
VIDEO REGION SEGMENTATION BY SPATIO-TEMPORAL WATERSHEDS

M. A. El Saban and B. S. Manjunath

Electrical and Computer Engineering Department, University of California, Santa Barbara
{msaban, manj}@ece.ucsb.edu

Abstract

We propose a video region segmentation scheme combin-
ing spatio-temporal edges and watershed techniques. We
consider the video sequence as a 3-D volume and compute
color edges within this volume. These color edges form a
vector field that is in turn used to obtain an edge function.
This edge function is used as a topological surface for a
watershed grouping stage. Considering the video as a 3-D
volume results in a batch segmentation instead of the tradi-
tional frame-by-frame segmentation. The main advantages
of this approach are: 1) exploiting the time continuity in
the frame sequence , 2) avoiding problems in tracking re-
gions from frame to frame, 3) using a fast watershed-based
method in forming the final video regions. Preliminary ex-
perimental results are very promising.

1. INTRODUCTION

The task of segmenting a video sequence into its constitut-
ing objects/regions, and computing their motion profiles is
an important first step in many computer vision systems. We
propose a new technique for video segmentation based on
treating the video sequence as a spatio-temporal (ST) vol-
ume (image + time dimensions). ST edge vectors are com-
puted from the image features, namely RGB color. In this
paper, we propose a novel method to achieve ST segmenta-
tion, by using ST watersheds. The ST edge vectors are used
to compute a gradient function forming the topological sur-
face of the watershed method [1]. Interesting features of the
proposed segmentation method are:

• It avoids the use of heuristics boundary linking meth-
ods. Besides, it eliminates the need of frame-to-frame
region tracking.

• Watershed techniques are implemented at a low com-
putational cost.
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Several researchers have addressed the spatio-temporal
segmentation problem. These approaches can be broadly
classified into two main categories: a) techniques that com-
pute the segmentation through frame-by-frame analysis, and
then link regions between frames, and b) techniques that
consider the sequence of frames as being an ST volume (xyt
volume), and solve a 3D segmentation problem. Exam-
ple of segmentation using frame-by-frame analysis include
Moscheni et al [2], where they merge regions from two ad-
jacent frames using motion and spatial similarity, starting
with over segmented frames. Patras et al. [3] perform video
segmentation by first computing frame-by-frame watershed
segmentation. This provides a number of initial segments
which are subsequently labelled, according to motion infor-
mation and previous frame labelling.

Tao et al. [4] use the concept of dynamic motion lay-
ers, which produces several independent motion layers in
the sequence. Layer parameters and layer membership are
estimated simultaneously using a generalized EM algorithm
and incorporate prior knowledge from the previous frame,
hence the name dynamic layers. Khan and Shah [5] use
multiple cues, such as motion and color, in segmenting the
video frames. They find class labels for video pixels using
a maximum likelihood (ML) approach, and adjust a set of
weights for the ML function using confidence measure on
the extracted optical flow.

Examples of the second approach, treating the video as a
spatio-temporal volume, include extensions of the normal-
ized cut framework to video sequences by Shi and Malik
[6] and Fowlkes et al. [7]. In these works, the problem
is formulated as a graph-partitioning problem with voxels
as nodes and weights reflecting similarities between voxels.
Kompatsirias and Strintzis [8] modified the k-means cluster-
ing technique to impose spatio-temporal connectivity, and
performed spatio-temporal segmentation on the whole vol-
ume again using intensity and motion cues. Korimilli and
Sarkar [9] computed motion segmentation by first detecting
3D edges in the xyt volume, then fitting spatio-temporal en-
velope planes using Hough transform, and finally grouping
similar planes using Gestalt principles. In [10], Hung et al.
achieve video segmentation by merging 3D watersheds in
the spatio-temporal domain using a Markov random field



(MRF) framework. Although the merging is done directly
in the spatio-temporal domain, the 3-D watersheds are com-
puted through frame-by-frame analysis.

Section 2 presents the details of the ST edge vector com-
putation. Section 3 describes the segmentation method us-
ing watershed-based algorithms. Section 4 gives experi-
mental results of the proposed technique. Finally, conclu-
sions and future work are presented in section 5.

2. SPATIO-TEMPORAL EDGE VECTORS
COMPUTATION

Consider a voxel s = (x, y, t) in the ST volume. We are
seeking to find the edge energy and direction at each voxel
in this volume. In computing the edge information, we use
ST color cue. A set of 3-D kernels is used to filter the ST
volume to generate the edges. Consider a Gaussian deriva-
tive (GD) kernel with scale parameter σ = (σs, σt):
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where σs and σt are the GD spatial and temporal kernel
scales respectively. These user controlled parameters deter-
mine the edge detail level. If the ST volume is mostly ho-
mogeneous, then the scales should be high and vice-versa.
The filtering is performed by rotating this kernel by different
ST angles, namely θ and β. This gives a family of rotated
kernels:

GDσ,θ,β(x, y, t) = GDσ(x′, y′, t′) (2)

where (x′, y, t′) is the rotated coordinated system by (θ,β)
ST angle. In computing the edge direction, we use the dif-
ference of offset Gaussian (DOOG) along the x-direction,
defined as follows:

DOOGσ(x, y, t) = Gσ(x, y, t) −Gσ(x+ d, y, t) (3)

where d is the offset between the center of the two Gaus-
sian kernels, taken proportional to σ. The DOOG kernel is
rotated at different θ, and β angles for different edge orien-
tations.

2.1. Color edges

The intensity edge energy (E(s,θ,β)) at a specific orientation
(θ, β) is computed by convolving the voxel intensities with
the GD kernel:

E(s, θ, β) = |I(x, y, t) ∗GDσ,θ,β(x, y, t)| (4)

DefiningError(s, θ, β) as the prediction error between two
pixels (x, y, t) and (x′, y′, t′) where (x′, y′, t′) is at a dis-
tance d from (x, y, t) in the direction defined by (θ,β). This
error can be computed using the DOOG kernel:

Error(s, θ, β) = |I(x, y, t) ∗DOOGσ,θ,β(x, y, t)| (5)

From which, we compute the probability of finding an edge
at orientation (θ, β) as:

P (s, θ, β) =
Error(s, θ, β)

Error(s, θ, β) + Error(s, θπ, βπ)
(6)

where (θπ, βπ) is a 3-D orientation in the opposite direc-
tion of the vector (θ, β) . All the above is applicable for
color components also, i.e. the intensity I in the previous
equations could be replaced by the R,G,B values.

2.2. Aggregate ST Edge Vectors

We proceed to combineR,G,B color edge information into
the edge computation by assigning relative weights:

E(s, θ, β) =
∑

f

Ef (s, θ, β).w(f) (7)

where f = {R,G,B} is the set of features used, with the
relative weights wf .

The ST Edge vector is defined as being the vector point-
ing at the gradient direction, with its magnitude denoting
the strength of the gradient. The direction of the local ST
edge vector is computed as:

A(s, θ, β) =
∑

(θ′,β′)εN(θ,β)

P (s, θ′, β′)

(θs, βs)opt = arg max
θ′,β′

A(s, θ′, β′) (8)

Where N(θ, β) is the set of surrounding angles used in the
averaging process. Hence the edge vector will be as follows:
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3. COMBINING GEODESIC MORPHOLOGICAL
TRANSFORMATIONS WITH THE ST EDGE

VECTORS

After computing the ST edge vectors, we proceed to form
volume regions from the gradient magnitude g in the vol-
ume V . Morphological watershed-based techniques have
been used for image segmentation with promising results.
There exist fast algorithms to implement the watershed sim-
ulation. For these reasons, we use the watershed method,
in grouping the ST edge vectors. The watershed transform
(WTSM (g)) of a function g associates with every mini-
mum of g a catchment basin (influence zone) and create wa-
tersheds between neighboring basins. However, one of the
main drawbacks of watershed techniques is over-segmenta-



tion. A successful way to overcome over-segmentation is to
using flooding from selected seeds or markers.

We begin by placing a set of initial markers on the first
frame of the ST-volume. We start the watershed simulation
by means of geodesic skeletons of influence (SKIZ) [1].
Geodesic transformations are very efficient in implement-
ing morphological operations. Starting with the notion of
geodesic distance, one may define geodesic dilations, ero-
sions, and most morphological operations. Let X ⊂ Z2 be
a set, r and p two points of X . We define the geodesic dis-
tance dX(r, p) between r and p as the length of the shortest
path (if any) contained in X and linking r and p. Let Y be
any set included in X , composed of n connected compo-
nents Yi. The geodesic zone of influence ZX(Yi) of Yi is
the set of points of X at a finite geodesic distance from Yi

and closer to Yi than to any other Yj .

ZX(Yi) =
{
r ∈ X :

dX(r, p) finite
∀j 
= i, dX(r, Yi) < dX(r, Yj)

}

The boundaries between the various zones of influence give
the geodesic skeleton of influence of Y inX , SKIZ(Y ;X).
Based on the geodesic SKIZ definition above, we imple-
ment an ST watershed simulation by processing successively
the gray levels of the gradient volume. Define Bi(g) as:

Bi(g) = {r ∈ V : g(r) ≤ i}

We then compute the watershed transform WTSM (g) of
a function g controlled by a marker set M by iterating as
follows:

Wi+1(g) = SKIZ(Wi(g);Bi+1(g) ∪M) (10)

with the initial condition:

W−1(g) = M

At the end of the iterations, when the highest gray level n is
processed, we have the final watersheds:

WTSM (g) = Wn(g)

4. EXPERIMENTAL RESULTS

We present preliminary experimental results of the proposed
watershed-based segmentation method, and their results are
also made available on the web [11]. The segmentation pro-
cedure starts by computing the ST edge vectors as previ-
ously discussed. The flooding starts in the ST volume from
initial marker locations manually placed on the first frame.
The flooding simulation is implemented via an order queue,
leading to the final watersheds. In the experimental results,
we use 64 ST rotation angles of the derivative of Gaussian
(GD) kernels for an 124x92x20 ST volume.

In Fig. 1-9, we present the results of the proposed seg-
mentation method, and compare it subjectively with the nor-
malized cut (NCut) for video sequences. We use the same
number of segmentation regions for both techniques. From
these results, we clearly see that the results of NCut tend to
miss some salient spatio-temporal regions, like the player’s
head, and short in the tennis sequence, and most of the left
part of the face in the lab sequence. Our explanation for
that effect is that in the NCut framework, there is no special
care taken about ST edges, thus two neighboring regions
may be grouped together if similar in color. However, in
our proposed method, we initially compute ST edges, and
then perform grouping so background-foreground distinc-
tion is better. It is worth noting that we only used color and
location cues for the implementation of the NCut algorithm,
and discarded the use of any frame-by-frame motion cues.

On the other hand, the initial marker locations affect the
subsequent grouping in the whole ST volume in our method.
Ideally, we should place small markers, one per region. As
an example, in Fig. 4, two markers markers were placed,
one on the background, and one on the face. If two mark-
ers are placed on the background, the background will be
split into two regions. A similar problem also exists for the
NCut method, since the implementation requires to sample
randomly some voxels from the ST volume. The computa-
tions are carried on these samples to reduce complexity and
the sample locations affect the final segmentation result.

5. DISCUSSIONS

In this paper we have presented a new technique for video
sequence segmentation based on treating the video sequence
as a volume. The method uses a spatio-temporal edge vec-
tor computed using video attributes to form the topological
surface of a watershed grouping stage. Experimental re-
sults have shown that the proposed method is promising in
extracting useful regions without the need of region frame-
to-frame tracking. The work presented is still in its prelim-
inary stages, and future work is needed for reducing: 1) the
computational cost of the filtering part required for gradient
calculations, 2) the sensitivity of results to initial marker lo-
cations.
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(a) (b) (c)

Fig. 1. (a) -(c) Example frames from the foreman sequence.

(a) (b) (c)

Fig. 2. (a) -(c) Corresponding segmentation results for the
foreman sequence.

(a) (b) (c)

Fig. 3. (a) -(c) Corresponding NCut segmentation results
for the foreman sequence.

(a) (b) (c)

Fig. 4. (a) -(c) Example frames taken from the Lab se-
quence.

(a) (b) (c)

Fig. 5. (a) -(c) Corresponding segmentation results for the
Lab sequence.

(a) (b) (c)

Fig. 6. (a) -(c) Corresponding NCut segmentation results
for the Lab sequence.

(a) (b) (c)

Fig. 7. (a) -(c) Example frames of the Table Tennis se-
quence.

(a) (b) (c)

Fig. 8. (a) -(c) Corresponding segmentation results for the
Table Tennis sequence.

(a) (b) (c)

Fig. 9. (a) -(c) Corresponding NCut segmentation results
for the Table Tennis sequence.


