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ABSTRACT

This paper presents a new technique based on anisotropic diffu-
sion for segmenting color images. This operation is accomplished
through two independent anisotropic diffusion processes: one in-
volving only the chromatic information, conveniently embedded in
a complex function, and the other affecting the lightness informa-
tion. The results of the two diffusions are separately segmented
and their combination allows the color image to be eventually par-
titioned. We report on some experimental results verifying the ef-
fectiveness of such a technique.

1. INTRODUCTION

Segmentation is an operation of paramount importance in a num-
ber of image processing applications. A great deal of techniques
have been proposed for both gray-level images [1] and color im-
ages [2]. In this paper we present a new segmentation algorithm for
color images which is based on anisotropic diffusion [3, 4]. This
nonlinear filtering technique shows in fact an extremely interesting
property from the point of view of segmentation: the smoothing is
selective, being encouraged in homogeneous regions and inhibited
across region boundaries. Thus, noise and irrelevant image details
can be filtered out, making it easier for a segmentation algorithm
to achieve spatial compactness while retaining the edge informa-
tion. Several researchers have resorted to this tool as a preprocess-
ing step for segmentation algorithms targeted to gray-level images.
However, even though diffusion of vector-valued functions, such
as color images or multispectral data, has already a solid back-
ground, its has been mainly aimed at filtering, denoising, and en-
hancement [5, 6, 7].

In this paper, we present a clustering-based algorithm for seg-
mentation of color images which extends our previous work by
harnessing the attractive property of anisotropic diffusion. In [8],
we showed that an effective segmentation scheme consists in split-
ting chromatic and luminance information, separately clustering
them, and finally combining the two results, as opposite to tra-
ditional methods which performs clustering directly in 3-D color
spaces. The physical rationale supporting this scheme is that hue
and saturation are the color features which provide the most useful
basis for judging color uniformity, being rather invariant to surface
curvature and lighting conditions [9]. Therefore, a chromatic space
carrying hue and saturation information should be the first feature
space to take into account for color segmentation. On the other
hand, regions with low chromatic content should be segmented by
using luminance information.
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This strategy is embraced also in our present contribution. With
the formalism of phasors, hue and saturation are conveniently rep-
resented as a complex chromaticity function which is diffused prior
to being clustered and segmented. The scalar lightness information
is separately diffused, clustered, and segmented. The combination
of the two parallel segmentation processes allows the original color
image to be partitioned. We report a few examples which confirm
the effectiveness of this technique.

This work has four sections. Section 2 briefly discusses the
formats and the vector spaces used in this paper for representing
and handling color information. Section 3 details our segmentation
technique. Section 4 presents the conclusions.

2. COLOR REPRESENTATION

We represent a color imageC in a vector form asC(x) = [R(x)
G(x) B(x)] 2 R

3 , x 2 R
2 , whereR(x), G(x), andB(x)

are, respectively, the red, green, and blue channels conveniently
normalized between 0 and 1. The color imageC is represented
in the CIEXY Z space [9] asC(x) = [X(x) Y (x) Z(x)],
whence the two chromatic channelsu0(x) andv0(x) are derived,
respectively, asu0(x) = 4X(x)=

�
X(x) + 15Y (x) + 3Z(x)

�
andv0(x) = 9Y (x)=

�
X(x) + 15Y (x) + 3Z(x)

�
. This infor-

mation may be expressed in a polar form through the hue-angle
#(x)

:
= arctan

�
(v0(x)� v0N)=(u

0(x)� u0N)
�

and the satura-

tion1 �(x)
:
=
�
(u0(x) � u0N )

2 + (v0(x) � v0N)
2
�
1=2

, whereu0N
andv0N are the values ofu0 andv0 of a suitably chosen reference
white [9] (in our experiments, we have adopted the coordinates of
the standard illuminantD65: u0N = 0:1978 andv0N = 0:4683).
As an example, Fig. 1 shows2 the signals#(x) and�(x) rela-
tive to the image of the parrots of Fig. 2. With the formalism of
phasors, we conveniently represent these chromatic components in
the complex planeC (see also [10]) as�(x) = �(x) exp

�
j#(x)

�
.

Henceforth,�(x) will be referred to as thecomplex chromaticity.
The image brightness is encoded through the CIEL� lightness

signal defined as̀(x) = 116
�
Y (x)=YN

�
3

� 16 for Y (x)=YN >

0:008856 and`(x) = 903:3
�
Y (x)=YN

�
for Y (x)=YN � 0:0088

56 [9], whereYN is theY value for the reference white; we have
chosenYN = 1 (perfect diffuser). Fig. 1 shows the lightness signal
`(x) relative to the image of the parrots of Fig. 2.

1For convenience, we dropped the scaling factor 13 usually included in
the definition of saturation inu0v0 coordinates [9].

2Hue is defined over[0; 2�) and is displayed in such a way that 0 cor-
responds to black and2� to white; similarly, a saturation of value 0 is
displayed as black and its maximum value, dependent on the image, is dis-
played as white.



3. SEGMENTATION ALGORITHM

3.1. Anisotropic diffusion of �(x) and `(x)

The complex chromaticity�(x) is embedded in a one-parameter
family of “derived” images�(x; t), where the parametert 2 R

can be regarded either as time or as an iteration step; more ex-
plicitly, this function reads�(x; t) = �(x; t) exp

�
j#(x; t)

�
. The

anisotropic diffusion of�(x; t) is carried out by means of the par-
tial differential equation [3]

@
@t
�(x; t) = div

�
c(x; t)r�(x; t)

�
; (1)

wherediv andr
:
= [ @

@x
@
@y

]T respectively denote the diver-

gence and the gradient operators, andc(x; t) = f
�
jr�(x; t)j

�
is

a monotonically decreasing function of the image gradient magni-
tude (conductance coefficient), chosen asc(x; t) = (1 + (jr�(x;
t)j=
�)

2)�1 [3]. The gradient of�(x; t) (chromatic gradient)
is given byr�(x; t) =

�
r�(x; t) + j�r#(x; t)

�
exp

�
j#(x)

�
and its magnitude isjr�(x; t)j =

�
kr�(x; t)k2 + �2(x; t)kr#

(x; t)k2
�
1=2

. It should be noted that, in the magnitude of the chro-
matic gradient, variations of hue are correctly weighted by the
level of color saturation, in agreement with the fact that hue be-
comes less important at low saturation. For the numerical imple-
mentation of Eq. (1), we have followed the simple discretization
scheme provided by Perona and Malik in [3] withNi = 30 it-
erations and thediffusion coefficient
� selected as the5% of the
maximum value3 of jr�(x; t)j at each iteration.

Let�d(x)
:
= �d(x) exp

�
j#d(x)

�
denote the result of the dif-

fusion process of�(x; t) at timet = Ni. Fig. 1 shows#d(x) and
�d(x) relative to#(x) and�(x) of the same figure.

A few important observations are in order. First, the formalism
of complex phasors that we have adopted to model the chromatic
information of images allows us to carry out the diffusion of an
intrinsically vector-valued function in a “scalar” fashion, without
resorting toad hoctechniques for vector-valued images [5]. Sec-
ond, the combined diffusion of hue and saturation through�(x)
allows us to bypass the possible numerical instabilities associated
with the diffusion of hue alone [11]. Third, the beneficial syner-
gism of hue and saturation components in the diffusion process of
Eq. (1), which is the main contribution of this work, may be better
appreciated by separating the real and imaginary parts of such an
equation. By doing so, we get

8<
:

@
@t
� = div (cr�)� c�kr#k2;

@
@t
# = div (cr#) + 2

� c
�
�
rT�r#;

(2)

where we have dropped space and time variables for compact-
ness. Based upon the system of coupled diffusion equations in
Eq. (2), we can make the following remarks. 1) In a region where
hue is almost constant,kr#k ' 0; hue and saturation therefore
tend to diffuse independently and the common conductance co-
efficient depends only on the saturation gradient information be-
causec ' f

�
jr�j

�
. 2) In a region where saturation is almost

constant,kr�k ' 0; in this case the conductance coefficient de-
pends on the hue gradient information weighted by saturation since

3The hue function#(x) takes on values in[0; 2�); however, ac-
counting for the circular nature of this quantity, the difference between
#1 and #2 is defined to be#1 � #2

:
= min(�#; 2� � �#) where

�#
:
= j#1 � #2j.

c ' f
�
� jr#j

�
. The hue diffusion depends on saturation informa-

tion only through the conductance coefficient: the diffusion is in-
hibited by high saturation values. Instead, the saturation diffusion
shows a negative feedback, weighted by saturation itself, with the
hue gradient; this means that a hue edge tends to contrast satura-
tion diffusion and that this action is more effective at high levels of
saturation. 3) In a region where both hue and saturation are almost
constant,c ' 1 and the two chromatic components are decoupled
and diffuse independently at high rate.

The lightness signal̀(x) is diffused with an analogous pro-
cedure; the signal is embedded in a one-parameter family of “de-
rived” images̀ (x; t) and filtered with Eq. (1) by replacing�(x)
with `(x). In this case, the value of the diffusion constant
` is set
as the5% of jr`(x)j at each iteration; the number of iterations is
againNi = 30. Fig. 1 shows the diffused lightness`d(x) relative
to `(x) of the same figure. The selective smoothing is apparent in
all three diffused signals.

3.2. Quantization and clustering

The segmentation of the imageC(x) is achieved by separately
partitioning�d(x) and`d(x), and by combining the two results.
The k-means clustering technique of [8] may be used for both these
tasks by conveniently quantizing�d(x) and`d(x), and represent-
ing them in a palettized format. In fact, the diffusion process, in
general, produces as many values in#d(x), �d(x), and`d(x) as
the product of the image dimensions, and a clustering based on
these functions would be overly computationally intensive. We
thus proceed as follows. 1) By inverting the transformation re-
lationships reported in Section 2, from#d(x), �d(x), and`d(x)
we construct the diffused RGB imageCd(x) = [Rd(x) Gd(x)
Bd(x)]. 2) We then quantizeCd(x) asCq(x) with Nq col-
ors (in our implementation,Nq = 1024). 3) Finally, we repre-
sent the quantized image in a palettized format [8] asCq(x) =
fQq(x);P q;Wqg, where the values taken on byQq(x) are point-
ers to a look-up-tableP q = [�q `q] (a matrix of sizeNq � 2 with
complex entries in the first column and real entries in the second),
�q

:
= �q exp

�
j#q

�
, andWq is a vector that contains the number

of pixels inQq(x) having the values ofP q . The signals�q and
`q are then segmented with the algorithm presented in [8] and the
results are displayed in last row of Fig. 1.

By combining the segmentations of hue, saturation, and light-
ness of the last row of Fig. 1, we finally obtained the result shown
in Fig. 2. Fig. 2 also reports other examples of segmentation with
various images which bear out the effectiveness of our algorithm.
On the whole, it should be noted that our technique performs pretty
well. However, there exist some problems of oversegmentation in
regions affected by highlights and shadows (see the images of the
fruits, of the peppers, and of the wall with the door). These limits
are due to the fact that our segmentation algorithm is exclusively
feature-based. In order to prevent oversegmentation, one should
resort to physics-based techniques which account for the physical
processes involved in the interaction of light with matter (e.g., see
[12] and references therein).

4. CONCLUSIONS

We have presented a new technique for color image segmentation.
It is based on two independent diffusion processes: one applied to
the chromatic information, conveniently embedded in a complex
function; the second applied to the lightness information. The re-
sults of the two diffusions are separately segmented and their com-



#(x) �(x) `(x)

#d(x) �d(x) `d(x)

#s(x) �s(x) `s(x)

Fig. 1. First row: Original hue#(x), saturation�(x), and lightness̀(x) (from left to right). Second row: Diffused hue#d(x), saturation
�d(x), and lightness̀d(x). Third row: Segmented hue#s(x), saturation�s(x), and lightness̀s(x).

bination allows the color image partitioning. We have reported
some examples verifying the effectiveness of our technique. Fur-
ther details on this segmentation technique can be found in [13].
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Fig. 2. Some examples of segmentation.


