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ABSTRACT This strategy is embraced also in our present contribution. With
This paper presents a new technique based on anisotropic diffu-the formalism of phasors, hue and saturation are conveniently rep-
sion for segmenting color images. This operation is accomplished "ésented as a complex chromaticity function which is diffused prior
through two independent anisotropic diffusion processes: one in- {0 being clustered and segmented. The scalar lightness information
volving only the chromatic information, conveniently embedded in iS Separately diffused, clustered, and segmented. The combination
a complex function, and the other affecting the lightness informa- Of the two parallel segmentation processes allows the original color
tion. The results of the two diffusions are separately segmentedimage to be partitioned. We report a few examples which confirm
and their combination allows the color image to be eventually par- the effectiveness of this technique.

titioned. We report on some experimental results verifying the ef- ~ This work has four sections. Section 2 briefly discusses the
fectiveness of such a technique. formats and the vector spaces used in this paper for representing
and handling color information. Section 3 details our segmentation
1. INTRODUCTION technique. Section 4 presents the conclusions.

Segmentation is an operation of paramount importance in a num-
ber of image processing applications. A great deal of techniques
have been proposed for both gray-level images [1] and color im- ) )
ages [2]. In this paper we present a new segmentation algorithm for/Ve represent a coior imagein a vector form al’(z) = [R(z)

color images which is based on anisotropic diffusion [3, 4]. This G(¢) B(z)] € R°, z € R”, where R(z), G(z), and B(z)
nonlinear filtering technique shows in fact an extremely interesting &€, respectively, the red, green, and blue channels conveniently
property from the point of view of segmentation: the smoothing is Normalized between 0 and 1. The color imagés represented
selective, being encouraged in homogeneous regions and inhibited" the CIE XY'Z space [9] asC(z) = [X(w,) Y(z) Z()],
across region boundaries. Thus, noise and irrelevant image detail/hence the two ,chromatlc channel{z) andv’(x) are derived,

can be filtered out, making it easier for a segmentation algorithm "espectively, as/'(x) = 4X(z)/(X(z) + 15Y (z) + 3Z(x))

to achieve spatial compactness while retaining the edge informa-andv’(z) = 9Y (z)/(X (z) + 15Y () + 3Z()). This infor-

tion. Several researchers have resorted to this tool as a preprocesgnation may be expressed in a polar form through the hue-angle
ing step for segmentation algorithms targeted to gray-level images.9(¢) = arctan((v'(z) — vy)/(u'(x) — X)) and the satura-
However, even though diffusion of vector-valued functions, such tion' o(z) = ((v'(z) — ujy)* + (v'(z) — uj\,)z)”z, whereu'y

as color images or multispectral data, has already a solid back-andv}, are the values ofi' andv’ of a suitably chosen reference
ground, its has been mainly aimed at filtering, denoising, and en-white [9] (in our experiments, we have adopted the coordinates of
hancement [5, 6, 7]. the standard illuminanDe;: w5 = 0.1978 andvy = 0.4683).

In this paper, we present a clustering-based algorithm for seg- As an example, Fig. 1 shofvshe signalsd(z) and o (z) rela-
mentation of color images which extends our previous work by tive to the image of the parrots of Fig. 2. With the formalism of
harnessing the attractive property of anisotropic diffusion. In [8], phasors, we conveniently represent these chromatic components in
we showed that an effective segmentation scheme consists in splitthe complex plan€ (see also [10]) as(x) = o(x) exp(j¥(x)).
ting chromatic and luminance information, separately clustering Henceforthx(z) will be referred to as theomplex chromaticity
them, and finally combining the two results, as opposite to tra-  The image brightness is encoded through the ClBightness
ditional methods which performs clustering directly in 3-D color g, gefined ab(z) = 116(Y(w)/YN)3 —16for Y (z)/Vn >

spaces. The physical rationale supporting this scheme is that hu _
and saturation are the color features which provide the most usefuleo'008856 andé(m)_ = 903.3 (Y(m)/YN) for Y’ (x) /Y .S_O'OOSS
56 [9], whereYy is theY value for the reference white; we have

basis forjudgln_g cglor unlfqr_mlty, being rather invariant to §urface chosery = 1 (perfect diffuser). Fig. 1 shows the lightness signal
curvature and lighting conditions [9]. Therefore, a chromatic space . : ;

. L . ) £(x) relative to the image of the parrots of Fig. 2.
carrying hue and saturation information should be the first feature
space to take into account for color segmentation. On the other
hand, regions with low chromatic content should be segmented by, .

2. COLOR REPRESENTATION

1For convenience, we dropped the scaling factor 13 usually included in
definition of saturation in’v’ coordinates [9].

using luminance information. 2Hue is defined ovej0, 27) and is displayed in such a way that 0 cor-
THIS WORK WAS SUPPORTED BY A UNIVERSITY OF CALIFORNIA responds to black angr to white; similarly, a saturation of value O is
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3. SEGMENTATION ALGORITHM c =~ f(o |V4]). The hue diffusion depends on saturation informa-
tion only through the conductance coefficient: the diffusion is in-
3.1. Anisotropic diffusion of x(x) and £(x) hibited by high saturation values. Instead, the saturation diffusion
shows a negative feedback, weighted by saturation itself, with the
hue gradient; this means that a hue edge tends to contrast satura-
tion diffusion and that this action is more effective at high levels of
‘saturation. 3) In a region where both hue and saturation are almost
constantc ~ 1 and the two chromatic components are decoupled
and diffuse independently at high rate.
The lightness signal(z) is diffused with an analogous pro-

cedure; the signal is embedded in a one-parameter family of “de-

The complex chromaticity:(x) is embedded in a one-parameter
family of “derived” imagesk(z, t), where the parametére R

can be regarded either as time or as an iteration step; more ex
plicitly, this function reads:(z, t) = o(z, t) exp(jd(z,t)). The
anisotropic diffusion of(z, t) is carried out by means of the par-
tial differential equation [3]

5 .
gin(@,t) = div(c(e, 1) Vr(z, 1)), @ rived” images((z, t) and filtered with Eq. (1) by replacing(x)
h . . te o1r vel he di with £(). In this case, the value of the diffusion constants set
wherediv and V. = [5; 5;]" respectively denote the diver- g hesoz of |V{(x)| at each iteration; the number of iterations is

gence and the gradient operators, afd, t) = f(|Vk(x,t)|) is againN; = 30. Fig. 1 shows the diffused lightneég(x) relative

a monotonically decreasing function of the image gradient magni- to ¢() of the same figure. The selective smoothing is apparent in
tude conductance coefficienthosen as(z,t) = (1 + (|Vk(z, all three diffused signals.

t)|/7:)*>)~" [3]. The gradient ofx(x,t) (chromatic gradient
is given byVk(z,t) = (Vo(z,t) + joVi(z,t))exp(jd(x))
and its magnitude iV (z, t)| = (||[Vo(z,1)||* + o*(x, )| VY
(1)) '*. It should be noted that, in the magnitude of the chro- The segmentation of the image(x) is achieved by separately
matic gradient, variations of hue are correctly weighted by the Partitioningsa(x) andés(z), and by combining the two results.
level of color saturation, in agreement with the fact that hue be- The k-means clustering technique of [8] may be used for both these
comes less important at low saturation. For the numerical imple- tasks by conveniently quantizing; () andéa(z), and represent-
mentation of Eq. (1), we have followed the simple discretization N9 them in a palettized format. In fact, the diffusion process, in

3.2. Quantization and clustering

scheme provided by Perona and Malik in [3] with = 30 it- general, produces as many valueslirz), oa(z), andfq(z) as
erations and theiffusion coefficienty, selected as the% of the ~ the product of the image dimensions, and a clustering based on
maximum valud of |V« (x, t)| at each iteration. these functions would be overly computationally intensive. We

Letra() = 04(x) exp(jda(z)) denote the result of the dif- thgs prc_)ceed as follpws. 1_) By inverting the transformation re-
fusion process of(x, t) at timet = N;. Fig. 1 showsd, () and lationships reported in Section 2, frofty(z), o4 (x), and£a(x)
o4(x) relative tod(x) ando (z) of the same figure. we construct the diffused RGB image,(z) = [Ra(z) Ga(x)

A few important observations are in order. First, the formalism Bq(x)]. 2) We then quantizeCy(x) as Cy(z) with N, col-
of complex phasors that we have adopted to model the chromatic®rs (in our implementationlV, = 1024). 3) Finally, we repre-
information of images allows us to carry out the diffusion of an S€Nnt the quantized image in a palettized format [8fadz) =
intrinsically vector-valued function in a “scalar” fashion, without 1 <a(®), Pa, Wy}, where the values taken on by () are point-
resorting toad hoctechniques for vector-valued images [5]. Sec- ©'S t0 alook-up-tabl®, = [x, £,] (a matrix of sizeN, x 2 with
ond, the combined diffusion of hue and saturation through) com.plex entrlgs in the first c_olumn and real entries in the second),
allows us to bypass the possible numerical instabilities associated®s = 7q ©XP (49,), andW, is a vector that contains the number
with the diffusion of hue alone [11]. Third, the beneficial syner- Of PiXels inQq(z) having the values oP,. The signals:, and
gism of hue and saturation components in the diffusion process offs &€ then segmented with the algorithm presented in [8] and the
Eq. (1), which is the main contribution of this work, may be better "€Sults are displayed in last row of Fig. 1.

appreciated by separating the real and imaginary parts of such an BY combining the segmentations of hue, saturation, and light-
equation. By doing so, we get ness of the last row of Fig. 1, we finally obtained the result shown

in Fig. 2. Fig. 2 also reports other examples of segmentation with

%U = div (Vo) — co| | V9|2, various image_s which bear out the effectivene_ss of our algorithm.
@) On the whole, it should be noted that our technique performs pretty
%19 = div (cV0) + 2 (%) V7oV, well. However, there exist some problems of oversegmentation in

regions affected by highlights and shadows (see the images of the
where we have dropped space and time variables for compact-Tuits, of the peppers, and of the wall with the door). These limits
ness. Based upon the system of coupled diffusion equations in2'€ due to the fact that our segmentation algorithm is exclusively
Eq. (2), we can make the following remarks. 1) In a region where féature-based. In order to prevent oversegmentation, one should
hue is almost constan,Vd|| ~ 0; hue and saturation therefore ~€SOrt to physics-based techniques which account for the physical
tend to diffuse independently and the common conductance co-Processes involved in the_lnteractlon of light with mateg( see
efficient depends only on the saturation gradient information be- [12] and references therein).
causec ~ Vol). 2) In a region where saturation is almost
constant,||vf<7(||| ~ |()); in )this casegthe conductance coefficient de- 4. CONCLUSIONS

pends on the hue gradient information weighted by saturation since\ye have presented a new technique for color image segmentation.
3The hue functiond(x) takes on values if0,2n); however, ac- Itis based on t_W° independent diffgsion Processes. one applied to
counting for the circular nature of this quantity, the difference between the chromatic information, conveniently embedded in a complex
91 and9s is defined to bed; — 92 = min(Ad, 27 — A¥) where function; the second applied to the lightness information. The re-
AY = |91 — Do sults of the two diffusions are separately segmented and their com-




Fig. 1. First row: Original hued(x), saturations(x), and lightnesg(x) (from left to right). Second row: Diffused hu&;(x), saturation
o4(x), and lightnesg,(x). Third row: Segmented hug, (), saturationss(x), and lightnesg; (x).

bination allows the color image partitioning. We have reported
some examples verifying the effectiveness of our technique. Fur-
ther details on this segmentation technique can be found in [13].
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Fig. 2. Some examples of segmentation.




