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Abstract

A novel boundary detection Beme based on “edgflow” is pioposed in this papefhis sbeme
utilizes a pedictive coding model to identify the efition of bange in color and teture at eab
image location at a given scaland constructs an eddlow vectarBy itematively popagating the
edee flow the boundaries can be detected atgmbocations whils encounter two opposite dir-
tions of flow in the stable stat& user defined inge scale is the only significant cooitparameter
that is needed by the algorithm. Théame facilitates inggation of color and teture into a sin-

gle framevork for boundary detection.

1 Introduction

In most computer vision applications, the edge/boundary detection and irgageEnsation constitute
a crucial initial step before performing highwdtasks such as object recognition and scene interpretation.
In the image analysis literature, typicallygagentation performanceas demonstrated on &ry small
example set of images. Lge scale image database annotation demandstress with ery little parame-
ter tuning @er a wide range of image data.

While considerable research and progress Hseen made in the area of imaggnsentation, the
robustness and generality of the algorithms ongelaariety of image data ka not been established. One
of the dificulties arises from thatt that most natural images are usually madewbus types of bound-

aries created by changes in cues such as, ¢etture, or phase. Thus the algorithm needs to consider all
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these diferent types of image attukes together in order togment real natural images. Furthermore,
image sgmentation itself is an ill-posed problem. It often requires additional information from the user in
order to select a proper scale for detecting edges and boundaries, andjthestiag the rgions of inter-
est. For example, Figurel(a) shavs an image which contains diudifferent “beans” rgions. One might
consider each bean as an indiual object and obtain a result similar to Figlife), or might consider each
“beans” rgion as a teture and get a genentation lile in Figurel(c).

In order to deelop a sgmentation algorithm which is capable of processingeland dierse collec-
tions of images, a general frammrk of boundary detection and imaggsentation callededge flow is
proposed in this papefhis framevork utilizes a predictie coding model to identify and imfeate the
direction of change inarious types of image atttites (coloy texture, and phase discontinuity) at each
image location, and constructs an edges flector which points to the closest image boundByyitera-
tively propa@ting the edge fis, the boundaries can be detected at image locations which encounmter tw
opposite directions of flw in the stable state. Furthermore, this whole process including image smoothing
and featurexraction is designed in aay that it can be controlled by a scale parameter and, therefore, the
algorithm can adapt itself to satisfy the usgrreference in ginenting the rgions of interest. Figurg(b)
and (c) actually shw the results of the proposed algorithm by selectirfgrdifit scale parameters to obtain

appropriate sgmentations.

2 Previous Work

In this section we briefly weew the preious work on edge/boundary detection and imaggrenta-
tion. Previous work on sgmentation can be broadly classified intmtmain catgories: the first one
focuses on the detection and localization of intensity/color discontinuities, and the second one considers

the partition of an image into homogeneougaes.

2.1 Edge Detection

Much of the research on edge detection has be@tatkto the deelopment of optimal edge detec-

tors which preide the best trade-obetween the detection and localization performance [4, 6, 18, 21]. A
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common straigy in designing such edge operators is to find the filter which optimizes the performance
with respect to the three criteria: good detection, good localization, and a unigue response to a single edge.
In [4] Canry shaved that the optimal detector can be approximated by the firsatheziof a Gaussian.

By convolving the image with this filtethe edge detection is egalent to finding the maxima in gradient
magnitude of a Gaussian-smoothed image in the appropriate direction.

Detecting and combining edges at multiple resolutions and scales is another important issue in edge
detection [4, 18, 25]. The scale-space technique introducedtkin{25] involves generating coarser res-
olution images by camlving the original images with a Gaussian smoothiexné&l.

The rgularization theory has also been frequently used in helping the design of edge detection algo-
rithms [24]. Gokmen and Jain [9] recently proposed an image representation caNeesfiaee represen-
tation using this theonBased on this model, thelevelop a generalized edge detector which encompasses

most of the well-knan edge detectors under a common fraom.

2.2 Texture Segmentation

The goal of teture sgmentation is to partition an image into homogeneogi®me and identify the
boundaries which separatayiens of diferent textures. Sgmentation is obtained either by considering a
gradient in the tdure feature space [8, 12, 15], or by unsupervised clustering [1, 7, 10], oiurg telas-
sification [17]. Sgmentation by labelling often dafs from a poor localization performance because of
the conflicting requirements ofg®n labeling and boundary localization in terms of the oladienv
neighborhood (windw size) [26]. Unsupervised clusteringgseentation requires an initial estimate of the
number of the gions in the image, which is obtained mostly by setting a threshold in the feature cluster-
ing algorithm. Havever, estimating the number ofgiens is a dficult problem and the results are usually
not reliable.

The idea of anisotropic difsion has also been recently utilized to detedute boundaries by coa-
lescing teture features in image feature space [20]. The glydt®t is used in [20] is toceend the notion
of edge-preserving smoothing and anisotropiéugibn from image intensities to featurectors that
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describe the taural content of each image patch. Thdudifon encourages intragien feature smoothing
in preference to intergion feature smoothing. Thus, the featurdéetiénce across wtexture reyions will

remain “sharp” during the smoothing process.

2.3 Edge Flav and Anisotropic Diffusion

The edge flae scheme proposed in the falling has certain similarities to anisotropicfd#ion meth-
ods discussed in [19, 20].&/ummarize the basic fdifences between thedvapproaches in beio

First, the scale parameter in edgevfie mainly controlled by users to decide what scale should be
used to distinguish object andxtaere, and therefore, appropriatexttee features can be computed.
Although a single parameter is used in edgw, fibeffectively controls a range of scales foxtige. Exen
though the scale fafcts smoothing, no specific noise model or blur estimation is used in scale selection.

Secondly the local edge engy is iteratvely propa@ted to one of its neighbors in the edgevflo
model. The direction of local edgeilas determined to point to the closest boundaries based on the pre-
diction errors, and the goal of thisvlgpropagtion is to accumulate the local edge gies tavard their
closest image boundaries. In contrast, in anisotropigsiliin the local image intensity is filifed to all its
neighbors when theaviance of Gaussian smoothingrikel increases. A spatiallamying difusion coefi-
cient controls the rate at whichfdis$ion occurs near the edges.

Finally, to the best of our kmdedge, the performance of filiion type algorithms has not been dem-
onstrated on anlarge image data sets.

3 “Edge Flow”

In this section the general concept of edge flofirst outlined and a detailed implementation of it is
illustrated and xplained. Taditionally edges are located at the local maxima of the gradient in intensity/
image feature space. In contrast, in our approach the detection and localization of edges (or image bound-
aries in a more general sense) are performed indirectly: first by identifying difection at each pet
location that points to the closest boundary; thenvi@tb by the detection of locations that encounter tw

opposite directions of edge floSince ag of the image attrilies such as colatexture, or their combina-
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tion can be used to define the edgesfliis scheme prades a general fram@rk for integrating diferent

types of image information for boundary detection.

3.1 Definition of the Edge Flav

Let us define the general form of edgevfieector F at image locatiors with an orientatior as:

F(s,8) = F[E(s,0),P(s,0),P(s, 6+1m)] (1)

where

* E(s, 0) isthe edge engy at locations along the orientatio .

* P(s, 8) represents the probability of finding the image boundary if the correspondingt floca-
tion s “flows” in the direction9.

* P(s, 6+ m) represents the probability of finding the image boundary if the correspondinatflo

locations flows backvards, i.e., in the directiof + Tt.

The first componenE(s, 8) of edge flav is used to measure the egeof local image information
change (such as intensity/cqltexture, and phase digrence), and the remainingawomponent$(s, 8)
andP(s, 6 + 1) are used to represent the probability ofvfitirection. The basic steps for detecting image
boundaries is summarized as folk

* At each image location, we first compute its local edgeggreard estimate the correspondingvfio

direction.

* The local edge engy is iteratvely propagted to its neighbor if the edgevilof the corresponding

neighbor points in a similar direction.

* The edge engy stops propagging to its neighbor if the corresponding neighbor has an opposite

direction of edge fl. In this case, these btwmage locations ve both their edge fles pointing at

each other indicating the presence of a boundary betweendhpxais.



 After the flav propagtion reaches a stable state, all the local edggiesexill be accumulated at
the nearest image boundaries. The boundanggnethen defined as the sum of thevflenegies
from either side of the boundary

Some Definitions

A two dimensional isotropic Gaussian function is defined as

Gy(xy) = (1/(4210))exp[—(X" +y*)/207] . )

The first denative of Gaussian (GD) along the x-axis igegi by

0G(x,
GD4(xy) = # = —5G4(x V), (3)
()

and the diference of dket Gaussian (DOOG) along the x-axis is defined as:

DOOGO'(X1 y) = GO'(X1 y) - GO'(X + d’ y) (4)
whered is the ofset between centers of awGaussianérnel and is chosen proportionaldo By rotating
these tw functions, we generate anhily of the Gaussian dedtive and the dierence of dset Gaussian
functions along dferent orientation® :

GDO" e(xl y) = GDO'(le y') ’ (5)
DOOGO' o(X,y) = DOOG(X,Y),

X = xcosB+ysinB, y = —xsin@ + ycosH.

Note that the parametear is clearly denoted for all the ptieus functions. As can be seen latis
parameter will correspond to the scale (or resolutiom@) lat which the boundary detection and imagg se

mentation are conducted.

3.2 Intensity Edge Flov
Computing E(s, 0):

Now consider an image at avgh scales asl ;(x, y), which is obtained by smoothing the original
image | (x, y) with a Gaussiandenel G (x,y). The scale parameter will control both the edgegner

computation and the local flodirection estimation, so that only edgegéarthan the specified scale are



detected. The edge ¥loenegy E(s, 8) at scaleo is defined to be the magnitude of the gradient of the

smoothed imagé (X, y) along the orientatioR :

_ o _ |9 . _ 9
£(56) = [To1o(xy)| = [l 0x )+ Gy(x )] = [1(x )% 2:Go(xY) (6)
wheres = (X, y) andn represents the unitetor in the gradient direction.adan revrite (6) as
E(s 0) = [I(x, ¥)* GDg (X y)|- (7)
This edge engy indicates the strength of the intensity change.yMaisting edge detectors actually use
similar operations to identify the local maxima of intensity changes as edges. The distinguishing part of the
edge flov model is that the edge eggtis represented as avlowector by assigning probabilities to itsvlo
directions. Boundary detection itself is formulated as a dynamic process wherein the local eglgs ener

flowin the direction of most probable image boundaries closest to the corresponding locations.

Computing P(s, 8):
For each of the edge eggralong the orientatiofi at locations, we nav consider tw possible flav
directions; the fonard (8) and the backard (0 + 1), and estimate the probability of finding the nearest
boundary in each of these directions. These probabilities can be obtained by looking into the prediction
errors tevard the surrounding neighbors in theotdirections. Consider the use of image information at
location s to predict its neighbor in the directidh. Ideally thg should hae similar intensity if thg
belong to the same object and the prediction error can thus be computed as
Error(s,0) = |I o(x+dcosB, y +dsin8) —1 ;(x, y)|

= ||(x, y)* DOOG, 4(X, y)| ®)

whered is the distance of the prediction, and which should be proportional to the scale at which the image
is being analyzed. In thexgeriments we choosg = 4c. A large prediction error in a certain direction

implies a higher probability of finding a boundary in that direction. Therefore, the probabilities of edge

flow direction are assigned in proportion to their corresponding prediction errors:

Error(s, 0)
Error(s, 0) + Error(s, 8 + m)

7
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The idea of this approach to computing thevflarobabilities comes from [5, 23]. It has been sug-
gested that the human visual system uses a predimdiding model to process image information. This
model (although the detailgry) has been successfully used in interpretingymégion phenomena such
as the retinal inhibitory interactions [23], and the codingxttited patterns [5].

Figure2 shavs the computation oE(s, 8) and P(s, 8) using the GD and the DOOG functions.
Notice the relatie positioning of the tae DOOG filters with respect to avgn piel location(x, y) . As
mentioned earlieithis ofset depends on the scale parameter

Figure3 shavs a comparison of the edgewionodel with the corentional approaches to detecting
edges. Instead of seeking the local maxima of the intensity gradient magnitude (or finding the zero-cross-
ings of the second dedtive of image intensity), we construct theafleectors whose engy is equvalent
to the magnitude of the intensity gradient and whose direction is estimated by the prediction errors. As can
be seen from Figurg), the edge fles on the right side of boundary alMezatheir directions pointing to
the left becaus®(left) > P(right) in that rgion, and the edge fis on the left side all point to the right
because oP(right) > P(left) . After the flav is propagted (see Sectids) and reaches a stable state, the
edge locations are identified as those places wheyeopposite edge fles meet each otheand the
boundary engy is equal to the inggation of the gradient magnitude (shaded area). Kaimple illus-
trates that the edge flomodel gves identical results as a zero crossing for noise-free step edges (this
result can also be easily dexdl analytically using (7)-(9)). heever, real images usually do not contain

such ideal edges.

3.3 Texture Edge Flow

Much of the same formulation of Section 3.2 for intensity edges camgesmimage attribtes such
as color and teure. In this section we considextered images and compute thgttee edge flov using
the directional gradient in thextiere feature maps.

The texture features arexracted based on a Gaboawelet decomposition scheme proposed in [16].
However, in contrast with the use of adid set of Gabor filters for computing thettee features, the bank
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of Gabor filters used here are generated according to the scale paransgtecified by the useThis
parameter defines the resolution at which the image boundaries are considered. Therefore, only the pat-
terns with sizes smaller than that scale are considered as elementstofea(ie., tgels), and aything

larger than that scale will be treated as an object.

The stratgy for Gabor filter bank design proposed in [16] is particularly useful for this purpose.
Given the scale parameter, define the lavest center frequegcU, of the Gabor filters to b&/ (40)
cycles/piel. This alue is based on the consideration of the Gaussian smoothingwmémdiothe distance
d = 40 used in computing the prediction erreo that the windm size cwers at least oneycle of the
lowest spatial frequeyc Furthermore, the highest center frequehk;, is set to 0.45yxcles/piel. The
number of scale$ in the filters is determined according to therést center frequesdJ, so that the fil-
ters caoer the spectrum appropriately ranges from 1 for the small scale to 5 for thgdascale. The hum-
ber of orientation¥ is fixed to 6 in the xperiments. Figurd shavs the Burier transforms of the Gabor
filter banks which are generated forfeient \alue of 0. See Appendix A for a more detailedpanation
of the Gabor filter bank design.

The compl& Gabor filtered images can be written as:

Oi(x y)= 1(x y)* gi(x y)=m(x, y)exp[@(x, ¥)] (10)
wherel<i<N, N = S[K is the total number of filtersn(x, y) is the amplitude, ang(x, y) is the
phase. By taking the amplitude of the filtered output acrofestift filters at the same locati¢r, y) , we
form a teture feature gctor

WX y) = [my(xy), my(X, y), ..., my(x, )] (11)
which characterizes the local spectral gres in diferent spatial frequegcbands. Br most of the te
tured rgions, this featureactor is good enough for distinguishing their underlying pattern structure. Some
exceptions are illusory boundaries such as the ones in RBgeeln this case, the phase information

{o(x, y)} has to be incorporated in order to detect the discontindéywill discuss this in Sectiad4. In



the following, let us first consider the formulation of edgevfle(s, 8) using the teture featuresV. The

texture edge engy, which is used to measure the change in logélite information, is gien by

E(s8) = |mi(x, y)* GDg o(X, y)| O, (12)
1<i<N

wherew; = 1/||0(i|| and||ai|| is the total engyy of the subband. The weighting coditientsw; normal-
ize the contrilation of edge engy from the warious frequencbands.
Similar to the intensity edge fig the direction of teture edge flov can be estimated based on the te

ture prediction error at a\@n location:

Error(s,8)= 5 |mi(x,y)*x DOOG; o(x, y)| (W, (13)
1<i<N

which is the weighted sum of prediction errors from eagtute feature map. Thus, the probabilities

P(s, 8) andP(s, 8 + 1) of the flav direction can be estimated using (9).

3.4 Edge Flow Based on Gabor Phase

In this section, the phase information of Gabor filter output is used to construct an edigdléor
detecting boundaries. 8\have not found much use of phase information at this time on real imageiseb
scheme does deteary accurately the illusory boundaries winan Figure8 and Figure.

From (10), the compleGabor filtered image can be written as

O(x,y) = Re(x,y) +jm(x y) (14)

whereRe(x, y) andIm(x, y) represent the real and imaginary parts of Gabor filtered output, respecti

The phase of the filtered image can kpressed as:

o(x,y) = atafIm(x, y)/Re(x,y)]. (15)
This phase information will contain discontinuitiesat because the operation ovarse tangent only

provides the principal alue of the phase. In order to compuéx, y) without discontinuity phase
unwrapping is required. A general statdor solving the unwrapping problem is to add or subtgact

from the part of phase function that lies after a discontinditwever, this phase unwrapping problem can
become ery difficult if too mary zero points (both the real and imaginary parts are zero here, and there-

fore, the phase is undefined) are in the image [23].
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The unwrapped phase can be decomposed into a global linear phase component and a local phase
component. The local phase contains information about the locations wherguhe peoperty changes.
In other words, within a uniform teured rgion, the phase(x, y) will vary linearly and it changes its
varying rate when a boundary betweelfiedént texture ragions is crossed. As a result, the local phase has
been used in martexture sgmentation schemes [1, 2, 3].
In order to compute the edgeviidield using the phase information, there are fwoblems that we
have to consider here. First, wevesto compute the phase deatives without unwrapping the phase. Sec-
ond, instead of just using the DOOG functions to compute the predictionveerbizve to include a first-
order predictor to compensate for the global linear phase component.

Consider the formula

%(atar(X) = 1/(1+x). (16)

Assuming the devative of the phasexists everywhere, we can compute the phasevdévie using the fol-

lowing equation without going through the phase unwrapping procedure:

0 . 0 2

S0(x,y) = imag OC(x,y) G-O(x,y) |/ m(x, y) (17)
where* is compla conjugate. The phase dedtive with respect to anarbitrary orientation can be com-
puted in a similar manner

Without loss of the generalijtyve first consider the design of a linear phase predictor along the x axis

ax+ay) = g y)+arllelxy), (18)

and therefore, the prediction error is equal to

- 0
Error = @(x+a,y) —o(X,y) aDa—X(P(X, y). (19)
However, because the first wterms in equation (19) are wrapped phases, the prediction error has to be
further corrected by adding or subtracti?mg such that it alays lies betweerTt and1t. Because the lin-

ear component of the phase has been verhby the first-order predictahe magnitude of the prediction
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error is usually much smaller than As a result, the prediction error contribd by the2mt phase wrap-
ping can be easily identified and corrected. The general form of computing the phase prediction error can

be written as

Error(s,0) = ‘(p(x +alosh, y + a [kinod) (20)

— 90, y) —a a(x,y) + 21k(x,Y)

where n = (cos9, sin@) and k(x,y) is an intger which ensures that the prediction error isagk
between—1t and 1. One can use the second dative of the phase to compute the corresponding phase
edge enayy. However, for simplicity in implementation, we directly use the prediction error to represent
the phase “edge” ergy.

4 EdgeFlow Integration

4.1 Combining Different Types of Edge Flows

The edge flas obtained from diérent types of image attukes can be combined together to form a

single edge fiw field for boundary detection. Consider

E(s,0) = Y E,(s 6)n(a), and Yy w(a) =1 (21)
alTA alTA
P(s 8) = > P4(s 0) tw(a) (22)
alTa

whereE (s, 8) andP,(s, 8) represent the ergy and probability of the edge Wlocomputed from image
attribute a, a [ {intesity/color, texture, and phgs. w(a) is the weighting coéitient associated with
image attrilite a.

Now let us consider the use of combined color artlite information for boundary detectiororFa
given color image, the intensity edgewllcan be computed in each of three color bands (R, G, B) using
(7), (8), and (9), and thextire edge flw can be calculated from the illuminante= (R+ G+ B)/3.

Then the werall edge flow can be obtained by combining them as in (21) and (22) with
A = {red, green, blue, texture. In  the follaving  eperiments w(texture = 0.4 and

w(red) = w(green = w(blue) = 0.2.
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4.2 Combining Edge Flows from Different Directions

In the xample of Figures, the final direction of edge float each location is simply determined by
selecting the direction with Iger probability because there are only t@ossible directions to be consid-
ered in the 1-D case. Mever, for a given image, the computed edgenffocan range from O ta. In order
to identify the best direction for searching for the nearest bourtiarfolloving scheme is used:

Suppose we hva edge flas { F[E(s, 8), P(s, 0), P(s, 8 + )] |OS 9<n} , we first identify a continu-
ous range of fl directions which maximizes the sum of probabilities in that half plane:

O(s) = argmax% > P(s, 6')E (23)
¢] O

D6s6'<9+1'r

Then, the final resulting edgeilas defined to be theeetor sum of the edge ¥l with their directions in

the identified range, and isvgh by

F(s) = S E(s, 6) Cexp(j0), (24)
O(s)<B<O(s)+T1

whereF (s) is a complg number with its magnitude representing the resulting edggyeaed angle rep-
resenting the fl direction. Figurés(a)-(b) shav an example of the final edge s after combining dif-
ferent directions of edge fis (scalec = 2 pixels). As can be seen, the direction of each local edge flo
points to its nearest boundary
5 Edge Flow Propagation and Boundary Detection

After the edge flw F(s) of an image is computed, boundary detection can be performed by itera-
tively propagting the edge fls and identifying the locations where dwopposite direction of fles
encounter each othekt each location, the local edgewias transmitted to its neighbor in the direction of
flow if the neighbor also has a similanflalirection (the angle between them is less than §6eds). The
steps are:

1. Setn = 0 andF(s) = F(s).

2. Set the initial edge flo Ifn +1(s) attimen+ 1 to zero.
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3. At each image locatios, identify the neighbos = (X, y') which is in the direction of edge Wlo
Fn(s),i.e.,OF(s) = atarg,—:ig.

4. Propagte the edge lif F(S) [Fp(S) > 0: Fpr41(S) = Fp41(S) + Fr(s); otherwise the edge
flow stay at its original locatiorf 4 1(S) = Fp+1(S) + Fp(S).

5. If nothing has been changed, stop the iteration. Otherwise,seat + 1 and go to the step 2 and

repeat the process.

Once the edge flo propagtion reaches a stable state, we can detect the image boundaries by identi-
fying the locations which W& non-zero edge fles coming from tw opposing directions. Let us first
define the edge signals(x, y) andH(x, y) as the ertical and horizontal edge maps between image pix-
els as shon in Figure6(a), and let

F = (h(x ). v(x,y)) = (real(F(s)), imag(F(s))) (25)
be the final stable edge\lqsee Figur&(b)). Then, the edge signadlfx, y) andH(x, y) will be turned
on if and only if the tw neighboring edge fles point at each othe®nce the edge signal is on, its gyer

is defined to be the summation of the projections of thosetge flavs tovards it. Summarizing:

* Turn on the edg® (%, y) if and only ifh(x—1,y) >0 andh(x, y) <0; then

V(xy) = h(x=1,y)-h(xy).
* Turn on the edgél (%, y) if and only ifv(x, y—1) >0 and v(x,y) <0; then

H(xy) = v(x, y—-1)-v(xy).
Figure6(c) shavs an @ample of boundary detection. Note that only the edge signals witloywosite

directions of flev from their neighboring peds are turned on.

After the edge signals are detected, the connected edges are used to form a,bobosaney is
defined to be thevarage of its edge signalé(x, y) andH(x, y). A certain threshold for the emgris
used to remee weak boundaries.

Figure5(c) shavs an @ample of the edge flo propagtion using the flwer image. As can be seen,

the edge flos are concentrated only along th@tswes of the image boundaries with thewflirections
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pointing at each otheFigure5(d) illustrates the result of boundary detection after turning on the edge sig-

nals between tevopposite directions of edgels.

6 Boundary Connection and Region Merging

After boundary detection, disjoint boundaries are connected to form closed contours and result in a
number of image gtons. The basic strayg for connecting the boundaries are summarized asvigllo
* For each open contguwve associate a neighborhood search size proportional to the length of the
contour This neighborhood is defined as a half circle with its center located at the unconnected end
of the contour
* The nearest boundary element which is within the half circle is identified.
* If such a boundary element is found, a smooth boundgryesa is generated to connect the open
contour to the nearest boundary element.
* This process is repeatedvf@imes (typically 2-3 times) till all salient open contours are closed.
At the end, a gion meging algorithm is used to g similar rgions based on a measurement that
evaluates the distances ofjren color and teture features, the sizes ofjyrens, and the percentage of orig-
inal boundary between the dweighboring rgions. This algorithm sequentially reduces the total number
of regions each time by checking if the usepreferred number has been approached to thetest.e
Figure7(a)-(b) shavs an gample of boundary detection after the edgw flmopagtion. The disjointed
boundaries are connected to form closed contours and result in an initial igag&dion as sk in
Figure7(c). This initial sgmentation is further processed by thgiwa meging algorithm to group similar

regions, and the final geentation result is illustrated in Figuré&d).

7 Experimental Results

Figure8 shavs three images which contain intensigxture, and illusory boundaries respeetly.
The scheme described in Sect®ris used to construct the edgewfléield for these dferent image
attributes. The final ggmentation results after the post-processing (edgeditopagtion, boundary detec-

tion, boundary connection, andgien meging) are illustrated. As can be seen, these three images, which
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traditionally require dferent algorithms to ggnent, can no be processed under the same fraork
using the edge fl@ model. Figuré® shavs fev more sgmentation results on some typical images pub-

lished in the literature.

7.1 Segmenting Natural Color Photographs

We have applied this sgmentation algorithm to genent about 2,500 real natural images from Corel
color photo CDs (@lume 7,Nature). To the best of our knwdedge, this is first time that a general-purpose
segmentation algorithm has been demonstrated on suclge éanrd dierse collection of real natural
images. The usefulness of the proposed scheme lies iactithdt ery little parameter tuning or selection

is needed. The three parameters controllimggnentation are

1. Image attrihtes to be used to detect boundaries: color (gray intensitt)réeor combination of

color and teture.
2. The preferred scale to localize the desirable image boundaries.

3. The approximate number ofgiens (for the rgion meging algorithm).

Each photo CD contains 100 images, and the same parameters were used for the entire image/set on a gi

CD. The aperimental results indicate that the proposed algorithm resulted in visually acceptable perfor-

mance on this derse image collection. Figul® shavs some of the image gmentation results.

The average computational time forggaenting al28x 192 color image on a SUN Sparc2@sksta-
tion is about 4-10 minutes, depending on the types of imageutgsibsed for constructing the edgevflo
The tture edge flov is computationally morexpensve because it requires the Gabor filtering as a pre-
processing toxdract features and the prediction has to be performed in each of the feature planes.

An image retrigal system which utilizes the proposed edge fliased sgmentation algorithm for
automatically analyzing images has been demonstrated in [14]. A web demonstratalalideaathttp://

vivaldi.ece.ucsh.edu/Netra.

16



7.2 Segmenting Large Aerial Photographs

Here we consider the use of edgevfimodel for sgmenting lage aerial photographs. The technique
which we degeloped here has been used to process the images for geographical informatuaih irethie
UCSB Alexandria Digital Library project [13, 22].

Because the typical size of an airphoto igéafusually contain more th&kK x 5K pixels), an accu-
rate piel-level sgmentation could be computationallypensive. For most of the pattern classification
and image retriaal applications, hwever, such a precise gmentation is often not necessarg this end,
we etend the edge fl@e model to perform a coarse imageysentation based on thextere features
extracted from the equally partitioned image blocks. The prediction is performed between the neighboring
blocks and a fl vector which points to the closest boundary at each block location is constructed.

In the xperiment, each aerial photograph is first partitioned édts 64 blocks of pixls. From each
block, a teture feature ®&ctor is computed. No consider a set of xture features
% which are gtracted from an airphoto witN, x N, blocks, whereN,

vl
andN,, represent the numbers of partitions in height and width, regplgctiven the tature feature at

%f (h, W)llshsNh,lswsN

image block(h, w) , we can predict its surrounding eight neighbors t@lthe same xture feature if thg

belong to the same homogeneougiar. Thus, the prediction errors can be computed as

Error(s,0) = || (hw+1)=T (h,w)]|
Error(s, v4) = ||T (h=1,w+1) =T (h,w)|
Error(s, v2) = ||T (h=1,w) =T (h,w)|
Error(s 3/4) = || (h=1, w=1)=T (h,w)|
Error(s,m) = ||T (h,w—=1)-T (h, w)||
Error(s, 51/4) = ||T (h+1,w=1)-T (h,w)|
Error(s, 31/2) = ||f(h+1, w)—f(h, W)||
Error(s, 71v4) = || (h+ 1, w+1)=TF (h, w)|

wheres = (h, w). Figurell shevs the spatial relationship between the neighboring featot®ns. Br

(26)

simplicity, the texture edge engy E(s, 8) is set to be the same Bsror (s, 8) . Note that there are tw
edge engjies associated with each orientatiomno contrast with the pugous cases. The probabilities of
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edge flov direction (forvard and backerd) along each of the four orientatiols §/ 4, 1/ 2, and 31/ 4)
are assigned based on (9). By using the glyatlescribed in Sectioh2, the diferent directions of edge
flows can be combined together to identify the best direction for searching for the closest boundary
Following the edge fl@ computation, the resulting local edgenfls propagted to its neighbors if
they have the same directional preference. The fbmntinues till it encounters an oppositerl@fter the
propagtion reaches a stable state, the final edgedimegy is used for boundary detection. The detected
boundary are then connected to form an initial set of imagjeng At the end, a consatwe region
memging algorithm is used to group similar neighboringioas. Figurel2 shavs one of such image ge
mentation result. This geentation scheme help to represent amdroze the image information in a
more eficient way. Description of an image retvial system for searching similaigiens from an airphoto

collection can be found in [13].

8 Discussions

In this paper we hee presented a mel frameavork for detecting image boundaries and demonstrated
its use in sgmenting a lage \ariety of natural images. In contrast to the traditional approaches, the edge
flow model utilizes a prediaté coding scheme to detect the direction of changarious image attriltes
and construct an edgeidield. By iteratvely propaating the edge flg, the boundaries can be detected
at image locations which encounteiotapposite directions of floin the stable state. The only significant
control parameter (not including thegiren meging post-processing) is the image scale, which can be
adjusted to the usarrequirements.

For simplicity, a single scale parameter has been used for the entire ingagensation in our current
implementation. Havever, this might not be appropriate for some images which contain multiple scale
information. There is a need to locally adjust the scale parameter depending on thexiocalktdor
properties such that meaningful boundaries at each image location can be detected. This local scale control

remains as a future research problem.
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As indicated in the)gperiments, the use ofxieire information increases the processing time signifi-
cantly in performing image geentation. One can use local image statistics to determine if the image is
textured or not [11], and thus determine Ktiee sgmentation is required.

A note rgarding performancevaluation: Since no ground truth igaélable for the color images from
the stock photo @leries, no quantitate performancevaluation can be puided at this time. Hoever,
our periments with some of the synthetigtige mosaics ha given results better than most of the algo-
rithms that we are currentlyvare of in the sgmentation literature. A visual inspection of the results indi-
cate that the ggnentation is of acceptable quality and well suited for applications such as imagagro
wherein the automatic gmentation is critical. The gmentation results of 2,500 natural color images

from a Corel photoajlery can be found ditttp://vivaldi.ece.ucsh.edu/Netra.
Appendix A:

Gabor Functions and Wavelets

Gabor functions are Gaussians modulated by coogiteusoids. In tw dimensions thetake the

form:
n 1 1%2 yZD .
g(xy) = @mxcyﬁexp{—é 2+0—zg} Cexp[ 27 Wx] (27)
X y

The 2-D Burier transform ofG(x, y) is

2 2
H(u,v) = exp%%{@—_—éw)—ﬂ—z} 0 (28)
O g, o, JU

whereo,, = 1/2m0, andg,, = 1/2noy. Letg(x, y) be the mother Gaborawelet, then this self-similar
filter dictionary can be obtained by appropriate dilations and rotations of the mairetetvthrough the

generating function:
(X y) = a'G(x,y), a>1, mn = integer (29)

X = a "(xcosd + ysind) ,

y' = a "(=xsind + ycosd) ,
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where® = nTK andK is the total number of orientations.

Gabor Filter Dictionary Design

The non-orthogonality of the Gaborawelets implies that there is redundant information in the fil-
tered images, and the folling stratgy is used to reduce this redundanicet U, and U, denote the
lower and upper center frequencies of interest.K_dte the number of orientations a8dbe the number
of scales in the multi-resolution decomposition. Then the designgstristéo ensure that the half-peak
magnitude cross-sections of the filter responses in the freggpectrum touch each other aswshdn

Figure4. This results in the folleing formulas for computing the filter parameters and g,, (and thus

o, andoy).
1
a= (U, U)t, (30)
(a-1)u,
0 = —— 31
Y (a+1)J2In2 D)
1
2 2 212
Eoin (2In2)°c
— art _ u -7 du
g, = tanEQk%Uh 2InZBJ—hE} 2In2 Uﬁ (32)

whereW = Uy, 0 = K andm=0,1,...,S-1.
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FIGURE 1. Image sgmentation often require additional information from the user in order to st
proper scale to genent the objects org®ns of interest, (a) s an image with fie diferent “beans
regions, (b) is the ggmentation result using a smaller scale, and (c) is thmesgation result using
larger scale.
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FIGURE 2. The computation ofE(s, 8) and P(s, 8) using the GD and DOOG functions alon
orientation® . The shaded ggons indicate the mative ragions in the filter responses.
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FIGURE 3. A comparison of the edge flomodel with the corentional approach to detecting edges
Traditional method of edge detection. (b) Edgefinodel.
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FIGURE 4. Fourier transforms of the Gabor filters, which are usecatiaet texture features for performir
the image sgmentation at diérent scales. (ay = 5.0 andS =5, (b) o0 = 1.25 andS = 3, and (c
o = 1.0 andS = 2. The contour indicate the half-peak magnitude of the filter response.
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FIGURE 5. (a) A flower image. (b) The final edgeidield. (c) The result after edgevitgropagtion. (d)
The result of boundary detection.

24



Vertical edge
map V(x,y)
y ¥ I(y)
x Horizontal edge
map H(x,y)

() (b) (©)

FIGURE 6. (a) Edge signals and image @ig, (b) The stable flo field vector F, and (¢) Boundat
detection based on the edgenflo

(c) - 7 (d)

FIGURE 7. (a) A color flaver image. Note that the detailed edgefid image within the small windohas
been shan in Figureb, (b) boundary detection using the edgeflonodel, (c) result after the bound
connection, and (d) result after thgie meging.
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(a) (b) (©)

FIGURE 8. The use of edge flo model for detecting diérent type of image boundaries. From tog
bottom are original image, edgevilacomputation, edge flo propagtion, and boundary detection.
Intensity edges. (b)ékture boundaries. (c) lllusory boundaries.
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FIGURE 10. Segmentation results of the real natural images from the Corel photo CDs. (a) scale parameter
o = 3 pixels, (b) o = 4 pixels, (c) o = 3 pixels, (d) o = 6 pixels,and (€) o = 2 pixels.
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FIGURE 11. (a) The spatial relationship between neighboring featertovs of image blocks, and
probabilities of edge fle toward diferent directions.
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FIGURE 12. Sggmenting lage aerial photographs using the edge fheodel.
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