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Abstract

This paper presents a new technique for segmenting images only on the basis of color infor-

mation. It is shown how segmentation can bene�t from splitting color signals into chromatic

and achromatic channels and separately smoothing them through anisotropic di�usion. Oper-

atively, this is accomplished through two independent di�usion rocesses: one involves only the

chromatic information, conveniently embedded in a complex function, while the other a�ects the

lightness information. The results of the two di�usions are separately segmented by k-means

clustering techniques and their combination yields the �nal image partition into homogeneous

regions. Some experimental results are reported in the paper which verify the e�ectiveness of the

proposed technique.

1 Introduction

The human visual system (HVS) performs extraordinarily well in spotting out and recognizing the

various objects that still or moving pictures portray. On the other side, arti�cial intelligence systems

�nd it not so straightforward to recognize objects in images, even in the case of simple scenes. In

the �eld of image processing and computer vision, segmentation refers to the low-level operation of

partitioning an image into disjoint and homogeneous regions which should be meaningful for a given

application; this operation is usually preliminary to higher-level tasks such as object recognition,

classi�cation, and semantic interpretation.
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Until a few years ago, segmentation techniques were mainly concerned with gray-level images

since for a long time these have been the only kind of visual information that acquisition devices

were able to take and computer resources to handle. Rather comprehensive surveys on techniques

for segmentation of gray-level images can be found in [1]-[4]. Over the last decade, there has been a

remarkable growth of algorithms for segmentation of color images. Among others, two phenomena

in particular have triggered such an interest: the recent and fast evolution of the Internet and the

parallel development of digital libraries and large databases of images which have been gathering an

impressive amount of visual information. Color represents an e�ective means indeed for indexing

and managing this kind of information [5].

An index of the important role played by segmentation of color imagery in a great number

of applications may be represented by the almost bewildering variety of techniques advanced to

accomplish this task; a few papers provide rather comprehensive surveys on them [6]-[8]. Most of

the times, color segmentation techniques are sort of dimensional extensions of analogous techniques

devised for gray-level images; they therefore exploit the well-established background laid down in

that �eld. In other cases, they are ad hoc algorithms tailored on the particular nature of color

information and on the physics of the interaction of light with colored materials. A classi�cation of

color segmentation techniques is proposed in [8] which divides them into three main categories: 1)

feature-space based techniques; 2) image-domain based techniques; and 3) physics based techniques.

In this paper we present a new segmentation algorithm belonging to the �rst category and

based on anisotropic di�usion [9, 10] of the chromatic and achromatic components of a color image.

This nonlinear �ltering technique shows in fact an extremely interesting property from the point

of view of segmentation: the smoothing is selective, being encouraged in homogeneous regions

and inhibited across region boundaries. Thus, noise and irrelevant image details can be �ltered

out, making it easier for a segmentation algorithm to achieve spatial compactness while retaining

the edge information. Several researchers have resorted to this tool as a preprocessing step for

segmentation algorithms operating on scalar images, e.g., [11, 12, 13]. However, even though

di�usion of vector-valued functions, such as color images or multispectral data, has already a solid

background [14, 15], its has been mainly aimed at �ltering, denoising, and enhancement. Here we

prove the usefulness of anisotropic di�usion also in the context of color image segmentation.

Since color is a three-dimensional (3D) signal, almost all of the available segmentation techniques

treat it as such [6]-[8]. In this paper we regard color as a 2D+1D signal by decomposing it into

its chromatic and achromatic components which are separately segmented and recomposed in the

�nal result. This new way of tackling the problem of color segmentation �nds its rationale in
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the modern theories and models of color vision [17]-[23]: The human visual system senses color

information from the outer world through photoreceptors which can be regarded as three sets of

�lters tuned to the wavelenghts of red, green, and blue; this information is then split into chromatic

(2D) and achromatic (1D) channels before being further and independently processed (zone theory,

[17]). Neurophysiological evidence shows that there exists a perfect agreement between the second

HVS processing stage and the opponent-colors theory suggested by Hering [17] and based on the

three antagonistic mechanisms red-green, blue-yellow, and black-white. These stimuli can also

be conveniently expressed in terms of hue, saturation, and lightness (or brightness) through an

opportune change of reference systems [21, 22]. Such a choice of color percepts is suggested by

the fact that hue and saturation are the color features which provide the most useful basis for

judging color uniformity, being rather invariant to surface curvature and lighting conditions [24].

A space carrying hue and saturation information is therefore the ideal candidate for chromatic

segmentation. On the other hand, lightness is a proper discriminant for segmenting regions with

low chromatic content.

In our scheme, hue and saturation are processed together using the formalism of phasors: hue

is the phase and saturation is the magnitude of a complex function de�ned as the complex chro-

maticity. The di�usion of this complex quantity is shown to be equivalent to a system of coupled

di�usion equations a�ecting hue and saturation with a mutual feedback; in fact, hue and satu-

ration are physically related to each other (hue variations are irrelevant at low saturation and

important at high saturation) and this is accomodated for by our formalism. After di�usion, the

complex chromaticity is unsupervisedly segmented by means of a clustering algorithm. The scalar

achromatic information represented by lightness is separately di�used, clustered, and segmented.

The combination of the two parallel segmentation processes allows the original color image to be

partitioned. We report a few examples which con�rm the e�ectiveness of this technique.

This work has four sections. Section 2 brie
y discusses the formats and the vector spaces used

in this paper for representing and handling color information. Section 3 details our segmentation

technique. Section 4 �nally draws the conclusions.

2 Color Representation

We will adopt two di�erent representations of a color image C depending on whether or not spatial

relationships among pixels are important for a certain image processing operation. When they are,

we represent C in a vector form as C(x) = [R(x) G(x) B(x)] 2 R3 , x 2 R2 , where R(x), G(x),

and B(x) are, respectively, the red, green, and blue channels conveniently normalized between 0
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and 1. Although hue, saturation, and lightness have been introduced in the previous sections with

reference to the opponent-colors theory, we may de�ne these three perceptual attributes of color

in various other ways. Since our algorithm is based on clustering of chromatic and achromatic

information, we would like that these two operations were done in uniform spaces; this suggests the

use of hue, saturation, and lightness associated with the L�u�v� color space [24]. We thus express

the color image in the XY Z space as C(x) = [X(x) Y (x) Z(x)], where [24]2
664
X(x)

Y (x)

Z(x)

3
775 =

2
664
0:49000 0:31000 0:20000

0:17697 0:81240 0:01063

0:00000 0:01000 0:99000

3
775
2
664
R(x)

G(x)

B(x)

3
775 : (1)

From Eq. (1), the two chromatic channels u0(x) and v0(x) are derived, respectively, as

u0(x) =
4X(x)

X(x) + 15Y (x) + 3Z(x)
and v0(x) =

9Y (x)

X(x) + 15Y (x) + 3Z(x)
: (2)

This information may be expressed in a polar form through the hue-angle

#(x)
:
= arctan

�
v0(x)� v0N
u0(x)� u0N

�
(3)

and the saturation1

�(x)
:
=
p
(u0(x)� u0N)

2 + (v0(x)� v0N)
2; (4)

where u0N and v0N are the values of u0 and v0 of a suitably chosen reference white [24]. In our

experiments, we have adopted the coordinates of the standard illuminant D65: u
0
N = 0:1978 and

v0N = 0:4683. As an example, Fig. 3 (top row) shows2 the signals #(x) and �(x) relative to the image

of the parrots of Fig. 7. With the formalism of phasors, we conveniently represent these chromatic

components in the complex plane C as �(x) = �(x) exp
�
j#(x)

�
(analogous representations were

also suggested in [26] and in [27]). Henceforth, �(x) will be referred to as the complex chromaticity.

The values taken in by �(x) may be displayed in the chromaticity diagram u0v0 [24], by letting

u0 = u0N +<
�
�(x)

�
, and v0 = v0N +=

�
�(x)

�
, where <( : ) and =( : ) respectively denote the real and

the imaginary part. Fig. 1 (a) shows the u0v0 chromaticity diagram relative to the image of the

parrots of Fig. 7 along with the spectral locus and the line of purples (solid line) and the reference

white (small circle).

1For convenience, we dropped the scaling factor 13 usually included in the de�nition of saturation in u0v0 coordi-

nates [24].
2Hue is de�ned over [0; 2�) and is displayed in such a way that 0 corresponds to black and 2� to white; similarly,

a saturation of value 0 is displayed as black and its maximum value (depending on the image) is set as white.

4



The achromatic channel is encoded through the CIE L� lightness signal de�ned as [24]

`(x) =

8<
: 116

�Y (x)
YN

�3
� 16; for Y (x)

YN
> 0:008856;

903:3
�Y (x)

YN

�
for Y (x)

YN
� 0:008856;

(5)

where YN is the Y value for some reference white; we have chosen YN = 1 (perfect di�user). Fig. 3

(top row) shows the lightness signal `(x) relative to the image of the parrots of Fig. 7.

If spatial information is not essential for a certain task, the color image C may be represented

more compactly in a palettized format. Suppose that C is available in a digital form as a M �N

matrix, whence the three matrices3 R, G, and B 2 RM�N
[0;1] , are the sampled counterparts of R(x),

G(x), and B(x), respectively. The color image can then be expressed as C = fQ;Pg, where

Q 2 NM�N
[1;L] is a matrix of pointers to a look-up-table of colors P 2 RL�3

[0;1] , with L denoting the

number of possible combinations of the entries of R, G, and B. In the RGB format, the color

palette P may be structured as P = [R G B], where R, G, B 2 RL
[0;1] are, respectively, the vectors

containing the red, green, and blue coordinates of the possible combinations of colors within C. Of

course, P may be expressed in other color spaces as well.

In the scheme of Fig. 4, the symbol T denotes the set of color transformations which split the

RGB color signal C(x) into the chromatic channel �(x) and the achromatic channel `(x). The

inverse of this set of transformations is denoted as T �1.

3 Segmentation Algorithm

3.1 Anisotropic di�usion of the chromatic and achromatic channels

The complex chromaticity �(x) is embedded in a one-parameter family of \derived" images �(x; t),

where the parameter t 2 R can be regarded either as time or as an iteration step; more explicitly,

this function reads �(x; t) = �(x; t) exp
�
j#(x; t)

�
2 C . The anisotropic di�usion of �(x; t) is carried

out by means of the partial di�erential equation [9]

@
@t�(x; t) = div

�
c(x; t)r�(x; t)

�
; (6)

where div and r
:
= [ @@x

@
@y ]

T respectively denote the divergence and the gradient operators, and

c(x; t) = f
�
jr�(x; t)j

�
is a monotonically decreasing function of the image gradient magnitude

3Throughout the text, the notation A 2 SM�N[�;�] indicates that each element aij of the matrix A 2 SM�N takes in

values in the set [�; �] � S.
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(conductance coeÆcient), chosen [9] as

c(x; t) =

 
1 +

�
jr�(x; t)j


�

�2
!�1

: (7)

Between the two conductance coeÆcients usually adopted [9], the form in Eq. (7) has been preferred

because it tends to favor wider regions over smaller ones (the other is expected instead to favor high-

contrast edges over low-contrast ones); for segmentation applications, this certainly is a desirable

feature. In the scheme of Fig. 4, the anisotropic di�usion operation carried out on �(x) is denoted

as AD(C ).

The gradient of �(x; t) (chromatic gradient) is found to be

r�(x; t) =
�
r�(x; t) + j�r#(x; t)

�
exp
�
j#(x)

�
(8)

and its magnitude is jr�(x; t)j =
�
kr�(x; t)k2 + �2(x; t)kr#(x; t)k2

�1=2
. It should be noted that,

in the magnitude of the chromatic gradient, variations of hue are correctly weighted by the level of

color saturation, in agreement with the fact that hue becomes less important at low saturation.

The selective smoothing of the nonlinear �lter implemented by Eq. (6) is highly dependent,

through Eq. (7), on the di�usion constant 
�. As pointed out in [9], smoothing within regions is

encouraged by c ' 1 and smoothing inhibition across boundaries is achieved with c ' 0. Various

heuristic strategies have been suggested to select such a parameter, which can be either kept

constant during the di�usion process or set as time-dependent [9]. In our implementation, we have

preferred the second strategy and dynamically selected 
� as the 5% of the maximum value4 of

jr�(x; t)j at each iteration. For the numerical implementation of Eq. (6), we have followed the

simple discretization scheme provided by Perona and Malik in [9] with Ni = 30 iterations. We

denote as �d(x)
:
= �d(x) exp

�
j#d(x)

�
the result of the di�usion process of �(x; t) at time t = Ni.

Fig. 3 shows #d(x) and �d(x) relative to #(x) and �(x) of the same �gure.

A few important observations are in order. First, the formalism of complex phasors that we

have adopted to model the chromatic information of images allows us to carry out the di�usion of

an intrinsically vector-valued function in a \scalar" fashion, without resorting to ad hoc techniques

for vector-valued images [14]. Second, the combined di�usion of hue and saturation through �(x)

allows us to bypass the possible numerical instabilities associated with the di�usion of hue alone

[28]. Third, the bene�cial synergism of hue and saturation components in the di�usion process of

Eq. (6), which is the main contribution of this work, may be better appreciated by separating the

4The hue function #(x) takes in values in [0; 2�); however, accounting for the circular nature of this quantity, the

di�erence between #1 and #2 is de�ned to be #1 � #2
:
= min(�#; 2� ��#) where �#

:
= j#1 � #2j.

6



real and imaginary parts of such equation. By doing so, we get8>><
>>:

@
@t� = div (cr�)� c�kr#k2;

@
@t# = div (cr#) + 2

� c
�
�
rT�r#;

(9)

where we have dropped space and time variables for compactness. Based upon the system of coupled

di�usion equations in Eq. (9), we can make the following remarks. 1) kr#k ' 0 in a region where

hue is almost constant; hue and saturation tend therefore to di�use independently and the common

conductance coeÆcient depends only on the saturation gradient information because c ' f
�
jr�j

�
.

2) kr�k ' 0 in a region where saturation is almost constant; in this case the conductance coeÆcient

depends on the hue gradient information weighted by saturation since c ' f
�
� jr#j

�
. The hue

di�usion depends on saturation information only through the conductance coeÆcient: the di�usion

is inhibited by high saturation values. Instead, the saturation di�usion shows a negative feedback,

weighted by saturation itself, with the hue gradient; this means that a hue edge tends to contrast

the saturation di�usion and that this action is more e�ective at high levels of saturation. 3) In a

region where both hue and saturation are almost constant, c ' 1 and the two chromatic components

are decoupled and di�use independently at high rate.

The lightness signal `(x) is di�used with an analogous procedure; the signal is embedded in a

one-parameter family of \derived" images `(x; t) and �ltered with Eqs. (6) and (7) by replacing

�(x) with `(x). In this case, the value of the di�usion constant 
` is set as the 5% of jr`(x)j at

each iteration; the number of iterations is again Ni = 30. Fig. 3 shows the di�used lightness `d(x)

relative to `(x) of the same �gure. In the scheme of Fig. 4, the anisotropic di�usion operation

carried out on `(x) is denoted as AD(R). The selective smoothing5 is apparent in all three di�used

signals of Fig. 3 (second row).

It is worth mentioning that recently Tang and Sapiro [29] have proposed an approach very

similar to ours and aimed at image denoising: color data are in fact separated into chromaticity

and brightness and then indipendently processed with partial di�erential equations or di�usion


ows.

5By comparing the signals #(x) and #d(x) in Fig. 3, one might think that the white regions of the former signal

have been somehow \lost" in the latter; however, as pointed out in Section 2, hue is de�ned upon a unit circle whence

very dark gray shades (associated with # 2 [0; �], � << 2�) are contiguous to very light gray shades (associated with

# 2 [2� � �; 2�)).
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3.2 Quantization

The di�usion process, in general, produces as many values in #d(x), �d(x), and `d(x) as the product

of the image dimensions, and clustering based on these functions would be overly lengthy [30].

Quantization thus represents a useful means for reducing the number of values in the hue, saturation,

and lightness signals. Since a separate quantization of the chromatic and achromatic channels might

introduce color shifts once the two channels are eventually recombined and transformed into RGB

coordinates, a color quantization directly in the RGB space is recommended.

Among the most popular quantization algorithms are the splitting algorithms [31, 32] that

divide the RGB cube into disjoint regions and select a representative color from each region as

a palette color; they di�er in the methods adopted for splitting the color space. The minimum

variance quantization method proposed by Heckbert [31] cuts the color cube in the red, green, and

blue directions until a chosen number of non-empty regions is obtained; it then uses the average

color in each region to create the new reduced palette. We have resorted to this algorithm which can

be found already implemented in many software packages for digital image processing applications.

Operatively, we proceed as follows: 1) By inverting the transformation relationships reported

in Section 2, from #d(x), �d(x), and `d(x) we construct the di�used RGB image Cd(x) =

[Rd(x) Gd(x) Bd(x)]. 2) We then quantize Cd(x) as Cq(x) with Nq colors (e.g., Nq = 1024).

In the scheme of Fig. 4, the quantization of Cd(x) into Cq(x) is denoted by the symbol Q. 3)

Finally, we represent Cq(x) in a palettized format as fQq;P q;wqg, where
6 the values taken in by

Qq are pointers to a look-up-table P q = [�q `q] (a matrix of size Nq � 2 with complex entries

in the �rst column and real entries in the second), �q
:
= �q exp

�
j#q

�
2 C Nq , and wq is a vector

that contains the number of pixels in Qq per each value of P q. As an example, Fig. 2 portrays the

quantized chromaticities �q relative to the quantization of the chromaticities of Fig. 1 (a).

3.3 Estimation of the chromatic spreading

The distribution of the complex chromaticities in the u0v0 plane is image-dependent; hence, the

spreading of these points has to be somehow estimated in order to tailor on it the parameters

of the following clustering stage. To this end, in [16] we have suggested the following statistical

criterion. Let us consider the probability function F (x)
:
= P [k� � ��k� �], � � 0, which describes

the distribution of the distances between each chromaticity � and the baricenter �� of the data.

If the chromaticities were Gaussian distributed around �� , the probability density function f (�)
:
=

dF (�)=d� would be the Rayleigh density function [33] f (�) = (�=�2)e��
2=2�2u(�), where u(�) is the

6Multiplication and exponentiation in the complex vector �q are to be regarded as element-wise operations.
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unit-step function. Albeit real imagery usually does not give rise to Gaussian distributed points

in the chromaticity plane, we could ascertain experimentally that a Rayleigh density function may

describe the statistical distribution of the data fairly well.

We observe that the statistical description above is derived from the original image and not

from its di�used and quantized version because experimentally we could notice that, even if the

point spreading in the relative u0v0 diagrams looks very similar, a Rayleigh pdf modeling of their

distances to the baricentric point suits the �rst data better than the second.

Our algorithm computes the (discrete) distance function d(l)
:
=k �(l)� �� k, l = 1; : : : ; L, and

�ts its frequency histogram H (we used 50 bins) with the continuous function g(�) = �f (�), where

the coeÆcient � accounts for the bias of the data; the �tting is performed via a standard non-linear

least squares algorithm. Fig. 1 (b) reports the function g(�) (solid line) along with the frequency

histogram H (stemmed plot) for the complex chromaticities of Fig. 1 (a). Figs. 5 and 6 show two

color images with their palettes, their u0v0 chromaticity diagrams, the relative histogramsH, and the

Rayleigh pdf's g(�) describing the relative chromatic dispersion. In all cases, the appropriateness

of this statistical model is apparent.

The probability function f (�) allows us to estimate the radius %� of the circle in which a certain

percentage � of the data (0 � � � 1) is contained; such radius is given by %� = �
p
2 ln (1=(1 � �))

and represents an index of the chromatic dispersion of the data (in our experiments, we have chosen

� = 0:95).

3.4 Complex chromaticity clustering and segmentation

The points in the u0v0 space that, after the quantization step of Section 3.2, have been conveniently

represented as a single vector �q 2 C Nq need now to be clustered; the literature of pattern recog-

nition o�ers a number of di�erent techniques for this task. We have employed the well-known

k-means algorithm [34], whose implementation for our application is reported next [16]. In Fig. 4,

the k-means algorithm applied to �q has been denoted as K(C ).

K(C ): The k-means algorithm for clustering �q

. compute the baricenter of the complex chromaticities �q (see Section 3.2) as �q� = wT
q�q;

. sort the vector wq in descending order and de�ne the vector p 2 N
Nq

[1;Nq ]
containing such ordering;
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. set �q� as the initial seed for clustering data in the u0v0 space, associate it with a weight wq� = 0,

and initialize with them, respectively, two ordered sets 
 � C and W! � Q [0;1] whose elements are

dinamically ordered according to their insertion or extraction order;

for n = 1 to n = Nq

. compute the minimum distance d(i) between �q(n) and the cluster seeds in the set 
 as

d(i) = min
!2


k �q(n)� ! k; let !(i) 2 
 denote the closest seed;

if d(i) > �1

then

. add �q(n) to the set 
 as a new seed and its associated weight w(p(n)) to the set W!;

else

. �q(n) belongs to the cluster de�ned by !(i); this induces the shifting of the seed !(i)

whose new position and associated weight are respectively updated as

!(i) :=
w!(i)!(i) +w(p(n))�q(n)

w!(i) +w(p(n))
and w!(i) := w!(i) +w(p(n));

. compute the minimum distance d(j) between !(i) and the other seeds in 
 as d(j) =

min
!2


! 6=!(i)

k !(i) �! k;

if d(j) < �2

then

. the clusters associated with the seeds !(i) and !(j) must be merged together and the

position and weight of the new resulting cluster are computed according to the following

procedure:

. de�ne m
:
= min(i; j) and M

:
= max(i; j);

. update

!(m) :=
w!(i)!(i) + w!(j)!(j)

w!(i) + w!(j)
and w!(m) := w!(i) +w!(j);

. remove the seed !(M) from 
 and its weight w!(M) from W!;

end

end

end

Some comments are here in order. First of all, the above algorithm requires only one iteration;

the number of clusters changes during the clustering process and we do not know a priori the

number of clusters we will end up with. When a point must be associated with a cluster or two
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cluster seeds must be merged together, a center of gravity law is adopted; in this way, the outcoming

seed is closer to the \heaviest" of the two points, that is, to the point which, in the chromaticity

plane, represents the color entering the highest percentage of pixels. Moreover, our procedure spans

the points from the \heaviest" to the \lightest" so that, after the �rst iterations, the seeds do not

move signi�cantly, since the early formed seeds are rather \heavy." The fact that we choose only

one initial seed instead of many does not a�ect the performance of the algorithm [34].

On the contrary, the clustering process is a�ected by the two parameters �1 and �2 which re-

spectively determine the inter-cluster and intra-cluster dispersions; they are to be properly selected

since they determine to a broad extent the �nal number of phases in the segmented image. Since a

good measure of the chromatic dispersion within the u0v0 plane is provided by %�, it is reasonable to

de�ne �1 and �2 as fractions of such parameter. A good example of this adaptivity can be seen by

comparing Figs. 5 and 6: the smaller %�, the smaller the inter- and intra-cluster parameters. Ex-

perimentally, we have found that setting �1 = %�=2 and �2 = %!=4 gives good segmentation results

with a wide variety of color images; this choice produces a limited number of segments (usually,

less than 20). In the case of Fig. 3, the choice of parameters suggested above has returned the

six clusters !(n) = �c(n) exp
�
j#c(n)

�
, n = 1; : : : ; N! = 6 shown with crosses in Fig. 2. Instead,

N = 11 clusters were found in the case of Fig. 5 and N = 20 clusters in the case of Fig. 6 (they are

represented with red \+" symbols).

Of course, one might decide to reduce (increase) by supervision the number of segments by

increasing (reducing) �1, always as a fraction of %�; the parameter �2 has to be accordingly modi�ed

with the only constraint that �2 � �1=2 to prevent cluster overlapping.

The segmentation S(C ) (see Fig. 4) of the chromatic channel is �nally simply obtained as follows.

At each pixel, the di�used chromaticity �d is now replaced by the nearest among the N! clusters

!(n) according to �s = argmin!(n)2
 j�d � !(n)j. The result of such operation is a segmented

complex chromaticity �s(x)
:
= �s(x) exp

�
j#s(x)

�
; Fig. 3 shows the segmented versions7 �s(x) and

#s(x) of the respective di�used signals of the same �gure.

3.5 Lightness clustering and segmentation

The achromatic channel undergoes a similar processing. The same algorithm K(C ) with opportune

modi�cations is used for clustering the lightness `q (in Fig. 4, this operation is referred to as

7A median �lter with size 3 � 3 was applied to �s(x) and #s(x) to remove isolated outliers; in fact, anisotropic

di�usion preserves image features with high gradient values so that not only edges but also some noise, e.g. salt-and-

pepper noise, can be preserved.
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K(R)); the thresholds �3 and �4, which respectively play the 1D counterpart of �1 and �2, have been

experimentally chosen as �3 = 20 and �4 = 10. In fact, only a few levels of lightness are required for

a good segmentation and with our choice of parameters usually we obtain 2 to 5 regions. In fact,

as �3 determines the inter-cluster distance, it has been set equal to half the scale range in order

not to generate too many segments; �4 determines instead the intra-cluster spreading and it has to

satisfy the constraint �4 � �3=2 to prevent cluster overlapping. However, the selection of such 1D

thresholds is not so crucial as that of the 2D thresholds, since rather wide changes of �3 and �4 yield

not appreciably di�erent segmentation results. This choice give N!`
= 3 clusters, !`(1) = 54:1467,

!`(2) = 67:9022, and !`(3) = 85:8514 (the maximum value of `(x) in Fig. 3 is 100). Similarly

to the above, the replacement of the lightness `d at each pixel with the closest of the N!`
clusters

is carried out through `s = argmin!`(n) j`d � !`(n)j and results in the segmented lightness `s(x).

This operation is denoted as S(C ) in Fig. 4. Fig. 3 shows the segmented version `s(x) relative to

the di�used lightness of the same �gure.

3.6 Final segmentation and discussion

By combining the segmentations of hue, saturation, and lightness of the last row of Fig. 3 and

converting back the chromatic and achromatic channels into RGB coordinates (operation denoted

as T �1 in Fig. 4), we �nally obtained the result shown in Fig. 7. Figs. 7 and 8 also report other

examples of segmentation with various types of images which bear out the e�ectiveness of our

algorithm. The complete block diagram of our segmentation technique is shown in Fig. 4, where

Cs(x) is the segmented version of the color image C(x).

On the whole, it should be noticed that our technique performs pretty well. However, there

exist some problems of oversegmentation in regions a�ected by highlights and shadows (see the

images of the fruits, of the peppers, and of the yellow wall with the door). These limits are

due to the fact that our segmentation algorithm is exclusively feature-based and that only color

information is accounted for. In order to prevent oversegmentation, one should integrate both color

and texture information and resort to physics-based techniques which account for the physical

processes involved in the interaction of light with matter (e.g., see [35] and references therein).

Improvement of the segmentation results could also be achieved by cascading our algorithm with

a suitable post-processing stage.
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4 Conclusions

We have presented a new technique for low-level color image segmentation. It is based on two

independent anisotropic di�usion processes: one applies to the chromatic information, conveniently

embedded in a complex function; the second applies to the lightness information. The results of

the two di�usions are separately segmented and their combination allows for the color image par-

titioning. We have reported some examples which con�rm the good performance of our technique.

Future research will be focused on the combination of color and feature information for image

segmentation.
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Figure 1: (a) u0v0 chromaticity diagram relative to the image of the parrots of Fig. 7; the small circle is

the reference white while the large dashdotted circle is centered at the baricenter of the chromaticities

and contains the 95% of the data (see Section 3.3). (b) Frequency histogram H (dashdotted bars) and

Rayleigh pdf g(�) (solid line) relative to the chromaticities of Fig. 1 (a).
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Figure 2: u0v0 chromaticity diagram relative to the image of the parrots of Fig. 7 after di�usion and

color quantization. The crosses denote the clusters !(n) = �c(n) exp
�
j#c(n)

�
, n = 1; : : : ; N! = 6

(see Section 3.4).
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#(x) �(x) `(x)

#d(x) �d(x) `d(x)

#s(x) �s(x) `s(x)

Figure 3: First row: Original hue #(x), saturation �(x), and lightness `(x) (from left to right). Second

row: Di�used hue #d(x), saturation �d(x), and lightness `d(x). Third row: Segmented hue #s(x),

saturation �s(x), and lightness `s(x).
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C(x)

Cs(x)

T

T �1

AD(C ) AD(R)

Q

K(C ) & S(C ) K(R) & S(R)

�(x) `(x)

�d(x) `d(x)

�q(x) `q(x)

�s(x) `s(x)

Figure 4: Block diagram of the segmentation algorithm. Legend: C(x):= color image to be segmented;

T := color transformation from RGB coordinates to complex chromatic channel and lightness channel;

T �1:= inverse transformation of T ; AD(C ):= anisotropic di�usion of �(x); AD(R):= anisotropic

di�usion of `(x); Q:= quantization; K(C ):= k-means clustering in C ; K(R):= k-means clustering in

R; S(C ):= segmentation of the chromatic channel; S(R):= segmentation of the achromatic channel;

Cs(x):= segmented image.
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Figure 5: a) A color image with its color palette; b) Its u0v0 chromaticity diagram with clusters (red

+'s) found by the algorithm of Section 3.4; c) Relative histogram H (stemmed plot) and Rayleigh

pdf g(�) (red solid line).
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Figure 6: a) A color image with its color palette; b) Its u0v0 chromaticity diagram with clusters (red

+'s) found by the algorithm of Section 3.4; c) Relative histogram H (stemmed plot) and Rayleigh

pdf g(�) (red solid line).
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original images

segmented images

Figure 7: Some examples of segmentation.
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Figure 8: Some other examples of segmentation.
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