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ABSTRACT

In this paper we consider a hypothesis testing approach
for detection of hiding in the least significant bit (LSB).
This steganalysis problem is a composite hypothesis test-
ing problem. We state a regularity condition on the image
histogram, which reduces this problem to a simple hypoth-
esis testing problem. We then develop a number of simple
practical tests based on the estimation of the optimal log
likelihood ratio statistic. We show that our tests signif-
icantly outperform Stegdetect, a popular hypothesis test
available in the literature. Our approach also leads to good
estimates of the hiding rate.

1. INTRODUCTION

Given the proliferation of steganography tools (see, for ex-
ample, [1, 2, 3, 4]), there is a growing interest in steganal-
ysis tools, which detect hidden data in multimedia. So
far, steganalysis research has lagged behind steganography.
While there exist promising approaches such as Stegdetect
([5]), Farid’s supervised learning framework ([6]), and oth-
ers ([7, 8, 9, 10]), there is no systematic approach for design-
ing steganalysis tools or analyzing the optimality of such
methods. Also, every steganalysis tool has some parame-
ters, which have to be chosen in practice. Ideally, these
parameters should be chosen based on the data to attain
desired performance. Such data-driven tests are not known
in the literature. With these goals in mind, in this paper we
start a systematic study of the hypothesis testing approach
for steganalysis and develop practical schemes based on the
optimal hypothesis tests. We focus our attention on LSB
hiding, which is often used in practice (see, for example,
[4]). However, in principle our ideas are applicable to ste-
ganalysis of any steganography scheme with a statistical
description.

The theory of hypothesis testing (see, for example, [11,
12]) provides a natural framework for steganalysis. For ex-
ample, hypothesis tests for detecting LSB hiding have been
developed in [10, 5]. In [10], LSB hiding is (inaccurately)
modeled as additive noise for a Gaussian host. In [5], for
actual LSB hiding in a finite precision host, a test based on
the chi-square statistic called Stegdetect is proposed. To
the best of our knowledge, Stegdetect appears to be the
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most promising hypothesis test for steganalysis. Unfortu-
nately, it suffers from the drawback that there is no simple
way to choose the test threshold to attain a desired tar-
get performance. We show that this problem can not only
be alleviated, but we can also significantly improve over
Stegdetect by developing simple tests based on optimal hy-
pothesis tests. Furthermore, we also obtain good estimates
of the unknown hiding rate.

In Section 2, we describe the basic statistical model for
LSB hiding and the host. In Section 3, we formulate the hy-
pothesis testing problem for steganalysis. Since in practice
we do not know the hiding rate, this is a composite hypoth-
esis testing problem. We state a mild regularity condition
on the host probability mass function (PMF), which ensures
that the optimal composite hypothesis testing problem re-
duces to an optimal simple hypothesis testing problem. In
Section 4, we develop new steganalysis methods based on
the optimal simple hypothesis tests and exhibit their supe-
riority over Stegdetect. We also develop estimates of the
true hiding rate based on these tests. In Section 5, we state
our conclusions.

2. STATISTICAL MODEL FOR LSB HIDING

In this section, we provide a probabilistic description of the
host and the LSB hiding mechanism, which is central to
the study of statistical steganalysis tools. As a first step,
we consider the case of independent and identically dis-
tributed (i.i.d.) data samples. This model is commonly
used in steganography ([13], [14]). Since the host samples
are assumed to be i.i.d., without loss of generality we as-
sume the data to be one dimensional. Suppose the i.i.d.
host is {hk}N

k=1, where the intensity values hk are repre-
sented by 8 bits, that is, hk ∈ {0, 1, ..., 255}. We use the
following model for LSB data hiding with rate R bits per
host sample. The hidden data {dk}N

k=1 is i.i.d. and,

P (dk = 0) =
R

2
, P (dk = 1) =

R

2
,

P (dk = NULL) = (1−R), 0 < R ≤ 1.

The hider does not hide in host sample hk if dk = NULL,
otherwise the hider replaces the LSB of hk with dk. With
this model for rate R LSB hiding, if the probability mass
function (PMF) of hk is p(n), n = 0, 1, ..., 255, then the



PMF of the data after LSB hiding at rate R is given by,

pR(2l) =
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p(2l + 1),

pR(2l + 1) =
R
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p(2l) +
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2

�
p(2l + 1).

where l = 0, 1, ..., 127. For the sake of convenience, we de-
note the PMF by the 256-dimensional vectors p, pR, and
we write pR = QRp, where QR is a 256× 256 matrix corre-
sponding to the above linear transformation.

The above statistical model can be easily extended to
take higher order dependence into consideration. Consider,
for example, the joint PMF of neighboring pixels. If we de-
note this by the 256 × 256 matrix P , then upon i.i.d. LSB
hiding with rate R as described above, the joint PMF is
PR = QRPQR. This idea can be extended to find trans-
formations for any arbitrary order of dependence. In this
paper, however, we only consider the case of i.i.d. observa-
tions.

3. OPTIMAL COMPOSITE HYPOTHESIS
TESTING FOR STEGANALYSIS

In this section, we assume that the host PMF is known to
the detector; the lessons learnt are used in the next sec-
tion to design practical steganalysis schemes which do not
assume knowledge of the host PMF.

The theory of hypothesis testing (see, for example, [11,
12]), provides a natural framework for steganalysis. In this
approach, the observed data (say an image) is viewed as a
realization of a random process. A random process is com-
pletely characterized by its probability law and therefore
the two hypotheses (presence or absence of hidden data)
can be tested based on the probability law of the observed
data. An advantage of this approach is that it enables us
to study the limits of steganalysis. In this section, for the
i.i.d. host and i.i.d. LSB hiding described in Section 2, we
study the composite hypothesis testing problem associated
with steganalysis.

Suppose we wish to decide between two possibilities:
data is hidden at some rate R, where R0 ≤ R ≤ R1, or no
data is hidden (R = 0). The parameters 0 < R0 ≤ R1 ≤ 1
are specified by the user. We note that R0 must be strictly
positive or else the two hypotheses cannot be distinguished.
We use HR to represent the hypothesis that data is hidden
at rate R. The steganalysis problem in this notation is to
distinguish between H0 and K(R0, R1) := {HR : R0 ≤ R ≤
R1}. The hypothesis that data is hidden is thus compos-
ite while the hypothesis that nothing is hidden is simple.
Suppose the observed data is {xj}N

j=1, where xj are i.i.d.
and take values in some alphabet A. For grey-scale images,
A = {0, 1, ..., 255}. Mathematically, a detector δ is char-
acterized by the acceptance region A ∈ AN of hypothesis
H0:

δ(x1, ..., xN ) = H0, if (x1, ..., xN ) ∈ A,

= K(R0, R1), otherwise.

In the absence of an apriori distribution on R when data
is hidden, we use the Neyman-Pearson formulation of the

optimal detection problem: for α > 0 given, minimize

P (Miss) = sup
R0≤R≤R1

P (δ(x1, ..., xN ) = H0|HR)

over detectors δ which satisfy

P (False alarm) = P (δ(x1, ..., xN ) = K(R0, R1)|H0) ≤ α.

Suppose that the host PMF satisfies the following ‘smooth-
ness’ constraint.

U(p) :=

127X

k=0

�
(p2k + p2k+1)

�
rk +

1

rk
− 2

��
< 1, (1)

where rk := p2k+1/p2k. In our related paper [15], we prove
that under this regularity condition, the optimal composite
hypothesis is solved by the simple hypothesis testing prob-
lem: test H0 versus HR0 . The optimal test for this problem
is well-known - it is the log likelihood ratio test (LLRT). Let
q denote the empirical PMF (normalized histogram) of the
observed data and D(p‖q) is the Kullback-Leibler diver-
gence between the PMFs p and q defined as,

D(p‖q) =

255X

k=0

pk log

�
pk

qk

�
.

Then the LLRT test declares data to be hidden if

D(q‖QR0p)−D(q‖p) ≤ T (α), (2)

and otherwise declares no data to be hidden. Here T (α) is a
real-valued threshold chosen to obtain P (False alarm) = α.

To understand the ‘smoothness’ condition (1), consider
the function f(x) = x + 1/x− 2. This function has a mini-
mum value zero at x = 1 and it monotonically increases as
x increases or decreases away from x = 1. The condition
(1) therefore means that on an average, the ratio p2k+1/p2k

is not too large or too small. This assumption would be
satisfied for images whose histogram varies smoothly. We
have verified that it is true for a digital orthophoto quarter
quadrangle (DOQQ) image database with 4000 images.

4. TESTS BASED ON LLRT

Given the discussion in the previous section, we now restrict
our attention to the simple hypothesis testing problem: test
H0 versus HR, R > 0. We propose tests based on the esti-
mation of the LLRT statistic and exhibit their superiority
over Stegdetect. We also develop estimates of the hiding
rate R.

4.1. Estimating the LLRT Statistic

A problem with the optimal LLRT test is that we do not
know the host PMF in practice. However, there are two
factors that help us to develop good practical tests based
on the optimal LLRT.

1. The hiding rate in practice is very low, and there-
fore, we can estimate the host PMF well; the pertur-
bations introduced by LSB hiding are much smaller
compared to the host PMF. We show below that a
number of simple estimates of the host PMF based on
the assumption that the host PMF is ‘smooth’ work
well.



2. For the optimal LLRT, the threshold that minimizes

aP (Miss) + (1− a)P (False alarm), a ∈ [0, 1]

does not depend on the host. In particular, for a =
0.5, the optimal threshold T = 0. In contrast, for
Stegdetect the choice of the threshold depends on a
and the host PMF, and there is no known way of
making this choice.

With the above motivation, we propose to form an esti-
mate p̂ of the host PMF p and then use the following es-
timated version of the statistic in (2) as an approximate
LLRT statistic:

S(q) = D(q‖QRp̂)−D(q‖p̂).

We consider three possible estimates for p, all of which give
good results.

1. For natural images the PMF is usually low pass. On
the other hand, random LSB hiding introduces high
frequency components in the histogram. Hence one
simple estimate p̂ is to pass the empirical PMF q
though a low pass 2-tap FIR filter with taps (0.5, 0.5).
We note that normalization will be required after the
filtering.

2. Another regularity constraint that we can impose on
the host PMF is that local slope is preserved , that
is,

pk+3 − pk = 3(pk+2 − pk+1), k = 0, 4, 8, ..., 252.

This regularity constraint can be written as Ap = 0
for a suitable 64×256 matrix A. Under this regularity
constraint, a natural estimate of p is to project q on to
the null space of A. We again need normalization and
removal of negative components after this filtering.

3. We also propose a non-linear approach that adapts to
the underlying host PMF. We note that LSB hiding
only affects the 8th bit plane. Therefore, we impose
the regularity constraint that the host PMF is such
that we can obtain the host PMF by spline interpola-
tion of the first seven bit planes. The corresponding
estimate p̂ is obtained by subsampling q, then inter-
polating using splines, and then normalizing.

We refer to all these tests as the approximate LLRT.

4.2. Simulation Results

In this section we report and discuss a number of simulation
results for four thousand images from a DOQQ image set.

In Figure 1 we compare the approximate LLRT test
based on the half-half filter for estimating p with Stegde-
tect. For each point on the curve, the threshold has been
fixed over the entire database. At this rate, and other rates
we test, the LLRT outperforms Stegdetect. For a fixed
host PMF, both these tests perform closely. However, for
the database of images we have used, the host PMF varies
substantially from image to image. Thus these simulations
suggest that Stegdetect is more sensitive to the choice of the
threshold than our approximate LLRT test. This is not sur-
prising since we know that to attain a target performance,
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Fig. 1. Approximate LLRT with half-half filter estimate
versus Stegdetect: for any threshold choice, our approxi-
mate LLRT is superior.

the choice of the threshold in LLRT does not depend on
the host PMF. For example, if we choose T = 0 for the ap-
proximate LLRT in the case when the hiding rate is 0.05,
then we found the operating point to be P (Miss) = 0.4043
and P (False Alarm) = 0.3219. From Figure 1 we can ver-
ify that the tangent to the operating curve at this point is
of slope approximately 1 as predicted by the theory. The
approximate LLRT is therefore closer to the goal of finding
a data driven test.

Figure 2 shows that the story remains unchanged if we
hide in the LSB of the JPEG coefficients of images (com-
pressed with quality factor 75).

In principle, instead of the simple hypothesis tests as
above, we could use the following generalized LLRT (GLLRT)
([12]) type test:

max
Rh∈(0,1]

log
p(y|H0)

p(y|HRh)
7 T. (3)

This GLLRT performs very close to the (simple) approxi-
mate LLRT tests we have developed (which use R0 instead
of Rh). This is not surprising given our result in [15], which
states that the optimal composite hypothesis testing prob-
lem considered in Section 3 is solved by the simple hypoth-
esis testing problem under the mild constraint (1).

Additionally, we can use the argument Rh that maxi-
mizes (3) as an estimate of the actual embedding rate. We
find this to work reasonably well in practice, see Figure 3.

Finally, we compare the approximate LLRT scheme based
on different estimates of p. The spline estimates of p and
the half-half low pass filter estimates perform nearly iden-
tically. We have observed that the local slope preserving
filter is slightly worse off. This suggests that there might
be little to gain from choosing a different host estimate.
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Fig. 2. Hiding in the LSBs of JPEG coefficients: again
LRT based method is superior to Stegdetect.

5. CONCLUSION

By analyzing the optimal hypothesis test for steganalysis
and making justified assumptions about the PMFs of typi-
cal real images, we have formulated tools for detecting LSB
steganography. Our method performs better than previous
hypothesis testing approaches in two ways.

1. They lead to smaller probability of miss for the same
probability of false alarm.

2. The choice of the threshold is less sensitive to varia-
tions in the host PMF. Thus for typical hiding rates
less than 0.1, the choice of threshold T = 0 leads to
good performance.

Our approach is not limited to LSB hiding alone: these
ideas are suitable for any hiding scheme with a good statis-
tical description.
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