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ABSTRACT 
A novel scheme for image segmentation is presented. The 
technique is based on the integration of ideas from 
geodesic active contours and a recently proposed 
edgeflow segmentation. Given an image a 2-D vector is 
constructed at each pixel location. This vector points in 
the direction of potential boundary pixels. The 
computation of the 2-D vector field is based on image 
intensity, color and texture gradients. Following this, an 
initial curve is instantiated and propagated to separate 
the image into foreground and background regions. The 
curve propagation is guided by the above mentioned 
vector field. The proposed approach thus utilizes an edge-
based segmentation method and extends traditional PDE 
based curve evolution methods to texture image 
segmentation, and avoids the post-processing problems in 
edge linking and boundary detection. 

 

1. INTRODUCTION 
Image segmentation is a basic step in many image 

processing and computer vision tasks. Previous 
approaches to image segmentation include filtering-based 
methods to detect edges followed by edge linking [2], 
curve evolution and active contour models 
[1,4,11,14,15,16], region growing and merging [8], global 
optimization based on energy functions and Bayesian 
criteria [9], and graph partitioning and clustering [10]. 
Some of these methods seek to provide a unified 
framework that enables segmentation based on multiple 
heterogeneous attributes such as texture, color, and gray 
level intensity. 

Curve evolution methods usually result in closed 
contours as opposed to disconnected edges resulting from 
filtering methods. However, their effectiveness in 
segmenting natural images that are rich in texture has not 
been clearly demonstrated. On the other hand some recent 
image segmentation methods have been successfully 
applied to a variety of images. Example for an edge-based 
method is the edgeflow technique [2], which uses a vector 
 
 
 

diffusion method to find edges. Our aim is to create a 
combined method that will result better segmentation 
result that can be applied to a vast variety of images. 

The rest of the paper is organized as follows. We 
review active contour methods and edgeflow methods in 
section 2. In section 3, we present an edge-based hybrid 
approach to segmentation using edgeflow and geometric 
active contours. In section 4 we represent some 
experimental results and conclude with discussions and 
future work in section 5. 
 
2. PREVIOUS WORK 

Active contours and curve evolution methods usually 
define an initial contour 0C  and deform it towards the 
object boundary. The problem is usually formulated using 
partial differential equations (PDE).  The previous 
research follows two different paths in terms of 
representation and implementation of active contours, 
namely parametric active contours (PACs) and geometric 
active contours (GACs). PACs use a parametric 
representation of the curves and GACs utilize level set 
methods [3,6]. Level set methods can easily handle 
topology changes of the evolving contour such as splitting 
and merging, and singularities on the curve such as sharp 
corners. Recently some connections between these two 
methods have been established [1, 7]. We will focus more 
on the previous work on the GACs in this paper. A 
summary and comparison of both GACs and PACs can be 
found in [7]. 

Curve evolution methods can be classified into 
several groups: edge-based [1,4,11], region-based [14,15] 
and hybrid [16] active contours.  

Edge-based active contours aim to identify an object 
in an image by utilizing the local discontinuities of the 
image. The idea is to try to fit an initial closed contour to 
an edge function generated from the original image. The 
edges in this edge function are not connected, so they don't 
identify regions by themselves. An initial closed contour is 
slowly modified to fit on the nearby edges in an optimal 
way. Most of these methods require the curve to be 
initialized close to the real object boundary.  

 



Let 2( ) : [0,1]C ϕ → ℜ  be a parameterization of a 2-D 
closed curve. A fairly general curve evolution can be 
written as: 

 ( ) ( )C N S N N
t

α βκ∂ = + + ⋅
∂

!! ! !
  (1) 

where κ  is the curvature of the curve, N
!

 is the normal 
vector to the curve, ,α β  are constants, and S

!
 is an 

underlying velocity field whose direction and strength 
depend on the time and position but not on the curve front 
itself. This equation will evolve the curve in the normal 
direction. The first term is a constant speed parameter that 
expands or shrinks the curve, second term uses the 
curvature to make sure that the curve stays smooth at all 
times and the third term guides the curve according to an 
independent velocity field. 

In their independent and parallel works, Caselles et al. 
[11] and Malladi et al. [4] are among the first to use level 
set methods to extract objects from an image. They 
initialize a small curve inside one of the object regions and 
let the curve evolve until it reaches the object boundary. 
The evolution of the curve is controlled by the local 
gradient. This can be formulated by modifying (1) as: 

( )C g F N
t

εκ∂ = +
∂

!
   (2) 

where ,F ε  are constants, and ( )ˆ1/ 1g I= + ∇ . Î  is the 

Gaussian smoothed image. If F is positive, the curve 
expands and if F is negative the curve shrinks. This is a 
pure geometric approach and the edge function, g, is the 
only connection to the image. The problem with this setup 
is that if the curve propagates beyond the desired 
boundary, there is no mechanism to attract the curve back 
to that object boundary. 

Caselles et al. [1] introduced geodesic active 
contours, which is an improvement over the previous 
active contour methods. Starting with the snakes problem 
defined by Kass et al. [5], they reformulated the energy 
functional as a geodesic computation in a Riemannian 
space and found the following gradient descend equation: 

 ( ) ( )C g F N g N N
t

κ∂ = + − ∇ ⋅
∂

! ! !
  (3) 

Here g∇  defines a vector field on the pixels of the image. 
The corresponding vectors point normal towards the 
closest boundary or edge. The vectors are defined along a 
thin strip at both sides of the boundaries and their 
magnitude is zero or insignificant in other areas. The 
advantage of this method over the pure geometric 
approaches is that even if the curve propagates beyond the 
boundary, the g∇  term in (3) pulls the curve back 
towards the boundary. Even though an improvement over 

previous methods, this method is still prone to boundary 
leaking as shown in [17]. 

Edgeflow image segmentation [2] is a recently 
proposed method that is based on filtering and vector 
diffusion techniques. Its effectiveness has been 
demonstrated on a large class of images. It features 
multiscale capabilities and uses multiple image attributes 
such as intensity, texture or color. As a first step, a vector 
field is defined on the pixels of the image grid (Fig 1b). At 
each pixel, the vector’s direction is oriented towards the 
closest image discontinuity at a predefined scale. The 
magnitude of the vectors depends on the strength and the 
distance of the discontinuity. After generating this vector 
field, a vector diffusion algorithm is applied to detect the 
edges. This step is followed by edge linking and region 
merging to achieve a partitioning of the image. Details can 
be found at [2]. 
 
3. COMBINING EDGEFLOW AND GAC 

Much of the previous work on curve evolution has 
emphasized the geometrical nature of the segmentation 
problem while not paying attention to the diverse set of 
image attributes that need to be considered in segmenting 
an image.  The recently proposed edgeflow method is 
quite effective on a large and diverse class of images, but 
requires post processing to detect closed contours. One of 
the contributions of our proposed method is to bring 
together the effectiveness of these two methods—the curve 
evolution and edgeflow techniques—in obtaining better 
segmentation results. 

Most of the edge-based geometric active contours 
(GACs) make use of an edge function g  and almost all of 

the active contours use an external force field extF
!

. The 
purpose of the edge function is to stop or slow down the 
evolving contour when it is close to an edge. So g is 
defined to be 0 on the edges and 1 on homogeneous areas. 
The external force extF

!
 is designed to attract the active 

contour towards the boundaries. At each pixel, the force 
vectors point towards the closest boundary on the image. 
Most of the research on parametric active contours (PACs) 
aims at designing external force fields to achieve better 
segmentation results. On the other hand in the formulation 
of GACs an edge function g is designed and the force field 
is usually generated as extF g= ∇

!
 following the derivation 

of the geodesic active contours. So in the case of GACs, 
the external force field is tightly connected to the edge 
function g and the effort usually goes into the design of the 
edge function. Most commonly the edge function is 

defined as ( )ˆ1/ 1g I= + ∇ . It has been shown in [7] with 

comparison to its counterparts that custom designing extF
!

 
can lead to better results and fix the shortcomings of 



geometric active contours such as boundary leaking. Only 
recently this external force field borrowed from PACs is 
integrated to GACs [12]. One of the shortcomings in the 
design of both edge functions and external forces is that 
they depend directly on the image gradients as the 
boundary locations even though it has been shown that the 
image gradient is very sensitive to the noise and is not very 
reliable. 

We use the edgeflow vector field as our external force 
field in a geometric active contour formulation. Similar to 
other external force fields, edgeflow vectors also designed 
to point towards the closest boundaries. One of the 
advantages of edgeflow is that it doesn’t depend directly 
on image gradients, it can be adjusted to different scales, 
and it is easily extendible to color and texture images. 

Differing from the design of the GACs, we start with 
edgeflow vector field S

!
 as our force field, and generate 

an edge function V  from it (Fig 1). On the other hand, 
unlike the formulation of PACs, we utilize an edge 
function in the curve evolution. 

Having generated both the edge function and the 
external force field, our proposed curve evolution equation 
is 

 ( )C V N S N N V N
t

α κ∂ = + ⋅ +
∂

!! ! ! !
  (4)  

where α  is a constant, V is an edge function 0 along the 
edges and 1 on the homogenous areas, S

!
 is the edgeflow 

vector field, κ  is the curvature, and N
!

 is the normal to 
the curve. 

Edgeflow vectors can also be calculated based on the 
image features such as pixel intensity, color, texture or 
combinations of them. Unlike other edge-based active 
contour methods, applying our segmentation method to 
texture or color images doesn’t require any changes in the 
formulation of the curve evolution or in the 
implementation of it. This is because the flow vector 
calculation is separated from the curve evolution. 

 
4. EXPERIMENTAL RESULTS 

The implementation of our proposed method consists 
of two steps. In the first step, the edgeflow vectors and an 
edge function are generated. These outputs are used in the 
second step wherein a manually instantiated curve is 
propagated according to (4).  

First, the edgeflow vectors are calculated using a 
predefined scale parameter. This vector field calculation is 
conducted using intensity, color, or texture features or a 
combination of them depending on the type of the image. 
For a detailed discussion of edgeflow computations we 
refer to [2]. After calculating the edgeflow vector field S

!
, 

the edge function V is derived as follows 

 1
1

V
S

=
+
!  (5) 

We use the well-known level set method formulation 
[3,6] to implement the curve evolution in (4). This 
requires defining a corresponding level set function U that 
embeds C as its zero level set and the time evolution of U. 
The level set equation corresponding to (4) is 

 ( )U V U S U
t

α κ∂ = + ∇ + ⋅ ∇
∂

!
  (6) 

Here U is a 3-D function where U(x, y) = 0 defines the 
evolving curve. U is generated from the initial curve using 
the signed distance function:  

 ( , , 0)U x y t d= = ±    (7) 
where d is the distance from ( , )x y  to C  and the sign is 
chosen positive if ( , )x y  is outside the contour C  and 
negative if inside the  contour. At each iteration, the time 
step is normalized as 
 1/ abs max( ( ) / )t V S U Uα κ∆ ≤ + + ⋅∇ ∇

!
 (8) 

to optimize for the speed of the convergence while 
keeping the stability by satisfying the Courant-Friedrichs-
Levy (CFL) condition. 

We have tested the segmentation method on different 
data sets. Segmentation result on a synthetic aperture radar 
image is shown in Fig. 2. Edgeflow vectors are calculated 
using texture features and an initial contour is shrunk to 
segment the object of interest. 

Fig. 3 shows segmentation of a mammogram image. 
The objective is to extract the boundaries of the cyst in 
this image. The edgeflow vectors are calculated at three 
different scales ranging from a coarse scale to a fine scale, 
and the corresponding segmentation results are shown in 
Fig. 3(c-e). 

Fig. 4 shows segmentation of a natural image using 
color and texture features. A small contour is initialized 
inside the tiger (Fig. 4b) and the corresponding 
segmentation result is shown in Fig. 4c. Another active 
contour is initialized on the background of the image. 
Corresponding curve evolutions and the segmentation 
result can be seen in Fig 4(e-g). 
 
5. DISCUSSION 

We have presented a semi-automated segmentation 
method using active contours framework with a variety of 
image features. Using texture and color features, active 
contours are successfully applied to a diverse set of 
images, such as synthetic aperture radar, medical and 
natural images. In our method, the vector field generation 
is separated from the curve evolution. This makes better 
designs of vector fields possible. We used edgeflow vector 
field in our implementation but any vector field with 
similar characteristics could be used such as [13]. We are 



currently investigating automated contour initialization 
and also the integration of image region properties with 
edge information. 
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Fig. 1. (a) Image of blood cells. (b) Edgeflow vector field corresponding to the rectangle on the image. (c) Edge 
function of the image generated from edgeflow vectors. 

(a) (c) (b)



 
 
 

                           Fig. 2. (a) SAR image. (b) Initial contour. (c) Final boundary. 

(a) (b) (c)

Fig. 3. (a) A mammogram image. (b) A contour is initialized inside the cyst. (c-e) Segmentation results corresponding 
to three different scales ranging from coarse to fine. 

(b) (c) (d) (e) (a) 

Fig. 4. Segmentation results of a natural image (a) using color and texture features. (b) A contour is initialized inside the 
tiger. (c) Active contour expands and finds the object boundary. (d) A contour is initialized on the background.  
(e-f) Evolution of the contour while it expands. (g) Final segmentation result. 

(a) (c) 

(d) 

(b)

(f) 

(g) 

(e) 


