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ABSTRACT 
A novel scheme for image segmentation is presented. 

An image segmentation criterion is proposed that gathers 
similar pixels together to form regions and creates 
boundaries between two dissimilar regions. This criterion 
is formulated as a cost function. This cost function is 
minimized by using gradient-descent methods, which 
leads to a curve evolution equation that segments the 
image. The proposed method generalizes previous 
methods to more complex similarity and distance 
measures and can be applied to vector valued images 
such as texture and color images. 
 
1. INTRODUCTION 

Image segmentation is a basic step in many image 
processing and computer vision tasks. Previous 
approaches to image segmentation include filtering-based 
methods to detect edges followed by edge linking, curve 
evolution and active contour models [1,5,6,7,8], region 
growing and merging, global optimization based on energy 
functions and Bayesian criteria, and graph partitioning and 
clustering. Some of these methods seek to provide a 
unified framework that enables segmentation based on 
multiple heterogeneous attributes such as texture, color, 
and gray level intensity. 

Curve evolution methods have been used for image 
segmentation for over a decade. Some of these methods 
utilize the geometric nature of the curves to evolve them, 
and some of them use a cost function to guide the curve 
evolution. In this paper we define an image segmentation 
criterion and formulate it as a cost function. This cost 
function is then used to guide the curve evolution to 
segment the image into homogenous and distinct regions. 

In comparison to the previous work [5,7], where 
simple statistics such as intensity mean and standard 
deviation are utilized, the proposed method lays a 
generalized framework where the previous methods can be 
thought as special cases. This flexible framework accepts 
wide variety of features for similarity of pixels, such as 
their intensity, texture and color features as well as the 
distance between the pixels. 

The rest of the paper is organized as follows. We 
review curve evolution methods in section 2. In section 3, 
we present a region-based approach to segmentation using 
geometric active contours. In section 4 we present some 
experimental results and conclude with discussions in 
section 5. 

2. PREVIOUS WORK 
Active contours and curve evolution methods usually 

define an initial contour 0C  and deform it towards the 
object boundary. The problem is usually formulated using 
partial differential equations (PDE).  The previous 
research follows two different paths in terms of 
representation and implementation of active contours, 
namely parametric active contours (PACs) and geometric 
active contours (GACs). PACs use a parametric 
representation of the curves and GACs utilize level set 
methods [2,3]. Level set methods can easily handle 
topology changes of the evolving contour such as splitting 
and merging, and singularities on the curve such as sharp 
corners. Recently some connections between these two 
methods have been established [1, 4]. A summary and 
comparison of both GACs and PACs can be found in [4]. 

Curve evolution methods can be classified into 
several groups: edge-based [1], region-based [5,6,7] and 
hybrid [8] active contours. Our implementation in this 
paper is based on region-based GAC methods. 

Region-based active contour methods attempt to 
partition the image into two regions: foreground and 
background. They start with an initial closed contour and 
modify the curve according to the statistics of the interior 
and exterior of this contour. Region-based methods use 
global image features as opposed to the local features used 
in edge-based methods. 

Developments in region-based active contours [9] are 
more recent than their edge-based counterparts. Region-
based active contours are less dependent on the initial 
location of the contour since they don’t rely much on the 
local image features. Also not needing to use the gradient 
of the image simplifies both the variational formulation 
and its solution. Region-based methods are also easier to 
extend to vector valued images such as color and texture 
images.  

Let 2( ) : [0,1]C ϕ → ℜ  be a parameterization of a 2-D 
closed curve, I  be a function defined on a closed region 
R , iR  and oR  be the interior and the exterior of C , im  
and om  be the corresponding means, iA  and oA the areas 
of iR  and oR respectively, iI  be ( )iI R  defined on iR  and 

oI  be ( )oI R  defined on oR . Tsai, et al. [5] define their 
optimization criteria as maximizing the separation of the 



mean values: ( )2
i om m− . This leads to a gradient-descent 

equation 
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where N  is the normal vector to C , κ  is the curvature 
and γ  is  a constant weighting factor. The κ dependent 
term is added to keep the curve smooth at all times. 

Chan, et al. [7] on the other hand uses a limiting 
version of Mumford-Shah functional [10] as the criteria, 
where the image is modeled with a piecewise constant 
functions. The resultant gradient-descent equation is: 

 ( )( )i o i o
C m m I m I m N N
t

γκ∂ = − − + − −
∂

 (2) 

Later on Tsai et al. [6] generalized this equation by 
solving the general Mumford-Shah problem instead of the 
limiting case. 
3. PROPOSED IMAGE SEGMENTATION 

In this section, our aim is to define a new flow 
equation for image segmentation that satisfies the 
following objectives: 
1) The evolving curve segments the image into 
homogenous regions. Homogenous region means that the 
pixels in this region that are close to each other have 
similar properties such as their intensity. This criterion for 
the segmentation groups similar pixels together into 
regions. 
2) The evolving curve establishes boundaries between 
regions that are distinct in term of their content, which 
means, pixels corresponding to neighboring regions are 
not similar to each other. This criterion aims to increase 
the dissimilarity across the boundaries. 

Let 0C  be a 2-D closed curve partitioning an image 
R  into two regions: the interior iR  and the exterior oR  of 
the curve. Let the image I  be a continuous function 
defined on R . Let ( , )i jw p p  be a positive, symmetric 
function, which is a measure for the dissimilarity between 
points ip and jp , ,i jp p R∈ . Examples for ( , )i jw p p  are 

 ( , ) ( ) ( )i j i jw p p I p I p= −  (3) 
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where ( , )i jdist p p  is either L1 or L2 distance. 
To satisfy the first criterion 0C  needs to be evolved in 

a way to maximize intra pixel similarities for both iR  and 

oR . To achieve this, a cost function is needed to guide the 
curve evolution. Assuming that the image only consists of 
a foreground object and a background, minimizing the 
energy functional 
 1 1 2 1 2 1 2 1 2( , ) ( , )

i i o oR R R R

E w s s ds ds w s s ds ds= +∫ ∫ ∫ ∫  (5) 

defines the desired first criterion.  

On the other hand, to be able to satisfy the second 
criterion, the curve evolution should also increase the 
dissimilarity of the pixels of iR  and oR . This corresponds 
to minimizing another energy functional 
 2 1 2 1 22 ( , )

i oR R

E w s s ds ds= − ∫ ∫  (6) 

Since it is difficult to find the direct solutions for these 
energy minimization problems, gradient-descent methods 
are usually utilized. 
Lemma 1: Let 1C and 2C  be arbitrary closed curves 
defined on R, w: 2 2× →  be a real valued function, 
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be the cost functional to be minimized by evolving 1C and 

2C . The notation ( )R C  corresponds to the area inside the 
curve C . The first variation and the corresponding 
gradient descent of this energy functional are as following. 
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where 1N  and 2N  are the outwards normal vectors for 1C  
and 2C  respectively, 1 1c C∈  and 2 2c C∈ . 
Proof: A full proof is out of the scope of this paper 
because of space restrictions. Intuitively the results can be 
achieved as following. From previous work [11], we know 
that the first variation and the gradient-descent for the 
functional 
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By taking 
( )

( , )
R C

H w c s ds= ∫ , where 2C C=  and 1C C=  

the results in Lemma 1 follow. □ 
Corollary 1: If 1 2C C C= = in (7), which means 

1 2N N N= = , then 
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Corollary 2: If 1 2C C C= = −  in (7), which means 

1 2N N N= = − , then 
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t
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Using corollaries 1 and 2, we notice that both (5) and 
(6) result the same gradient descent equation. This is not 
surprising considering the relation 
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where k is a constant. The gradient-descent flow 
corresponding to both 1E  and 2E  is 

 2 ( , ) ( , )
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C w c s ds w c s ds N
t

 ∂ = −  ∂  
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where c is a point on the curve C. Since (10) is a solution 
for both 1E  and 2E , this curve evolution satisfies both of 
our objectives of having consistent regions with high intra 
similarity and having dissimilar neighboring regions. 

To demonstrate how (10) works, consider the binary 
image in Fig. 1. Let this image consist of a foreground 
object iI  and the background oI . i oI I R∪ = .  The curve 
C is initialized inside iI  leading to i iR I⊂ . Applying (10) 
to the points on the curve C, the integral over iR  is equal 
to zero, whereas the integral over oR  results a positive 
number expanding the curve towards the object 
boundaries. If the curve passes the object boundary and 
reaches the background oI , (10) becomes negative while 
shrinking the curve back. 

            
Figure 1. Binary image: A small curve inside the 
foreground object evolves to capture the object boundaries. 

For demonstration purposes, we simplified several 
things in our formulation of (5) without loss of generality. 
Equal weightings are assumed for both areas iR  and oR  
and in addition, one commonly used criterion, minimizing 
the curve length, is also ignored. Including these extra 
conditions, the solution becomes: 

( , ) ( , )
o iR R

C w c s ds w c s ds N N
t

α β γκ
 ∂ = − −  ∂  
∫ ∫  (11) 

where κ  is the curvature, which smoothes out the 
boundaries. We choose 1/ oAα =  and 1/ iAβ =  in our 
implementation if (3) is used as the dissimilarity measure. 
Even though the areas iA  and oA  are not constants but 
functions of time, it can be shown that this evolution 
equation still decreases the proposed energy functional, so 
it is a descent equation. Moreover using the areas as 
weighting factors has a geometric meaning of 
normalization. Geometric criteria have been widely 
utilized in the past for curve evolution [1,2,3] and laid the 
foundations of GACs. 

To apply the proposed curve evolution to vector-
valued images, such as color and texture images, there are 

two ways of doing it. The first approach, which is the 
traditional way, is to create N coupled curve evolutions, 
each applied to one of the dimensions of the N-d vector 
valued image. In this method, the complexity increases 
linearly with the number of dimensions. The second 
approach is to calculate ( , )w x y  using vector values and 
not change the PDE. For example, the extended version of 
(3) is 
 ( , ) ( ) ( )i i

N
w x y V x V y= −∑  (12) 

Since the PDE stays unchanged, the computational 
complexity also stays the same. 

Expanding the segmentation to multiple regions is 
also possible by recursively applying the bi partitioning to 
each region. 
4. EXPERIMENTAL RESULTS 

Fig. 2 shows the flow of the segmentation algorithm. 
Starting with the input image I, the dissimilarity matrix W 
and its elements ( , )i jw s s  are calculated using (3) or (4). 
An initial curve 0C  is propagated under the κ and W 
based forces until it converges. 

Image I Calculate W Initialization
i=0, ti=t0, Ci=C0

Calculate curvature
dependent speed

Calculate W
dependent speed

C converges?
YesNo Segmented

Image

Update
t=ti+1, C=Ci+1, i=i+1

Ci+1

 
Figure 2. Flow diagram of the segmentation algorithm 

The curve can be instantiated manually or 
automatically placing curves at random or organized 
places on the image. As demonstrated in Fig. 3, the 
proposed segmentation method does not depend on the 
initial location of the curve as much as the edge-based 
active contours [1]. This is because of the use of all image 
pixels for the curve movement. 

We use the well-known level set method formulation 
[2,3] to implement the curve evolution in (11). This 
requires defining a corresponding level set function U that 
embeds C as its zero level set and the time evolution of U. 
The level set equation corresponding to (11) is 

( , ) ( , )
o iR R

U Uw u s ds w u s ds U
t U

α β γ
 ∂ ∇= − − ∇ ⋅ ∇  ∂ ∇ 
∫ ∫  

Here U is a 3-D function where U(x, y) = 0 defines the 
evolving curve, and u is a point on R. U is generated from 
the initial curve using the signed distance function 

Ro 

Ri 
C Ii



( , , 0)U x y t d= = ±  where d is the distance from ( , )x y  to 
C  and the sign is chosen positive if ( , )x y  is outside the 
contour C  and negative if inside the  contour. 

We have tested the segmentation method on different 
data sets. The images are intentionally darkened to clarify 
the evolution of the curve. Segmentation result on an 
image of blood cells is shown in Fig. 4. w are calculated 
using intensity values using (3) and an initial curve is 
evolved to segment the image. 

Fig. 3 shows segmentation of a texture image 
consisting of two regions. A triangle shaped curve is 
instantiated overlapping both texture regions. w are 
calculated using (12). The curve evolves and finds the 
correct boundary. 
6. COMPARISON TO OTHER REGION-BASED 
GACs 

Previously used energy functionals focused on 
approximating the regions with a constant or a smooth 
function. The curve evolution from Chan et al. [7] uses a 
piecewise-constant model for the images, where their 
energy functional serves a similar purpose as the first 
segmentation criterion we proposed. On the other hand, it 
doesn’t consider the dissimilarity of iR  and oR . Tsai et al. 

[5] use ( )2
i om m−  as the criteria to maximize the 

separation of the means im  and om  of iR  and oR . This 
objective is similar to our second segmentation criterion. 
But this method doesn’t consider the homogeneity of the 
regions itself. 
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Figure 3. (a-d) Four different types of locations to instantiate 
the curve and the corresponding curve evolutions converging 
to the same solution.  
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Figure 4. (a) Original image (b) Initial curve (c-f) Curve 
evolution using intensity.  
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(d) (e) (f) 

Figure 5. (a) Original texture image (b) Initial  curve (c-f) 
Curve evolution using texture features.  

 


