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Abstract

Selecting salient points from two or more images for computing correspondence is a well studied
problem in image analysis. This paper describes a new and effective technique for selecting these
tiepoints using condition numbers, with application to image registration and mosaicking. Condition
numbers are derived for point-matching methods based on minimizing windowed objective functions for
1) translation, 2) rotation-scaling-translation (RST) and 3) affine transformations. Our principal result is
that the condition numbers satisfyKTrans ≤ KRST ≤ KAffine. That is, if a point is ill-conditioned with
respect to point-matching via translation then it is also unsuited for matching with respect to RST and
affine transforms. This is fortunate sinceKTrans is easily computed whereasKRST and KAffine are
not. The second half of the paper applies the condition estimation results to the problem of identifying
tiepoints in pairs of images for the purpose of registration. Once these points have been matched (after
culling outliers using a RANSAC-like procedure) the registration parameters are computed. The post-
registration error between the reference image and the stabilized image is then estimated by evaluating
the translation between these images at points exhibiting good conditioning with respect to translation.
The proposed method of tiepoint selection and matching using condition number provides a reliable basis
for registration. The method has been tested on a large number of diverse collection of images–multi-date
Landsat images, aerial images, aerial videos, and infra-red images. A web site where the users can try
our registration software is available and is being actively used by researchers around the world.
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I. I NTRODUCTION

The problem of selecting image points for reliably determining optical flow, image registration pa-

rameters and 3D reconstruction has been extensively studied over the last 30 years, and many good

schemes for selecting feature points have been advanced. In this paper we show that condition theory

can be applied to this problem with the result that we recover and extend time-tested feature selection

procedures. The formulation we present has the advantage of being derived from first principles rather

than heuristics.

As early as 1987, with the work of Kearney et al. [34] it was realized that the normal matrix associated

with locally constant optical flow is critical in determining the accuracy of the computed flow. This matrix

has the form

AT A ≡



∑
gxgx

∑
gxgy

∑
gxgy

∑
gygy


 (1)

whereg = g(x, y) refers to the image intensity, subscripts indicate differentiation, and the summation is

over a window about the point of interest. Kearney et al. report that ill-conditioning in the matrixAT A

and large residual error in solving the equations for optical flow can result in inaccurate flow estimates.

This was supported by the work of Barron et al. [3] who looked at the performance of different optical

flow methods; see also [4].

More recently, Shi and Tomasi [45] presented a technique for measuring the quality of local windows for

the purpose of determining image transform parameters (translational or affine). For local translation they

argued that in order to overcome errors introduced by noise and ill-conditioning, the smallest eigenvalue

of the normal matrixAT A must be above a certain threshold:λ ≤ min(λ1, λ2) whereλ is the prescribed

threshold andλ1, λ2 are the eigenvalues ofAT A. When this condition is met the point of interest has good

features for tracking [46]. The paper [46] builds on the work of Shi and Tomasi [45] by examining the

statistics of the residual difference between a window and a computed backtransform of the corresponding

window in a second image with the goal of deriving conditions for rejecting a putative match. The papers

[8] and [33] give further consideration to the importance of theAT A in estimating vision parameters.

Schmidt et al. [44] present results for the problem of evaluating interest point detectors from the

standpoint of repeatability (i.e., whether the point is repeatedly detected in a series or sequence of images)

and information content (which measures the distinctiveness of the interest point as measured by the

likelihood of the local greyvalue descriptor). This paper provides a good survey of interest point detectors

for contour-based methods such as [56] and [38], corner detection [20], intensity-based methods and
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parametric model methods. Evaluation of computed video georegistration for aerial video is considered

by [52].

The work we present below uses condition theory to formulate the sensitivity of matching feature

points with respect to image transforms, such as translation, rotation-scale-translation (RST), and affine

transforms. As such it bears a close relationship to the work of earlier investigators especially that of

Shi and Tomasi [45] (see Section 2 for more details). Note that in this paper we focus on point feature

only. This can be further extended by considering geometrical features such as lines (see [5], [32], [52])

but such an extension would require defining an objective function to determine these features as well

as a corresponding conditioning based analysis. Aside from this agreement with time-tested results, the

condition theory approach shows how to define point sensitivity with respect to other image transformation

models such as the RST and affine transforms. This generality allows us to compare condition numbers

for different transforms (Theorem 2).

A. Problem Formulation

We start by casting the matching problem as a minimization of an objective function that measures

the match between windows in both images.

Given two imagesg and ĝ and a point(x, y) we define the point-matching objective function for a

transformationT as

f(T ) =
1
2

Σ
(
g(T (x′, y′))− ĝ(x′, y′)

)2
(2)

where the summation is over(x′, y′) in a window about(x, y).

We consider three types of transformations with associated parameter vectorsp and we seek the best

parameter vector for minimizing the objective function.

1) Translation: we look for the best shiftp = (a, b) minimizing the objective function (2) withT

given by

T (x′, y′) =


 x′ + a

y′ + b


 (3)

2) Rotation-Scale-Translation (RST): find the best rotation-scale-translation valuesp = (θ, r, a, b)

minimizing the objective function (2) withT given by

T (x′, y′) = r


 cos θ sin θ

− sin θ cos θ





 x′ − x

y′ − y


 +


 a

b


 (4)
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3) Affine: find the best affine parameter valuesp = (m11,m12,m21,m22, a, b) minimizing the objec-

tive function (2) withT given by

T (x′, y′) =


 m11 m12

m21 m22





 x′ − x

y′ − y


 +


 a

b


 (5)

To measure the sensitivity of the minimizing solutions we use the following definition.

Definition. Let p = p(x, y, g, ĝ, T ) denote the minimizer to the objective function (2). The condition

numberKT measures the sensitivity ofp to perturbations(∆g, ∆ĝ) and is defined by

KT ≡ lim
δ→0

max
‖(∆g,∆ĝ)‖≤δ

‖∆p‖
‖(∆g,∆ĝ)‖ (6)

where‖(∆g,∆ĝ)‖ =
(‖∆g‖2 + ‖∆ĝ‖2

)1/2
and ∆p denotes the perturbation in the parameter vectorp

corresponding to the perturbation(∆g, ∆ĝ).

In the next section we describe the background and standard theory of condition measurement. We

then derive computable expressions for the condition numbers for point-matching with respect to the

three types of transforms (Theorem 1). Our principal result is the inequality (Theorem 2)

KTrans ≤ KRST ≤ KAffine (7)

This makes a lot of sense: minimizing the three types of objective functions corresponds to trying to

extract more information from a fixed data set and should give results that are increasingly uncertain.

ComputationallyKTrans is easy to evaluate, taking about 24 arithmetic operations per pixel (see

Appendix C), whereasKRST and KAffine are much more expensive. Because of this and in light of

(7), we concentrate in the remainder of the paper on applications ofKTrans in the areas of optical flow,

registration and post-registration error estimation. As explained in the applications section, we use the

translation condition number to cull the points used in the matching process; however once this is done

the transformation parameters (in our case the RST values) are determined from the geometry of the

feature points so that the use of the translation condition number does not limit the accuracy of our RST

estimates.

In Section 3 we compare the minimization of the translation objective function with the problem of

determining the optical flow. In Section 4 we describe using the translation condition number to select

tiepoints for image registration. We also look at estimating the offset error between the first image and

a stabilized image obtained by back-transforming the second image to the reference frame of the first
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image. The local offset error is determined by computing the best local translation at points in the image

that are well conditioned with respect to matching by translation.

Before proceeding it is helpful to make a few remarks about the goal of our work. We do not advocate

computing the best local translation for arbitrary image pairs because the limitation to a simple translation

model is too restrictive. On the other hand the translation condition number is a useful tool in image

analysis for several reasons. First the expression for the condition number turns out to be invariant with

respect to rotation as well as independent of the actual translation. This is a property that one would

expect of any good measure of the matching quality of an image point. For example a well defined corner

remains a good point for matching when rotated or shifted.

Second there are image pairs for which the local translation model is appropriate. For example, after

computing registration parameters one might want to transform the second image into the frame of

reference of the first in order to detect target motion. Assuming that the computed registration parameters

are reasonably accurate we might want to calculate the best local translation between images as an estimate

of the offset error in the back-transform.

II. CONDITION THEORY

A. Historical Background

The current viewpoint on condition estimation can trace its roots to the era of the 1950’s with the

development of the computer and the attendant ability to solve large linear systems of equations and

eigenproblems. The question facing investigators at that time was whether such problems be solved

reliably. The work of Wilkinson [54], [55] and Rice [43] in the early 1960’s established a general theory

of condition for computed functions. In the 1970’s this led to power method condition estimates for

matrix inversion by Cline et al. [10] as well as condition estimates for the exponential matrix function

by Ward [51], Moler and Van Loan [42], invariant subspaces associated with eigenvalues by Stewart [47]

and other problems. The 1980’s saw the extension of this work (especially the ideas of Cline et al. [10])

to the matrix square root function by Björck and Hammarling [7], the Lyapunov and Riccati equations

by Hewer and Kenney [22], [35] and the distance to the nearest unstable matrix by Van Loan [53] and by

Hinrichsen [27]. At the same time, Kenney and Laub provided computational procedures for estimating

the sensitivity of general matrix functions [36], [37] and Demmel developed a global rather than local

theory of sensitivity based on the distance to the nearest ill-posed problem [11], [12], [13].

This latter work represents a step toward more realistic condition results since it goes beyond the

assumptions of sensitivity based on smoothness and differentiability. This is especially appropriate for
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image processing since many perturbation effects, such as quantized gray level intensity changes, are

discrete rather than continuous. Unfortunately the more realistic condition results for discrete and global

changes are usually very difficult to evaluate. Because of this for the purposes of our work we will restrict

our attention to continuous condition estimates as described below.

B. General Condition Measures

The solution of a system of equations can be viewed as a mapping from the input dataD ∈ Rn to the

solution or outputX = X(D) ∈ Rm. If a small change inD produces a large change inX(D) thenX

is ill-conditioned atD. Following Rice [43], we define theδ-condition number ofX at D by

Kδ = Kδ(X, D) ≡ max
‖∆D‖≤δ

‖X(D + ∆D)−X(D)‖
‖∆D‖ (8)

where‖ · ‖ denotes the vector 2-norm:‖D‖2 = Σ|Di|2. For any perturbation∆D with ‖∆D‖ ≤ δ, the

perturbation in the solution satisfies

‖X(D + ∆D)−X(D)‖ ≤ δKδ (9)

Theδ condition number inherits any nonlinearity in the functionX and consequently is usually impossible

to compute. For this reason the standard procedure is to take the limit asδ → 0. If X is differentiable

at D we can define the (local or differential) condition number

K = K(X, D) ≡ lim
δ→0

Kδ(X,D) (10)

Using a first order Taylor expansion, we have

X(D + ∆D) = X(D) + XD ∆D + O(‖∆‖2) (11)

whereXD is them× n gradient matrix with entries

(XD)ij =
∂Xi

∂Dj
(12)

This expansion shows that the local condition number is just the norm of the matrixXD

K(X,D) = ‖XD‖ (13)

and

‖X(D + ∆D)−X(D)‖ ≤ K‖∆D‖+ O(‖∆D‖2) (14)

Large values forK(X,D) indicate thatX is ill conditioned inD.
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C. Objective Function Conditioning

The general theory of condition as applied to the sensitivity of the minimizer of the objective function

(2) gives the definition (6). This condition number incorporates all possible perturbations to an arbitrary

pair of images(g, ĝ). Unfortunately this generality makes the analysis difficult. To overcome this we

consider the condition number for a more reasonable class of problems in whichg is related tôg via the

transformT and we allowĝ to be perturbed by noise.

Theorem 1. Define the ‘transform plus noise’ problem aŝg(x′, y′) = g (T (x′, y′)) + η(x′, y′) with

perturbations‖η̂‖ ≤ δ and (x′, y′) varies over the window centered at(x, y). In the limit asδ → 0 we

find that

K2
T = ‖ (

AT A
)−1 ‖ (15)

where

A =




v1

...

vn


 (16)

with row vectorsvi depending on the type of transformationT . The row vectors for translation, RST,

and affine transformations are given by

1) Translation:vi =
(

ĝi
x ĝi

y

)

2) RST:vi =
(

ĝi
x ĝi

y ĝi
x(xi − x) + ĝi

y(y
i − y) ĝi

x(yi − y)− ĝi
y(x

i − x)
)

3) Affine: vi =
(

ĝi
x ĝi

y ĝi
x(xi − x) ĝi

x(yi − y) ĝi
y(x

i − x) ĝi
y(y

i − y)
)

where(xi, yi) is the i the point in the window centered at(x, y), ĝi
x = ĝx(xi, yi), ĝi

y = ĝy(xi, yi) and

subscripts denote differentiation.

Proof. See the Appendix A.

Remark. The condition numbers are given in terms ofĝx and ĝy and do not require knowledge of the

minimizing parameters for the transformation. For the translation condition number, the matrixAT A is

2× 2 and given by

AT A =


 Σĝ2

x Σĝxĝy

Σĝxĝy Σĝ2
y


 (17)

where the summation is over(x′, y′) in a window centered at(x, y).
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The connection between conditioning and the matrixAT A is not surprising considering that the

eigenvalues of this matrix have commonly been used in the analysis of local image structure, in particular,

for distinguishing flat, line and corner structures [20], [49].

Since we are dealing with a2× 2 matrix we can write out the inverse explicitly. As a technical point

it is numerically easier to deal with the modified condition number

K̃2
Trans ≡ ‖ (

AT A + εI
)−1 ‖ (18)

whereε is some small number (see [18] for the relationship with the pseudo-inverse). This formulation

avoids problems associated with inverting singular or nearly singular matrices.

In our experiments we usedε = 10−8. Here we are using the 2-norm. If we switch to the Schatten

1-norm‖M‖S = Σσi whereσ1, . . . , σn are the singular values ofM (see [30] p. 199) then we have the

closed form expression:

K2
Trans,Schatten ≡ ‖ (

AT A + εI
)−1 ‖S (19)

=
2ε + Σĝ2

x + Σĝ2
y

(Σĝ2
x + ε)

(
Σĝ2

y + ε
)− (Σĝxĝy)

2 (20)

Here we have used the fact that ifM is a symmetric positive definite matrix and its eigenvalues areλ1

andλ2, then

‖M‖S = Σσi = Σλi = Trace(M) (21)

Applying this withM = (AT A+ εI)−1 gives the expression forKTrans,Schatten. As a side note we have

switched to the Schatten norm for ease of computation only; the Schatten 1-norm is essentially equivalent

to the regular 2-norm because the 2-norm of a matrixM is equal to the largest singular value:‖M‖2 = σ2.

Thus for a2 × 2 matrix M the following chain of inequalities holds:‖M‖2 ≤ ‖M‖S ≤ 2‖M‖1. We

also note that

‖ (
AT A + εI

)−1 ‖S =
Trace

(
AT A + εI

)

det (AT A + εI)
=

µ1 + µ2

µ1µ2
≥ 1

µ2

whereµ1 and µ2 are the eigenvalues of the matrixAT A + εI, and 0 ≤ µ2 ≤ µ1. This provides nice

connection with the work of Shi-Tomasi-Kanade [45] in which a point is considered good for feature

tracking if µ2 is large or equivalently if1/µ2 is small. The connection arises from the inequality

1
µ2

≤ µ1 + µ2

µ1µ2
≤ 2

µ2

for 0 ≤ µ2 ≤ µ1. That is

1
µ2

≤ K2
Trans,Schatten = ‖ (

AT A + εI
)−1 ‖S =

µ1 + µ2

µ1µ2
≤ 2

µ2
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Moreover, since we are working with the matrix 2-norm, we can writeK2
Trans = ‖(AT A)−1‖ = 1

min(λ1,λ2)

whereλ1, λ2 are the eigenvalues ofAT A. Thus the Shi-Tomasi requirement thatλ < min(λ1, λ2) for

some threshold valueλ is equivalent to requiring thatKTrans ≤ 1√
λ

; that is the Shi-Tomasi feature

condition is equivalent to specifying a maximum condition value for translation.

We now state our main result.

Theorem 2. Under the assumptions of Theorem 1 we have

KTrans ≤ KRST ≤ KAffine (22)

Proof. See the Appendix B.

Figure 1 shows a noisy IR image containing an urban street scene that we will use to illustrate the

condition number for the three types of matching: translation, RST and affine.

Figure 2, gives the condition surface for the three types of transforms. In this image dark points have

good conditioning. The striking feature of Figure 2 is the overall similarity of the condition numbers

for translation, RST and affine point matching for the urban street image. In part this similarity is a

consequence of (22): well conditioned points are only a small percentage of the overall image pixels and

(7) implies that the well conditioned points for translation, RST and affine transformations form a nested

series of subsets. This is excellent because the computation of the translation condition number requires

the inversion of a2× 2 matrix and can be calculated very rapidly. In contrast both the RST and affine

condition numbers are much more expensive to compute because they involve inverting respectively a

4x4 or a 6x6 matrix at each point in the image, as per Theorem 1.

Example 1. A point may be well-conditioned with respect to translation and ill-conditioned with respect

to an RST transformation. As an illustration consider a dark point at(x, y) on a white background. This

point is well-conditioned for translational matching but the rotational symmetry means that we can not

extract rotational information: it is ill-conditioned with respect to RST matching. In Section 4, we use

points that are well-conditioned with respect to translation for computing the best RST transformation

between two images. One might reasonably ask why we don’t use points that are well-conditioned with

respect to RST matching rather than translational matching. The reason is provided by this example: a

point may be ill-conditioned for local RST matching while being part of a group of points that is well-

conditioned for global RST matching. Consider an image of three dark points on a white background,

and a second image that is a rotated-scaled-translated version of the first image. Each dark point is
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well-conditioned for translation matching and ill-conditioned for RST matching. On the other hand the

problem of extracting the global RST parameters from the three points as a group in each image is very

well-conditioned, assuming of course a reasonable spread in the points. Although we do not pursue it,

similar remarks apply to multiple line-like features, each of which can provide constraints on global

transformations.

III. D ISCUSSION OFRELATED WORK

A. Minimizing the Objective Function Via Newton’s Method

An efficient method of solving for the best translation using Newton’s method is discussed by Vemuri

et al. [50], which also has a nice survey of work in the areas of registration and optical flow. In order to

discuss the work in [50] and to see how their method could benefit by using conditioning, it is helpful

to describe Newton’s method for minimizing an objective function.

To minimize a general functionF (X) whereX = (X1, · · · , Xn), Newton’s method is applied to the

problemFX = 0. This gives [1], p. 108-111, the iteration

Xk+1 = Xk − F−1
XXFX (23)

where subscripts denote differentiation:(FX)i = ∂F/∂Xi and (FXX)ij = ∂2F/∂Xi∂Xj .

For Newton’s method for minimizing the translation objective function we setX = (a, b) andF (X) =

f(a, b) and find that from (1) and (2),

FX =


 fa

fb


 =




Σ(g(x′ + a, y′ + b)− ĝ(x′, y′)) gx(x′ + a, y′ + b)

Σ (g(x′ + a, y′ + b)− ĝ(x′, y′)) gy(x′ + a, y′ + b)


 (24)

FXX =


 faa fab

fab fbb


 (25)

where

faa = Σg2
x(x′ + a, y′ + b) + (g(x′ + a, y′ + b)− ĝ(x′, y′)) gxx(x′ + a, y′ + b)

fab = Σgx(x′ + a, y′ + b) gy(x′ + a, y′ + b) + (g(x′ + a, y′ + b)− ĝ(x′, y′)) gxy(x′ + a, y′ + b)

fbb = Σg2
y(x

′ + a, y′ + b) + (g(x′ + a, y′ + b)− ĝ(x′, y′)) gyy(x′ + a, y′ + b)
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and the summations are taken over the local window as in (1).

Noting that the expression forFXX requires computing the gray scale Hessian at each point, Vemuri et

al. [50] found that they could achieve greater efficiency in solving for the best translation by approximating

FXX locally by using the form ofFXX at the minimizing point, in which case the second derivatives of

g drop out. The pleasant result from [50] is that this can be done without knowing the minimizing point

explicitly.

This avoids repeatedly computing the Hessian as the translation of neighboring points is found. Further

efficiency is obtained by taking a hierarchical approach in which the best translation is found on a sparse

set of points and then extended to the entire set of image pixels using spline interpolation. However,

this approach has the drawback that some points on the sparse grid may not be suitable for point

matching. Hence it seems reasonable that the method of [50] could benefit by taking into consideration

the conditioning of the grid points, possibly with the conditioning determining a weighting used in the

spline interpolation process.

B. Optical Flow

The area of optical flow is closely related to the problem of determining the best local translation for

matching points between images. Unfortunately, many existing strategies for evaluating the reliability of

optical flow computations can lead to unstable estimates.

Let g = g(x, y, t) be the intensity of a time varying image. If a point(x, y) = (x(t), y(t)) in the

image maintains constant brightnessg(x(t), y(t), t) = c with respect to time then its time derivative is

zero [29]:

0 = gxxt + gyyt + gt (26)

where subscripts denote differentiation. We would like to know(xt, yt) in order to track the approximate

motion of the point

(x(t), y(t)) ≈ (x(0), y(0)) + t (xt, yt) (27)

If we identify gt with the difference between the first and second images

gt = ĝ − g (28)

and estimategx and gy via finite differences then we have one equation for the two unknownsxt and

yt at each point in the image. The vector(xt, yt) is referred to as the optical flow at(x, y). Several

approaches have been advocated for overcoming the underdetermined nature of optical flow equations.
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Horn and Shunck [28] impose a smoothness constraint on the optical flow by casting the optical flow as

a minimization problem over the entire image. This results in a large system of elliptic linear equations

which is usually solved iteratively starting with the ‘normal flow’

(xt, yt)nor = (−gtgx,−gtgy)/(g2
x + g2

y)
1/2 (29)

as an initial guess. Unfortunately this approach is computationally costly and has problems at points in

the image where the optical flow is discontinuous such as may be induced by the motion of occluding

objects [31].

To avoid these problems various alternatives have been suggested. For example, Hildreth [26] proposed

an optical flow computation of edges in an image sequence, which is a 1-D version of Horn and

Schunck’s algorithm. Sundareswaran and Mallat [48] combine Hildreth’s approach with multiscale wavelet

information to regularize the optical flow computation. See also [23].

One of the more successful alternative methods assumes that local to the point(x, y) the optical flow

is constant [6], [39], [41]. For example, if the optical flow is constant in a window about(x, y) then we

have a system of equations for the two unknowns(xt, yt):

A


 xt

yt


 = v (30)

where

A =




g1
x g1

y

...

gn
x gn

y


 v =




−g1
t

...

−gn
t


 (31)

where the superscript denotes the function value ranging over the window centered at(x, y). Under the

assumption thatA is full rank the least squares solution is given by

 xt

yt


 =

(
AT A

)−1
AT v (32)

The assumption that the optical flow is constant over a window is used to overcome the underdetermined

nature of optical flow equations. Unfortunately this approach may fail. For example if the image consists

of a linear edge moving from left to right then the least squares system of equations is rank deficient

and does not have a unique solution. This problem is well known and leads to a loss of accuracy in the

optical flow vector estimate. A variety of related effects can also cause loss of accuracy in the computed

optical flow as described by Kearney et al. [34]. This has prompted some investigators such as Irani [31]
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et al. to assign a reliability measure to the flow estimates based onKL the condition number with respect

to inversion of the least squares system. For a square matrixL, the condition number with respect to

inversion isKL = ‖L‖ ‖L−1‖; for the optical flow problemL = AT A as in (1). Values ofKL near

1 indicate thatL is well-conditioned with respect to inversion. However, values ofKL near 1 do not

ensure accurate optical flow computation, as seen by a simple example. Consider a flat background point

in the image. The least squares matrixL in this case is doubly rank deficient: it has rank zero. Now

add a slight amount of noise to the image. SinceKL is the ratio of the largest singular value ofL to

the smallest singular value ofL, we see thatKL can be close to 1 under the addition of even arbitrarily

small noise, as shown by the following experiment.

Example 2. Starting with an image of constant intensity, we added Gaussian random noise of mean zero

and standard deviationσ = 10−8 at each point. Using a 3x3 window we then formed the least squares

matrix

L = AT A =




∑
gxgx

∑
gxgy

∑
gxgy

∑
gygy


 (33)

where the summation extends over the 3x3 window and evaluated bothKL (the condition number ofL

with respect to inversion) andKtrans = ‖L−1‖1/2 (the condition number with respect to matching via

translation, see Theorem 1). Running this test 100 times we found that the inversion condition number

stayed in the range1.2 ≤ KL ≤ 7.4 indicating excellent conditioning with respect to inversion for each

of the 100 test samples! At the same time the translation matching condition number was always near

104 denoting bad conditioning, and in general behaves likeKTrans ≈ 1/
√

σ for this example. Clearly

something is wrong with usingKL as a condition measure for optical flow for this problem:KL stays

near 1 even though for the underlying problem (i.e., without the noise)L is doubly rank deficient.

C. Least Squares Corner Detection

The appearance of the work of Fonseca et al. [16], [17] was the motivation for the current investigation

of selecting tiepoints based on conditioning with respect to translation. In [17] the question was raised

of how translation conditioning compares with other point selection procedures. One standard approach

to corner detection is to use the least squares procedure discussed in Haralick and Shapiro [19]. We can

summarize this approach as follows. An idealized corner consists of the intersection of lines associated

with regions of constant intensity. LetXc = (x0, y0)T be the corner location. At any pointX = (x, y)T

on an edge, the intensity gradient points perpendicular to the edge. At the same time, bothX and Xc
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lie along the edge (by assumption for both points). This means that the line connectingX to Xc is

perpendicular to the gradient atX:

∇g · (X −Xc) = 0 (34)

This equation is also true away from the edges if we assume that the image intensity is constant within

regions (i.e.,∇g = 0 inside regions). Rewrite this equation as∇gXc = ∇gX. LettingX vary over all the

pointsXi in the window gives a system of over determined equations for the unknown corner location

Xc:

AXc = b (35)

whereA is a 2 column matrix with rowi equal to the gradient ofg at the pointXi. The ith entry of the

vectorb is equal to∇g(Xi)Xi.

This overdetermined system has the least squares solution

Xc = (AT A)−1AT b (36)

where we assume that the normal matrixAT A is invertible.

Note that there are two limiting assumptions used in deriving the least squares system of equations.

First the corner is the intersection of straight edges. This limits the size of the window that can be used

since most edges are not straight over long distances. Second, the regions are assumed to have constant

intensity, so that∇g = 0 inside regions. This assumption can be violated in images subject to speckle.

The least squares form of the corner equations has some resemblance to the form of the LS operator for

optical flow but with one significant difference: the termb in the corner equations has entriesbi = ∇giXi.

This means that the equations of the corner are homogeneous of order zero and hence invariant with

respect to rescaling. That is ifg is replaced bysg for any scale factors then we have the same set of

equations. In many situations such invariance is desirable but in this circumstance it is not since it means

that tiny amounts of noise in an otherwise uniform region can produce the effect of a strong corner

signal. This is similar to the problem of measuring the reliability of optical flow by the condition number

of the least squares system as discussed above in Example 2.

Two other methods of selecting points for matching should be mentioned. The first looks for points

(x, y) with maximal curvature of the intensity level lines through the point as measured by

κ =
gxxg2

y − 2gxygxgy + gyyg
2
x(

g2
x + g2

y

)3/2
(37)
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The curvature of the level line has been shown [24] to be to be inversely related to the conditioning of

the normal matrixL as in Example 2 above. Thus high curvature indicatesL is well conditioned but as

in Example 2 this may not indicate anything more than the presence of noise. The other popular method

is selecting points for matching potential is to pick points where the gradient norm

‖∇g‖ =
√

g2
x + g2

y (38)

is maximized. Unfortunately this can easily occur along an edge with an aperture problem.

IV. A PPLICATION TO IMAGE REGISTRATION

A. Selecting Tiepoints for Registration

The translation condition numberKTrans provides a measure of the suitability of a point(x, y) for

matching purposes. Large condition numbers indicate bad matching potential so we define a setS = S(g)

of potential matching points as the set of points(x, y) in an imageg where the translation condition

number achieves a local minimum. This is illustrated in Figures 3 and 4 for a pair of agricultural images.

Not all points inS(g) can be matched to points inS(ĝ). This might be because the points have moved

out of frame or because of sensor noise or temporal changes in the image. To eliminate mismatched points

we use a two pass approach that is somewhat similar to the RANSAC method [15] as described by Hartley

and Zisserman [21]. In the first pass of our procedure, points fromS(g) are tentatively matched with

points inS(ĝ). This preliminary matching is accomplished by comparing features at each tiepoint in the

first image with features at each tiepoint in the second image. To guard against rotation effects, we have

taken the feature vectors to be windows about each tiepoint that have been rotated so that their central

gradient points downward. The windows have also been rescaled to have zero mean and unit variance

in order to protect against contrast changes that might occur between images such as that produced by a

bright object appearing in the second image but not the first. Subsequent to this the feature vectors are

compared by computing the mean square error. We also note that in order to limit the computer effort in

registration we have pruned the potential tiepoints aggressively with respect to conditioning; thus many

obviously good matches are discarded and do not appear in the figures.

The initial feature matching can be used to cull points from both images that have no corresponding

point in the opposing image. At the same time a preliminary correspondence between points in the two

images is obtained. The second pass refines this correspondence by using a purely geometric matching

procedure in which the location of points and their relationship to each other determine the matching.

January 7, 2004 Submitted to PAMI



16

In this geometric matching phase we use the assumption that the images are related by a rotation-scale-

translation (RST) transformation as described below1 . In this type of transformation we assume the

imageĝ is related tog by

ĝ(x̂, ŷ) = Ag(x, y) + B

whereA andB are constants (possibly induced by contrast changes due to a bright object moving in or

out of frame) and

 x̂

ŷ


 = r


 cos θ sin θ

− sin θ cos θ





 x

y


 +


 dx

dy




This type of transformation applies in many settings of interest such as frame to frame registration of

video sequences with sufficiently high frame rate relative to the camera motion. However the techniques

described for RST transformations can also be applied to more general transformations.

In the geometric culling of the tiepoints, pairs of points are selected in each image. The associated

RST transformation for these pairs is computed and then applied to the entire group of tiepoints. The

number of tiepoints in the first image that land on a tiepoint in the second under the RST transformation

then gives a measure of the accuracy of the RST parameters for the initial pairs of points. Selecting

the RST with the highest score provides a means of eliminating outliers as those points without good

matching tiepoints after the transform is applied. Once the RST parametersr, θ, dx, dy are computed we

then can determine the contrast constantsA,B by using the RST parameters to find the image-overlap

region under back-transformation. Then we selectA,B so that the backtransformed image has the same

mean and variance asg in the overlap region.

Because the first and second culling passes are based on different matching criteria they provide

a safeguard against mismatched points. Moreover the preliminary culling in the first pass reduces the

computational burden of the second pass, resulting in a fast combined matching algorithm.

Figures 3 and 4 illustrate the two pass matching procedure for a pair of agricultural images. Figure 3

shows the original images and the 169 initial tiepoints. Of these only 69 tiepoints have matching points

in the opposite image. The number of matches was determined by first using hand picked tiepoints to

determine the registration parameters and then transforming the first set of tiepoints into the frame of

the second followed by comparison of the tiepoint indices. Any index pair with difference less than one

pixel was considered a matching pair.

1Note however that RST transformation cannot cope with out of plane rotations of the scene: even the orthographic projection

of a planar scene would require an affine model.
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Figure 4a,b shows the tiepoints after pass 1 (feature matching) has culled out some of the worst fits.

There are now 32 tiepoints in each image and 28 of these are matching tiepoints. This is a match rate

of 88 percent.

Figure 4c,d shows the tiepoints after pass 2 (both feature matching and geometric matching). There

are now 26 tiepoints in each image and all of these are matching tiepoints. This is a match rate of 100

percent.

We also illustrate the performance of the two-pass tiepoint matching on several sets of images in

Table 1. The associated images are shown in Figure 5 (coastline images), Figure 6 (urban images formed

synthetically from one larger image using RST transformations), Figure 7 (noisy IR urban images).

Note that for the coastline images the first pass achieves only moderate matching success. In part this

is due to temporal differences in the images at the shoreline (waves) and the large translation reducing the

tiepoint overlap. Large temporal differences are evident in the Amazon forest images (Figure 8) which

are separated in time by 2 years and the Brazilian agricultural images (Figure 9) which are separated in

time by 4 years.

In the Amazon images the feature matching is not very successful (16% match rate) but the geometric

matching is able to overcome this. In the Brazilian agricultural images the temporal variations are so

large that both the feature matching and the geometric matching fail. This indicates the limits of the two

pass matching. On the positive side, however, the Brazilian images provide a nice challenge for the fit

assessment tests which readily detect the registration failure (see below and Tables 2 and 3).

B. Fit Assessment and Post-Registration Error Estimation

Once the match between tiepoints has been computed, we find the associated transform parameters

(in our work the rotation angle, scale factor and translation shift vector for the RST transform) for the

matched points using a standard least squares procedure (see [18]) applied to the set of equations relating

the tiepoints via the RST transformation. The transform parameters allow us to associate with each pixel

(x2, y2) in image 2 a corresponding pixel(x1, y1) in image 1 as per (4). This association allows us to

back transform the intensity at(x2, y2) to (x1, y1) resulting in a ‘back-transformed’ imagêgback which

we can then compare to the first imageg. The difference between these images gives us a measure of

the acceptability of the computed transform parameters.

We have employed two kinds of tests in determining acceptability. The first group measures the

pointwise difference between the first image and the back-transform of the second image. (To calculate the

difference in such a way as to avoid intensity changes between frames we find the common overlap of the
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first image and the back transformed image. Then we subtract the respective intensity means and divide

by the intensity standard deviations before the pointwise subtraction over the common overlap region.

The sum of these pointwise differences is then normalized by dividing by the number of pixels in the

overlap region.) This is done by using three independent tests. In the first two tests, a statistical procedure

is used to characterize the back-transform difference for good and bad registration parameter sets. To

estimate the ‘bad’ fit, we generate random values for the transform parameters and then backtransform

the second image and take the norm of the difference with the first image. Repeating thisq times to

generate a sample of values gives us an estimate of the mean and standard deviation of the norm of the

image difference for a random (or bad) transform. (We usedq = 32 which gave reasonably accurate

estimates for the mean and variance for the images we tested without excessive computational effort.)

We then compare the backtransform differencedmeasured (from the tiepoint transform parameters) with

the meandbad and standard deviationσbad of the bad fit. The valuek = (dmeasured− dbad)/σbad tells us

how many standard deviations the computed valuedmeasured is from dbad. For example ifk >> 3 then

we reject the hypothesis that the computed transform parameters are no better than randomly selected

transform parameters.

For the good fit test we employ a similar procedure. In this case we want to know the expected value

and standard deviation of the norm of the image difference when the backtransformed image is near the

true image. This can be done in several ways; the easiest (which we used in the numerical studies for this

paper) is to select transform parameters randomly from ranges that are very near the identity (we limited

the transform ranges to produce pixel offsets of one pixel or less). Applying the resulting transform to

the first image and then differencing with the first image mimics the effect of having a nearly exact

set of transform parameters for the second image. This approach tends to give conservative results for

the reason that temporal differences in the second image are not measured in setting up the mean and

standard deviation of the good fits (because the good fit estimates are derived from the first image only).

Thus this test occasionally rejects computed transform parameters which actually are acceptable.

This pair of “good fit-bad fit” statistical tests is supplemented with a bootstrap parameter variation test

in which subsets of the matched tiepoints are used to recompute the transformation parameters. Large

parameter variations over the subsets indicates the presence of mismatched tiepoints [14]. Altogether this

suite of three acceptability tests provides a powerful mechanism for detecting improper registrations.

The second type of error detection procedure that we use estimates the post-registration error between

the first image and the back-transformation of the second image. This is useful for problems of motion

detection and target identification and is found by minimizing the translation objective function at the set
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of pointsS(g) in the image that have good conditioning with respect to translation. The minimization in

done with respect to the first imageg and the back-transform imagêgback:

Post-Registration Error Estimation Algorithm: At each point(x, y) in S(g) determine the minimizing

value of (a, b) = (a(x, y), b(x, y)) for the objective function

f(a, b) =
1
2

Σ
(
g(x′, y′)− ĝback(x′ + a, y′ + b)

)2
(39)

where the summation is taken over the window about(x, y).

We then estimate the overall post-registration error either as the maximum or average of
√

a2 + b2

overS(g). Offset error uncertainty ellipses can be determined by finding the covariance matrix for(a, b)

over S(g).

Note however that if we use an overall error assessment we may be merging two different types

of errors; an illustration of this is given in Example 3 below in which some of the errors are due to

registration parameter uncertainty (these generate small errors since the computed registration parameters

are nearly correct) and the remaining errors are due to model mis-match (large disparity produced by

projective geometry effects that are not included in the RST transform).

Also note that in this offset error estimation procedure, we use a translation objective function that

reverses the roles of the first and second images. This is done to avoid having to computeS(ĝback).

Remark. The KTrans was derived for image pairs related locally by shift plus noise. If the computed

registration parameters (rotation, scale, translation) are reasonably accurate then this assumption will

hold for comparing the original image with the back-transformation of the second image since the back-

transformation removes the effect of rotation and scaling (zoom) and intensity contrast changes. Because

of this we might expect good accuracy in our offset error estimates; this is supported by our numerical

tests as reported in Table 4. For more details see report [25].

C. Experimental Results

The programs for registration described in this paper can be accessed on the www [57] where one

register user supplied pairs of images or just try out some of the examples of this paper.

Table 2 reports the results for the sets of images considered earlier in Table 1. In this table the images

have been normalized to have zero mean and unit variance. There are several remarks to make about
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these results. The first is that the two pass matching procedure for the coastline images 1-4 produces

excellent results (as compared to “ground-truth” transformations determined by hand-picked tiepoints)

but the predicted fit error for a good match is about half of the computed fit error. The reason for this is

that the temporal variation in the coastline images (waves at the shoreline) is not included in the model

for the good fit error estimate. This kind of model mismatch can produce false negatives for the good fit

error test. For this reason the good fit test can be somewhat conservative. This kind of problem does not

occur for the bad fit test since minor model mismatch is overshadowed by the extent of the maximum

pixel error for the bad fit error estimate.

For the coastline images 1-4 the bad fit error estimate is well removed from the computed fit (by

more than 3 standard deviations). This allows us to use the bad fit test to reject the hypothesis that the

computed fit is no better than a random fit.

For the Brazilian agricultural images, both the good and bad fit tests indicate that the computed

registration is no better than a random fit. This is supported by the bootstrap uncertainty estimates in

Table 3.

A second point is that sometimes the computed fit is much smaller than the estimated good fit error

as in the urban images 1-4 and the IR urban images 1-4. This simply indicates that the computed

transformation is almost exact and the computed fit error consists mostly of the residual interpolation

error. For example, for urban images 1 and 2, the computed fit error was0.0405 and the interpolation

error estimate using the Laplacian approximation was0.0329.

A third point is that as a test we tried to register two coastline images with no overlap (i.e. an impossible

registration). In this case the problem is readily detected by comparing the computed fit error (1.06) with

the estimated bad fit error (1.10± 0.03) as seen in the last line of the table. In this case the bad fit test

indicates that the computed registration is no better than a random fit - exactly what we would expect

when trying to register two images with no overlap.

To illustrate the bootstrap tests we have determined the true RST parameters for several images by

first selecting 16 tiepoints in each image by hand, then computing the associated RST parameters and

refining them using gradient descent on the fit error function. The results are reported in Table 3 below.

Table 4 compares the results of applying the offset error estimation algorithm (39) to those determined

by using the exact transformation parameter values. Note that for the coastline images temporal change

gives a large value for the maximum offset error although the average error is small (subpixel). This

illustrates that the offset error estimation algorithm (39) can be quite useful in detecting target motion

not associated with the dominant background motion. The very small error for the urban images is
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probably due to the fact that the images in this sequence were formed synthetically from one larger

image using RST transformations. The very large temporal variations for the Amazon and Brazil images

made it impossible to assign exact offset error by handpicked tiepoints. Additionally the very bad fit of

the computed parameters for the Brazil images (detected successfully by the good-bad fit test) made it

impossible to apply the offset error estimation (39). This points out the importance of having multiple

reliability tests for computed registration parameters and transforms.

Example 3. We conclude this section with an example that shows the effects of model mismatch. Figure

10 presents two images taken from a helicopter undergoing pure translational motion above an urban

street. The motion induces parallax as seen in the foreshortening of the building. The projective geometry

transformation between images is not an RST transformation. To see how this impacted our procedure

we ran the program and computed the RST parameters.

Once we computed the RST transformation from the tiepoints, we then stabilized the second image

by back-transforming to the frame of reference of the first image. Figure 11 (left) shows the difference

between the first image and the stabilized second image. Notice the large error in the part of the image

corresponding to the side of the building. The parallax effects of the side of the building are mismodeled

by the RST transformation. In order to detect post-registration errors we select error estimation points

(Figure 11 right) that are well conditioned for translational matching. These points are not the same as

the tiepoints used in the registration because the registration model (RST) culls out those points that

don’t fit the model (i.e., the points on the side of the building showing parallax).

Figure 12 (left) is a plot of the post-registration error vectors(vx, vy) as calculated at the points in

Figure 11. Notice that the errors cluster into two groups. The smaller errors are due to inaccuracy in the

computed registration parameters. These errors are on the order of 0.6 pixels. (Note: 21 of the 55 points

are right at (0,0).) This is subpixel accuracy for the points not showing parallax. The other cluster has an

average offset error of 9.4 pixels; this group of 8 points are the ones on the side of the building and do

not fit the RST model. This is seen in Figure 12 (right) which shows the location and magnitude of the

offset errors: darker is larger error. All the dark points cluster on the building. This illustrates that we

shouldn’t lump all the error vectors together to form a covariance error matrix since this may be merging

two kinds of errors.

V. CONCLUSION

Condition numbers for point-matching have been derived for translation, rotation-scaling-translation

and affine window matching between images, under a restricted but reasonable problem type: ‘transform
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plus noise’ as described in Theorem 1. It is shown in Theorem 2 that ill-conditioning with respect

to translation implies ill-conditioning with respect to RST and affine transforms. This means that the

translational condition number may be used to remove from consideration ill-conditioned points in the

image for the purpose of point-matching. The translational condition number exhibits the desirable features

of rotational invariance, ease of computability, and single image definition. Moreover, for the group of

images that we tested, tiepoints selected on the basis of this condition number provide a reliable basis

for registration when coupled with post-registration tests for fit assessment and post-registration error

estimation. In particular the nature of the offset error estimation conforms closely with the original

assumption of translation plus noise and hence is quite accurate. A web site is available [57] at where

one may try our registration program on user supplied image pairs.

Acknowledgements:The authors would like to thank Leila Fonseca, INPE, Brazil for her many fruitful

discussions, and Dmitry Fedorov for his help in implementing the web registration demo.

APPENDIX

A. Proof of Theorem 1

Proof. We derive the condition number for translational matching; the condition numbers for RST and

affine objective functions can be found by the same procedure.

When the noise is nonzero, the best shift is given by(a + ∆a, b + ∆b). The condition number for the

restricted problem is

KTrans = lim
δ→0

max
‖η‖≤δ

‖(∆a,∆b)‖/‖η‖

In order to evaluateKTrans we need to find an expression for(∆a,∆b) in terms of the perturbation

η. Denoting the partial derivative off with respect tox with fx and setting the gradient with respect to
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(a, b) of the objective function to zero at the minimizer, we obtain

 0

0


 =


 fa(a + ∆a, b + ∆b)

fb(a + ∆a, b + ∆b)




=




Σ(g(x′ + a + ∆a, y′ + b + ∆b)− ĝ(x′, y′)−∆ĝ(x′, y′)) gx(x′ + a + ∆a, y′ + b + ∆b)

Σ (g(x′ + a + ∆a, y′ + b + ∆b)− ĝ(x′, y′)−∆ĝ(x′, y′)) gy(x′ + a + ∆a, y′ + b + ∆b)




=




Σ(g(x′ + a + ∆a, y′ + b + ∆b)− g(x′ + a, y′ + b)− η(x′, y′)) gx(x′ + a + ∆a, y′ + b + ∆b)

Σ (g(x′ + a + ∆a, y′ + b + ∆b)− g(x′ + a, y′ + b)− η(x′, y′)) gy(x′ + a + ∆a, y′ + b + ∆b)




where all the summations are defined forx′ and y′ varying over the window centered at(x, y) and

ĝ(x′, y′) = g(T (x′, y′)) + ∆ĝ(x′, y′) = g(x′ + a, y′ + b) + η̂(x′, y′). Expanding the previous expression

we obtain


 0

0


 =




Σg2
x(x′ + a, y′ + b)∆a + gx(x′ + a, y′ + b)gy(x′ + a, y′ + b)∆b− gx(x′ + a, y′ + b)η(x′, y′)

Σgx(x′ + a, y′ + b)gy(x′ + a, y′ + b)∆a + g2
y(x

′ + a, y′ + b)∆b− gy(x′ + a, y′ + b)η(x′, y′)




+ higher order terms

Thus 
 ∆a

∆b


 =

(
AT A

)−1
AT η̃ + higher order terms

where

A =




gx(x1 + a, y1 + b) gy(x1 + a, y1 + b)
...

gx(xn + a, yn + b) gy(xn + a, yn + b)


 η̃ =




η(x1, y1)
...

η(xn, yn)




where the superscripts denote ranging over the window centered at(x, y).
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The expression for the condition numberKTrans now follows from taking the limit asη → 0 in the

above and replacingg(x′ + a, y′ + b) by ĝ(x′, y′) to get

A =




ĝ1
x ĝ1

y

...

ĝn
x ĝn

y




which completes the proof of the theorem.

B. Proof of Theorem 2

Proof. The form ofA means that

AT A = Σ
(
vi

)T
vi

where thevi are determined byT as given in Theorem 1. Since we are working with the 2-norm we use

the fact that

‖ (
AT A

)−1
AT ‖2 = ‖ (

AT A
)−1

AT
((

AT A
)−1

AT
)T
‖

= ‖ (
AT A

)−1 ‖

=
1

λmin (AT A)

Now note that

vTrans = vRST Q1 = vRST




1 0

0 1

0 0

0 0




vRST = vAffine Q2 = vAffine




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 1 0




This gives

(
AT A

)
Trans

= Σ
(
vi
T rans

)T
vi
T rans = QT

1

[
Σ

(
vi
RST

)T
vi
RST

]
Q1 = QT

1

(
AT A

)
RST

Q1

Since the 2-norm ofQ1 is one, all of the eigenvalues of
(
AT A

)
Trans

satisfy the interlacing bound [30]

λmin

(
AT A

)
RST

≤ λ
(
AT A

)
Trans

≤ λmax

(
AT A

)
RST
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In particular we have

KTrans =
1

λmin (AT A)Trans

≤ 1
λmin (AT A)RST

= KRST (40)

We complete the proof by noting that

(
AT A

)
RST

= QT
2

(
AT A

)
Affine

Q2

Now let w be an eigenvector of unit norm for
(
AT A

)
RST

corresponding toλmin

(
AT A

)
RST

. Then

λmin

(
AT A

)
RST

= wT
(
AT A

)
RST

w

= wT QT
2

(
AT A

)
Affine

Q2w

≥ ‖Q2w‖2λmin

(
AT A

)
Affine

≥ λmin

(
AT A

)
Affine

since1 ≤ ‖Q2w‖2 ≤ 2. From this we have

KAffine =
1

λmin (AT A)Affine

≥ 1
λmin (AT A)RST

= KRST (41)

Therefore from (40) and (41) it follows thatKTrans ≤ KRST ≤ KAffine.

C. Sensitivity Operation Count

In order to evaluate the condition number with respect to point matching for translation we first need

to form the matrix

AT A =


 Σĝ2

x Σĝxĝy

Σĝxĝy Σĝ2
y




where the summation is over(x′, y′) in a window centered at(x, y). The norm of the inverse of this

matrix is the desired condition number.

The arithmetic operations (multiplication, addition, subtraction, or division) needed to compute the

condition number can be summarized as follows:

1) Form gx andgy (using differences) at a cost of 2 differences per pixel and then form the products

ĝ2
x, ĝxĝy, ĝ2

y . Each product costs one arithmetic operation per pixel. The total cost for this step is

5 operations per pixel.
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2) Now we need to form the block sums inAT A. Block sums are efficiently computed by first

calculating rows sums (with a moving window); the cost for each window row sum is two operations

since we can update the previous row sum by adding and subtracting elements:

i+n∑

i

aj = ai+n − ai−1 +
i+n−1∑

i−1

aj (42)

whereaj is the quantity being summed. Neglecting the start up costs we see that the cost per pixel

of a windowed row sum is 2 operations. After row summing, we column sum to get the block

sums. This costs an additional 2 operations per pixel. Thus each block sum can be computed at a

cost of 4 operations per pixel. Since we need 3 block sums the total cost for this step is 3x4=12

operations per pixel.

3) To finish the condition evaluation we use

K2
Trans,Schatten ≡ ‖ (

AT A + εI
)−1 ‖S

=
2ε + Σĝ2

x + Σĝ2
y

(Σĝ2
x + ε)

(
Σĝ2

y + ε
)− (Σĝxĝy)

2

This can be evaluated in 7 arithmetic operations per pixel.

The total count is 5+12+7=24 operations per pixel.

REFERENCES

[1] K. Atkinson, An Introduction to Numerical Analysis, 2nd Edition, John Wiley and Sons, New York, 1989.

[2] H. S. Baird,Model-Based Image Matching Using Location, MIT Press, Cambridge, Massachusetts, 1985.

[3] J.L. Barron, D.J. Fleet and S. Beauchemin, “Performance of Optical Flow Techniques,”International Journal of Computer

Vision, 12(1):43-77, 1994.

[4] S.S. Beauchemin and J.L. Barron, “The Computation of Optical Flow,”ACM Computing Surveys, 27(3):433-467, 1996.

[5] M. Ben-Ezra, S. Peleg and M. Werman,“Robust Real-Time Motion Analysis,” In Proc. DARPA IUW, 207-210, 1988.

[6] J. Bergen, P. Anandan, K. Hanna and R. Hingorani, “Hierarchical Model-Based Motion Estimation,”European Conf.

Comp. Vis., ,(1992), pp. 237–252.

[7] A. Björck and S. Hammarling, “A Schur Method for the Square Root of a Matrix,”Lin. Alg. Appl., 52/53 (1983), pp.

127–140.

[8] M. Brooks, W. Chojnacki, D. Gaeley and A. can den Hengel, “What Value Covariance Information in Estimating Vision

Parameters?,”Proc. IEEE ICCV, 302-308, 2001.

[9] L. G. Brown, “A survey of image registration techniques,”ACM Computing Surveys24(4), pp. 325–376, 1992.

[10] A. Cline, C. Moler, G. Stewart and J. Wilkinson, “An Estimate for the Condition Number of a Matrix,”SIAM J. Num.

Anal., 16 (1979), pp. 368–375.

January 7, 2004 Submitted to PAMI



27

[11] J. Demmel, “On Condition Numbers and the Distance to the Nearest Ill-Posed Problem,”Numer. Math., 51 (1987), pp.

251–289.

[12] J. Demmel, “The Probability that a Numerical Analysis Problem is Difficult,”Math. Comp., 50 (1988), pp. 449–480.

[13] J. Demmel, B. Diament and G. Malajovich, “On the Complexity of Computing Error Bounds,”Foundations of Computation

Math., 1 (2001), pp. 101–125.

[14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, SIAM CBMS-NSF Regional Conference Series in

Applied Mathematics, Sixth Prining, 1994.

[15] M. A. Fischler and R. C. Bolles, ”Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography,”Comm. Assoc. Comp. Mach.24(6), pp. 381-395, 1981.

[16] L. Fonseca, G. Hewer, C. Kenney, and B. Manjunath, “Registration and Fusion of Multispectral Images Using a New

Control Point Assessment Method Derived from Optical Flow Ideas,”Proc. SPIE, Vol. 3717, pp. 104–111, April 1999,

Orlando, FLA.

[17] L. Fonseca and C. Kenney, “Control Point Assessment for Image Registration,”Proc. XII Brazilian Symposium on

Computer Graphics and Image Processing, Campinas, Brazil, October 1999, pp. 125-132.

[18] G. H. Golub and C. F. Van Loan,Matrix Computations, John Hopkins Univ. Press, Baltimore, 2nd Edition, 1989.

[19] R. M. Haralick and L. G. Shapiro,Computer and Robot VisionVol. 2, Addison-Wesley, New York, 1993.

[20] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”Proc. Alvey Vision Conf., 147-151, 1988.

[21] R. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision, Cambridge University Press, 2000.

[22] G. Hewer and C. Kenney, “The Sensitivity of the Stable Lyapunov Equation,”SIAM J. Control and Optim., 26 (1988),

pp. 321–344.

[23] G. Hewer, C. Kenney and W. Kuo, “A Survey of Optical Flow Methods for Tracking Problems,”Proceedings SPIE

Conference, April 1994, Orlando, Florida, vol. 2242, pp. 561-572.

[24] G. Hewer, C. Kenney, W. Kuo and L. Peterson, “Curvature and Aggregate Velocity for Optical Flow,”Proceedings SPIE

Conference, July 1995, San Diego, California.

[25] G. Hewer, C. Kenney, B. Manjunath and A. Van Nevel, “Condition Theory for Image Processing,” ECE Techincal Report,

University of California, Santa Barbara, CA 93106, March 2002.

[26] E. C. Hildreth, “Computations Underlying the Measurement of Visual Motion,”Artificial Intelligence, vol. 23 (1984),

pp. 309–354.

[27] D. Hinrichsen and A. J. Pritchard, “Stability Radii of Linear Systems,”Syst. Contr. Lett., 7 (1986), pp. 1–10.

[28] B. K. P. Horn and B. Schunck, “Determining Optical Flow,”Artificial Intelligence, 17 (1981), pp. 185-203.

[29] B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.

[30] R. A. Horn and C. R. Johnson,Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.

[31] M. Irani, B. Rousso and S. Peleg, “Computing Occluding and Transparent Motion,”Intern. J. Comp. Vision, 12 (1994),

pp. 5–16.

[32] M. Irani and P. Anandan, “Robust Multi-Sensor Image Alignment,”Proc. IEEE ICCV, 959-966, 1998.

[33] Y. Kanazawa and K. Kanatani, “Do We Really Have to Consider Covariance Matrices for Image Features?,”Proc. IEEE

ICCV, 301-306, 2001.

[34] Joseph K. Kearney, William B. Thompson and Daniel L. Boley, “Optical Flow Estimation: An Error Analysis of Gradient-

Based Methods with Local Optimazation,”IEEE Trans Pat. Anal. Mach. Intell., Vol PAMI-9, No. 2, March, (1990), pp.

229–244.

January 7, 2004 Submitted to PAMI



28

[35] C. Kenney and G. Hewer, “The Sensitivity of the Algebraic and Differential Riccati Equations,”SIAM J. Control and

Optim., 28 (1990), pp. 50–69.

[36] C. S. Kenney and A.J. Laub, “Condition Estimates for Matrix Functions,”SIAM J. Matrix Anal. Appl., 10 (1989), pp.

191–209.

[37] C. S. Kenney and A.J. Laub, “Small-Sample Statistical Condition Estimates for General Matrix Functions,”SIAM J. Sci.

Comp., 15 (1994), pp. 36–61.

[38] H. Li, B.S. Manjunath and S.K. Mitra, “ A Contour Based Approach to Multisensor Image Registration,”IEEE IP, 320-334,

1995.

[39] B. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,”Proc. Image

Understanding Workshop, (1981), pp. 121–130.

[40] D. G. Luenberger,Linear and Nonlinear Programming, 2nd Edition, Addison-Wesley, Menlo Park, California, 1984.

[41] J. Tanner and C. Mead, “Optical motion sensor,” inAnalog VLSI and Neural Systems(Carver Mead, ed.), chapter 14,

pp. 229–255, Reading, MA: Addison-Wesley Publishing Company, 1989.

[42] C. B. Moler and C. F. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix,”SIAM Review,

20 (1978), pp. 801–836.

[43] J. R. Rice, “A Theory of Condition,”SIAM J. Num. Anal., 3 (1966), pp. 287–310.

[44] C. Schmidt, R. Mohr and C. Baukhage, “Evaluation of Interest Point Detectors,”IJCV, 27: 151-172, 2000.

[45] J. Shi and C. Tomasi, “Good Features to Track,” CVPR, 593-600, 1994.

[46] T. Tommasini and A. Fusiello and E. Trucco, and V. Roberto, “Making good features track better,” CVPR, 178-183, 1998.

[47] G. W. Stewart, “Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems,”SIAM

Review, 15 (1973), pp. 727–764.

[48] V. Sundareswaran and S. Mallat, “Multiscale optical flow computation with wavelets,” Preprint. Courant Institute of

Mathematical Sciences, New York University, 1992.

[49] E. Trucco and A. Verri,Introductory Techniques for 3D Computer Vision, Prentice-Hall, Upper Saddle River, NJ, 1998.

[50] B. C. Vemuri, S. Huang, S. Sahni, C. M. Leonard, C. Mohr, R. Gilmore and J. Fitzsimmons, “An efficient motion estimator

with application to medical image registration,” Medical Image Analysis, Oxford University Press, Vol.2, No. 1, pp. 79-98,

1998

[51] R. C. Ward, “Numerical Computation of the Matrix Exponential with Accuracy Estimate,”SIAM J. Numer. Anal., 14 (1977),

pp. 600–614.

[52] R. Wildes, D. Horvonen, S. Hsu, R. Kumar, W. Lehman, B. Matei and W. Zhao, “Video Georegistration: Algorithm and

Quantitative Evaluation,”Proc. ICCV, 343-350, 2001.

[53] C. Van Loan, “How Near is a Stable Matrix to an Unstable Matrix?,”Contemporay Math., 47 (1985), pp. 465–477.

[54] J. H. Wilkinson, “Error Analysis of Direct Methods of Matrix Inversion,”J. ACM, 10 (1961), pp. 281–330.

[55] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1965.

[56] Q. Zheng and R. Chellappa, “A Computational Vision Approach to Image Registration,”IEEE IP, 2(3): 311-326, 1993.

[57] http://vision.ece.ucsb.edu/demos.html. Follow the link to the Image Registration demo.

January 7, 2004 Submitted to PAMI



29

TABLE I

PERCENT OF CORRECT POINT-MATCHING FOR BOTH FEATURE MATCHING AND GEOMETRIC MATCHING.

Images Percent Correct Point Match Percent Correct Point Match Remarks

Pass One (Features) Pass Two (Geometry)

Coastline 1-2 69% 100% Large x-shift

Coastline 2-3 66% 100% Large x-shift

Coastline 3-4 59% 100% Large x-shift

Agricultural 1-2 88% 100% Medium x-shift

Agricultural 2-3 91% 100% Medium x-shift

Agricultural 3-4 75% 100% Medium x-shift

Urban 1-2 97% 100% 15 degree rotation

Urban 2-3 97% 100% 15 degree rotation

Urban 3-4 100% 100% 15 degree rotation

IR Urban 1-2 100% 100% Very noisy

IR Urban 2-3 100% 100% Very noisy

IR Urban 3-4 97% 100% Very noisy

Amazonia 1-2 16% 100% Large temporal variation

Brazil 1-2 13% 13% Large temporal variation

Fig. 1. Image Selected to Illustrate Point-Matching Condition Numbers for Translation, RST and Affine Transforms.
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TABLE II

COMPARING COMPUTED FIT ERROR WITH ESTIMATED GOOD AND BAD FIT VALUES(UNCERTAINTIES IN THE ESTIMATED

VALUES CORRESPOND TO ONE STANDARD DEVIATION). ALL IMAGES HAVE BEEN NORMALIZED TO HAVE ZERO MEAN AND

UNIT VARIANCE .

Images Computed Match Fit Error Good Match Fit Error Bad Match Fit Error

Coastline 1-2 0.51 0.24± 0.04 1.10± 0.09

Coastline 2-3 0.41 0.26± 0.07 1.04± 0.16

Coastline 3-4 0.37 0.23± 0.05 1.00± 0.05

Agricultural 1-2 0.23 0.25± 0.05 0.96± 0.15

Agricultural 2-3 0.25 0.28± 0.05 0.96± 0.13

Agricultural 3-4 0.37 0.29± 0.07 0.95± 0.13

Urban 1-2 0.04 0.10± 0.03 0.93± 0.14

Urban 2-3 0.03 0.09± 0.03 0.93± 0.15

Urban 3-4 0.03 0.09± 0.03 0.94± 0.16

IR urban 1-2 0.14 0.39± 0.07 1.05± 0.07

IR urban 2-3 0.13 0.41± 0.09 1.00± 0.10

IR urban 3-4 0.20 0.39± 0.09 1.05± 0.04

Amazonia 1-2 0.51 0.34± 0.05 0.97± 0.08

Brazil 1-2 0.96 0.35± 0.07 1.04± 0.04

Coastline images with no overlap 1.06 0.26± 0.05 1.10± 0.03

Translation Condition
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Fig. 2. Condition Numbers for Translation, RST and Affine Transformation for the LA Street Scene: Dark is Better Conditioned.
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TABLE III

BOOTSTRAP PARAMETER UNCERTAINTY ESTIMATES.

Images Scale Factor Rotation Angle X Translation Y Translation

Coastline Computed 0.99± 0.002 −1.09± 0.20 −193.6± 1.7 −2.1± 0.8

Exact 0.99 −1.04 −193.9 −2.0

Agricultural Computed 1.00± 0.001 2.99± 0.09 19.7± 0.2 0.2± 0.2

Exact 1.00 3.03 19.7 0.3

Urban Computed 1.00± 0.0002 −15.00± 0.02 51.6± 0.15 −89.6± 0.07

Exact 1.00 −15.00 51.2 −89.5

Amazonia Computed 1.00± 0.003 0.03± 0.10 36.6± 0.4 −183.3± 0.6

Exact 1.00 −0.07 37.5 −183.7

Brazil Computed 0.40± 0.12 −95± 31 317± 49 116± 60

Exact 1.00 0 0 0

Images Estimation Method Average Offset Error Maximum Offset Error

Coastline Estimated via (39) 0.9 5.4

Exact 0.9 5.4

Agricultural Estimated via (39) 0.5 1.4

Exact 0.5 1.4

Urban Estimated via (39) 0.0 0.0

Exact 0.0 0.0

Amazonia Estimated via (39) 1.2 7.2

Exact – –

Brazil Estimated via (39) – –

Exact – –

TABLE IV

AVERAGE AND MAXIMUM POST-REGISTRATION ERROR FOR THE BACK-TRANSFORMED IMAGES.
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Fig. 3. Korean agricultural images (a and b), original tiepoints (c and d)
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Fig. 4. Korean agricultural images: tiepoints have a 88% match rate after feature matching pass (a and b), tiepoints have 100%

match rate after both feature and geometric matching (c and d).
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Fig. 5. Coastline images, tiepoints have a 100% match rate after both feature matching and geometric matching.

Fig. 6. Urban images, tiepoints have a 100% match rate after both feature matching and geometric matching.

Fig. 7. Noisy IR urban images, tiepoints have a 100% match rate after both feature matching and geometric matching.
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Fig. 8. Amazon forest images taken 2 years apart, tiepoints have a 100% match rate after both feature matching and geometric

matching.

Fig. 9. Brazilian agricultural images taken 4 years apart, tiepoints have a 13% match rate after both feature matching and

geometric matching.
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Fig. 10. Pair of images Showing Projective Geometry Effects
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Fig. 11. Left: Difference Between Original and Stabilized Image; Right Points Selected for Post-Registration Error Analysis
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Fig. 12. Left: Post-Registration Errors Fall Into Two Clusters; Right: Points Correspond to Projective Geometry Errors Due to

Using RST Registration Model.
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