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Abstract 

We propose a canonical model for object classes in 
aerial images. This model is motivated by the observation 
that geographic regions of interest are characterized by 
collections of texture motifs corresponding to the 
geographic processes that generate them. We show that 
this model is effective in learning the common texture 
themes, or motifs, of the object classes. 

 
 

1. Introduction 

Researchers have shown significant interest in using 
texture descriptors for the automated analysis of aerial 
images [1-3]. The size of large aerial image collections 
precludes manual annotation, so being able to use 
automatically extracted descriptors is very appealing. 
Homogeneous texture descriptors [4] have proven to be 
effective in characterizing a variety of basic earth-
components, such as water, agricultural fields, etc.  

Despite this, texture remains underutilized in the 
automated analysis of remotely sensed imagery. The 
work presented in this paper is progress toward using 
texture descriptors for image analysis at the object level. 
Distinct spatial signatures result from many natural and 
man-made geographic processes that create objects of 
interest. For example, the rows of vines in a vineyard or 
cars in a parking lot appear as homogeneous textures in 
aerial images. A major challenge in using homogeneous 
texture features is that the objects in spatial datasets 
usually consist of multiple textures. Most golf courses 
consist of grass-covered fairways lined by trees. Grass 
and trees each result in distinctive textures but neither 
feature by itself characterizes a golf course. The fairways 
and the trees are thus texture themes, or motifs, that 
characterize the class of golf courses. 

The major contribution of this work is a model that 
utilizes multiple textures to characterize image regions. In 
particular, texture motifs are used to discover and 

characterize the set of geographic processes that create 
the objects of interest. Our main objective is developing 
an effective characterization of objects of interest in aerial 
images. 

The geographic processes that create object classes are 
statistically modeled as mixtures of Gaussians. The 
models are trained using instances of the object classes. 
Experimental results show the technique can characterize 
many objects of interest in spatial datasets, such as 
airports, harbors, etc. In particular, we show that the 
models learn the common texture motifs of the object 
classes. 

1.1. Related work 

Mixtures of Gaussians have been used to model image 
feature distributions for a variety of research objectives. 
In [5], texture-based image segmentation is performed by 
clustering texture feature vectors using mixtures of 
Gaussians. Spatial coherence is taken into account to 
group those texture clusters that correspond to the same 
image region. This allows the resulting image 
segmentation to contain regions with multiple textures. 

In the Blobworld system [6], mixtures of Gaussians 
are used to derive image descriptors for content-based 
retrieval. The Expectation-Maximization (EM) algorithm 
is used to discover the feature vector groupings that 
correspond to the visual blobs in an image. A joint color-
texture descriptor is extracted from each blob and used to 
perform similarity retrieval in a database of images. 

2. Texture Motif Analysis of Objects 

We start out with the basic assumption that geographic 
regions of interest are characterized by a collection of 
texture motifs corresponding to the geographic processes 
that generate the class. Often, users of geographic image 
collections need to retrieve information on semantically 
relevant classes of regions, which we term objects, e.g. 
airports and trailer parks in aerial images.  



 

 

Researchers have created systems that perform region-
level [6] and crude object-level [7-9] image content 
retrieval using properties of homogeneous region 
segmentations. However, the problem of modeling a 
general set of semantic classes (such as airports and 
trailer parks in aerial images) is still unsolved.  

2.1. Problem Statement 

There are three stages in building an object-based 
querying and retrieval system for large aerial image 
collections, namely, (1) modeling the object classes, (2) 
characterizing objects based on the class models, and (3) 
defining similarity measures between objects. 

In this paper, we focus on the first stage. Given a 
training set of object instances from several semantic 
classes, we model the classes based on their underlying 
texture motifs. 

3. Modeling Object Classes 

A good model for an object class should capture the 
texture motifs that characterize it. We model an object 
class as a mixture of Gaussians, one for each texture 
motif that characterizes the class. We call our model the 
canonical class model for object classes. 

3.1. The Canonical Class Model 

Homogeneous texture feature vectors [4] are extracted 
by applying a set of Gabor-wavelet filters (at 5 scales and 
6 orientations) to the aerial images. Let c(x) denote the 
30-dimension feature vector extracted from the 
neighborhood of pixel x. Assuming that the pixels in an 
object class are generated by one of N possible texture 
motifs modeled as Gaussians, the probability density 
function of c can thus be expressed as a mixture 
distribution, 
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where p(c|j) is the conditional likelihood of the feature c 
being generated by the motif j, and P(j) is the prior 
probability of the motif j. The number of motifs N along 
with the distribution means and covariance matrices are 
the parameters that specify the class model. 

We use the EM algorithm to estimate the parameters 
of the Gaussian mixture model (GMM). A K-means 
clustering process is used to bootstrap the EM algorithm. 
Once we determine a GMM for an object class, we can go 
back to an instance in that class and use a Maximum A 
Posteriori (MAP) classifier,  
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to label each pixel x according to its generating texture 
motif. The posterior probabilities P(i|c(x)) are obtained 
using Bayes’s rule. 

3.2. Training the model 

The training set of object instances Oc from a class c, 
is denoted as follows: 
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where M is the number of instances.  

Given Oc, the step-by-step process of constructing the 
canonical class model for class c is as follows: 

1. For each object in the training set, extract the 30-
dimensional texture features described in Section 
3.1. 

2. Randomly choose P training feature points within 
each object in Equation (3). We choose P according 
to the cardinality of the training set M, thus keeping 
the computations tractable. 

3. Choose the number of texture motifs N for the 
model. 

4. Train the GMM in Equation (1) using the union of 
all the training points from the objects in the 
training set. Each Gaussian in the mixture 
corresponds to one texture motif characterizing the 
object class.  

5. Using the model from Step 4, and the MAP 
classifier in Equation (2), we identify the texture 
motifs that generate the pixels of any given 
instance of class c. 

3.3. Merits of the model 

The canonical class model captures the global 
characteristics of an object class in terms of the texture 
motifs that characterize the whole class. By training a 
GMM using several instances from an object class, the 
model learns the texture motifs that are important in 
characterizing the class. Because of this capability, the 
canonical class model has the following merits: 

1. It enables the semantic analysis of the texture 
motifs that characterize a class. We discuss this 
concept in Section 5. 

2. Each texture motif characterizes the varying 
orientations of a particular texture. The GMM 
clusters together textures that are similar but occur 
at different orientations. 

3. Because the model globally analyses the class, we 
expect it to de-emphasize irrelevant textures that 
occur in a few instances, but do not characterize the 
class in general. 

4. Experiments and Observations 



 

 

The dataset contains objects from the Digital 
Orthophoto Quarter-Quadrangle (DOQQ) coverage of 
California. For ease of availability, we choose the 
following six object classes: airports, golf courses, 
harbors, high schools, mobile home parks, and vineyards. 
The geo-referencing information in the Alexandria Digital 
Library Gazetteer [10] is used to approximately locate 
several instances from each object class. In each case, we 
extract a rectangular image region containing the object, 
and manually create a binary mask that defines the object 
boundary. 

Two experiments are conducted to understand (1) the 
usefulness of the canonical model, (2) the effect of 
increasing the training set size, and (3) the concept of 
rotation invariance. For simplicity, N=5 in Equation (1), 
for both experiments. The issue of choosing the number 
of motifs to model a given class is discussed in Section 5. 

4.1. Experiment 1 

In this case, the training set for a class consists of a 
single object instance, i.e. M=1 in Equation (3). P is 
chosen to be equal to 25,000 in Step 2 of the training 
process. Figures 1(a) and 2(a) show two object instances 
from the harbor class. Each of these instances is used in 
turn to create two separate models for the harbor class. 
The two important texture motifs in this class are the 
moored boats and the water. Figures 1(b) and 2(b) show 
the texture motif assignments for both instances, with a 
common color for each label. 

Observations: 
1. The moored-boats motif is mostly mapped to red in 

Figure 1(b), and to yellow in Figure 2(b). Since the 
object instances are modeled separately, there is no 
correspondence between the motif assignments for 
different instances of a class. 

2. In Figure 1(b), a portion of the moored-boats motif 
is mapped to yellow because the boats have a 
different orientation. In this case, the model is 
sensitive to the orientations of the texture motifs. 

3. A small training set is ineffective for class 
modeling because a few object instances do not 
represent a class well. 

4.2. Experiment 2  

In this case, M=10, and P=10,000. Thus each class is 
trained using 100,000 representative feature points. 
Figures 1(c) and 2(c) show the texture motif assignments 
for the harbor instances in Figures 1(a) and 2(a), 
respectively. 

Observations: 
1. In Figure 1(c) and 2(c), the moored-boats and water 

motifs are almost uniformly mapped to the same 

color for both instances, irrespective of orientation. 
This leads to the following two observations. 

2. As the training set size is increased, the canonical 
model characterizes the class globally, and thus 
assigns the same label to a particular texture motif 
for all instances of a class. This illustrates the 
potential that this model has for semantic analysis 
of object classes (see Section 5). 

3. As the training set size is increased, the model 
characterizes the motifs in a more rotation invariant 
manner. 

5. Conclusion and Future Work 

This paper proposes a canonical class model for object 
classes in aerial images. Initial experiments show that the 
model succeeds in capturing the texture motifs that 
characterize object classes. The model characterizes the 
motifs in a more rotationally invariant manner as the 
training set size is increased. The effect of training set 
size on the model is being investigated as well as whether 
the model generalizes well to other object classes. 

The next level of abstraction in the canonical class 
model is to analyze the texture motifs semantically. This 
would involve mapping the motif labels to named motifs 
like grassy area, road, water, housing development, etc. 
This analysis will help in tackling research problems like 
automatic object segmentation, object-based image 
retrieval, etc. 

An open issue in using this model is determining the 
number of texture motifs that most effectively 
characterize a class. One solution for this problem is to 
have human observers look at the class data and estimate 
the number of motifs. Alternatively, there are schemes 
[11] that automatically determine the number of mixtures 
for a given dataset. 

An interesting extension to this work is to additionally 
characterize the spatial layout of the texture motifs of the 
object classes. This “texture of textures” approach would 
help disambiguate objects that consist of the same motifs 
but are semantically different. For example, the spatial 
layout of grass and trees in a golf course is different from 
that in a park due to the elongated fairways. 
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Figure 1. (a) One instance of the harbor class, (b) texture motif assignments using the canonical class 

model with training set size M=1, and (c) texture motif assignments with M=10. 
 
 
 
 
 
 
 
 
 
 
 
 
                            (a)                                                          (b)                                                   (c)   
 

Figure 2. (a) Second instance of the harbor class, (b) texture motif assignments using the canonical 
class model with M=1, and (c) texture motif assignments with M=10. 


