into, which gives us a 300 dimensional feature

vector.

In the QIM implementation we tested on, the hider chooses a

∆ large enough to withstand a pre-determined JPEG compression

quantization. We refer to this level as the design quality factor

(QF). The smaller the design quality factor, the larger the step-size

∆.

Training and testing: We perform the supervised learing in

two stages. In the first stage, we train the classifier on a training

and testing set from the same image collection. Since images from

the same collection are usually similar in content or texture, this is

an easier task than the more general case. In the second stage, we

create mixed training and testing sets with images from all three

collections. This is a more difficult task but more general.

4. RESULTS

With known design quality factor: In this experiment, we set

the design quality factor at 50 to hide data in images in both the

training and testing sets, which means when we make a detection,

we already know that if there is data hidden in an image, the de-

sign quality factor is 50. Both the host images and the images with

hidden content are then compressed to JPEG at the same quality

factor in order to avoid detection of JPEG compression. The re-

sults of detection error for this test are shown in Table 1. We find

that if the design quality factor is known, the detection with super-

vised learning gives very low error rates, which remains low even

at severe JPEG compression. But we understand the design quality

factor is an extra information which is not usually available for the

detector and it is expected to make detection simpler. In the next



Final QF 100 90 80 70 60 50

DOQQ 0 0 0 0 0 0

CPCD 0 0 .004 0 .044 .052

CADC 0 0 0 0 0 .016

Table 1. If the design quality factor is known (set at 50), a very low

detection error can be achieved at all compression rates. Here ‘0’

means no errors occurred in 500 tests so the error rate is < 0.002

test, we eliminate this restriction.

With unknown design quality factor: We perform this test

with an unknown design quality factor. This is achieved by cre-

ating a training and testing sets by hiding data in images with the

design quality factor randomly chosen between 40 and 80. Other

than that, the same tests are performed. The results are shown in

Table 2. From this table, we find that if we do not know the design

Final QF 100 90 80 70 60 50

DOQQ 0 0 0 0 0 .016

CPCD .088 .044 .144 .132 .248 .220

CADC .004 0 .044 .104 .212 .292

Table 2. If the design quality factor is unknown, the detection error

is higher than previous results, but still sufficiently low. Also, the

final JPEG compression plays an important role. As compression

becomes lower, the detection becomes less accurate.

quality factor, the detection accuracy becomes lower, as expected.

We also find that now the JPEG compression becomes an impor-

tant factor. As compression becomes more severe, the detection

error goes up. This is expected because the compression of images

disrupts the artifacts introduced by data hiding, therefore making

the hidden content less detectable.

Mixed data set: In the previous tests, we build a classifier

and then perform detection on images from the same collection.

Images from the same collection may have similar content, texture,

or processing artifacts, and in real world detection tasks, we do not

know which collection the images are from. Therefore, we design

this test to partially remove this restriction. We create training and

testing sets with images from all three image collections with equal

proportion. The results are shown in Table 3

Final QF 100 90 80 70 60 50

Mixed Set .001 .004 .000 .001 .117 .083

Table 3. If the training and testing set are created with images from

a mixture of three collections, the supervised learning method can

still make very accurate detection.

In this test, we found that although we train our classifier and

attempt to detect images from mixture of three collections, we still

get very accurate prediction at all compression rates. This sug-

gests that the difference between different data collections as well

as changes due to hidden data can be learned from a one-step su-

pervised learning.

5. CONCLUSION

Our detection-theoretic results for i.i.d. hosts show that the ease

with which QIM can be detected depends strongly on the host

statistics. Specifically, host PMFs with a sharp peak at the mean

change considerably after QIM based hiding, which then becomes

easy to detect. This characteristic does hold for typical transform

domain image data, which has strong peaks at zero. While the

knowledge of host distribution assumed in our detection-theoretic

analysis does not hold for image data (where the statistics can vary

significantly from image to image), standard supervised learning

techniques are shown to perform well. The methods employed

here only employ the first-order statistics, and their performance

could potentially be further improved by exploiting host memory.

We caution the reader against drawing the conclusion that QIM

is inherently easily detectable. The detectability could be reduced

by reducing the design level of robustness against attacks, or by

reducing the embedding rate. More fundamentally, our work only

considers currently proposed QIM schemes, which appear to have

been designed with robustness, rather than covertness, in mind.

We leave open the issue of whether it is possible to design QIM

schemes that are both robust and covert, and point to some recent

theoretical results that indicate the potential for such schemes [12].
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