
1

EdgeFlow: A Technique for Boundary Detection
and Image Segmentation

Wei-Ying Ma and B. S. Manjunath

Department of Electrical and Computer Engineering
University of California,

Santa Barbara, CA 93106-9560
E-mail: wei@hpl.hp.com, manj@ece.ucsb.edu

 Abstract

A novel boundary detection scheme based on “edge flow” is proposed in this paper. This scheme

utilizes a predictive coding model to identify the direction of change in color and texture at each

image location at a given scale, and constructs an edge flow vector. By iteratively propagating the

edge flow, the boundaries can be detected at image locations which encounter two opposite direc-

tions of flow in the stable state. A user defined image scale is the only significant control parameter

that is needed by the algorithm. The scheme facilitates integration of color and texture into a sin-

gle framework for boundary detection.

1 Introduction

In most computer vision applications, the edge/boundary detection and image segmentation constitute

a crucial initial step before performing high-level tasks such as object recognition and scene interpretation.

In the image analysis literature, typically segmentation performance was demonstrated on a very small

example set of images. Large scale image database annotation demands robustness with very little parame-

ter tuning over a wide range of image data.

While considerable research and progress have been made in the area of image segmentation, the

robustness and generality of the algorithms on a large variety of image data have not been established. One

of the difficulties arises from the fact that most natural images are usually made of various types of bound-

aries created by changes in cues such as color, texture, or phase. Thus the algorithm needs to consider all

2

these different types of image attributes together in order to segment real natural images. Furthermore,

image segmentation itself is an ill-posed problem. It often requires additional information from the user in

order to select a proper scale for detecting edges and boundaries, and thus, segmenting the regions of inter-

est. For example, Figure1(a) shows an image which contains five different “beans” regions. One might

consider each bean as an individual object and obtain a result similar to Figure1(b), or might consider each

“beans” region as a texture and get a segmentation like in Figure1(c).

In order to develop a segmentation algorithm which is capable of processing large and diverse collec-

tions of images, a general framework of boundary detection and image segmentation called “edge flow” is

proposed in this paper. This framework utilizes a predictive coding model to identify and integrate the

direction of change in various types of image attributes (color, texture, and phase discontinuity) at each

image location, and constructs an edge flow vector which points to the closest image boundary. By itera-

tively propagating the edge flow, the boundaries can be detected at image locations which encounter two

opposite directions of flow in the stable state. Furthermore, this whole process including image smoothing

and feature extraction is designed in a way that it can be controlled by a scale parameter and, therefore, the

algorithm can adapt itself to satisfy the user’s preference in segmenting the regions of interest. Figure1(b)

and (c) actually show the results of the proposed algorithm by selecting different scale parameters to obtain

appropriate segmentations.

2 Previous Work

In this section we briefly review the previous work on edge/boundary detection and image segmenta-

tion. Previous work on segmentation can be broadly classified into two main categories: the first one

focuses on the detection and localization of intensity/color discontinuities, and the second one considers

the partition of an image into homogeneous regions.

2.1 Edge Detection

Much of the research on edge detection has been devoted to the development of optimal edge detec-

tors which provide the best trade-off between the detection and localization performance [4, 6, 18, 21]. A

3

common strategy in designing such edge operators is to find the filter which optimizes the performance

with respect to the three criteria: good detection, good localization, and a unique response to a single edge.

In [4] Canny showed that the optimal detector can be approximated by the first derivative of a Gaussian.

By convolving the image with this filter, the edge detection is equivalent to finding the maxima in gradient

magnitude of a Gaussian-smoothed image in the appropriate direction.

Detecting and combining edges at multiple resolutions and scales is another important issue in edge

detection [4, 18, 25]. The scale-space technique introduced by Witkin [25] involves generating coarser res-

olution images by convolving the original images with a Gaussian smoothing kernel.

The regularization theory has also been frequently used in helping the design of edge detection algo-

rithms [24]. Gökmen and Jain [9] recently proposed an image representation called the-space represen-

tation using this theory. Based on this model, they develop a generalized edge detector which encompasses

most of the well-known edge detectors under a common framework.

2.2 Texture Segmentation

The goal of texture segmentation is to partition an image into homogeneous regions and identify the

boundaries which separate regions of different textures. Segmentation is obtained either by considering a

gradient in the texture feature space [8, 12, 15], or by unsupervised clustering [1, 7, 10], or by texture clas-

sification [17]. Segmentation by labelling often suffers from a poor localization performance because of

the conflicting requirements of region labeling and boundary localization in terms of the observation

neighborhood (window size) [26]. Unsupervised clustering/segmentation requires an initial estimate of the

number of the regions in the image, which is obtained mostly by setting a threshold in the feature cluster-

ing algorithm. However, estimating the number of regions is a difficult problem and the results are usually

not reliable.

The idea of anisotropic diffusion has also been recently utilized to detect texture boundaries by coa-

lescing texture features in image feature space [20]. The strategy that is used in [20] is to extend the notion

of edge-preserving smoothing and anisotropic diffusion from image intensities to feature vectors that

λτ

4

describe the textural content of each image patch. The diffusion encourages intraregion feature smoothing

in preference to interregion feature smoothing. Thus, the feature difference across two texture regions will

remain “sharp” during the smoothing process.

2.3 Edge Flow and Anisotropic Diffusion

The edge flow scheme proposed in the following has certain similarities to anisotropic diffusion meth-

ods discussed in [19, 20]. We summarize the basic differences between the two approaches in below.

First, the scale parameter in edge flow is mainly controlled by users to decide what scale should be

used to distinguish object and texture, and therefore, appropriate texture features can be computed.

Although a single parameter is used in edge flow, it effectively controls a range of scales for texture. Even

though the scale affects smoothing, no specific noise model or blur estimation is used in scale selection.

Secondly, the local edge energy is iteratively propagated to one of its neighbors in the edge flow

model. The direction of local edge flow is determined to point to the closest boundaries based on the pre-

diction errors, and the goal of this flow propagation is to accumulate the local edge energies toward their

closest image boundaries. In contrast, in anisotropic diffusion the local image intensity is diffused to all its

neighbors when the variance of Gaussian smoothing kernel increases. A spatially varying diffusion coeffi-

cient controls the rate at which diffusion occurs near the edges.

Finally, to the best of our knowledge, the performance of diffusion type algorithms has not been dem-

onstrated on any large image data sets.

3 “Edge Flow”

In this section the general concept of edge flow is first outlined and a detailed implementation of it is

illustrated and explained. Traditionally edges are located at the local maxima of the gradient in intensity/

image feature space. In contrast, in our approach the detection and localization of edges (or image bound-

aries in a more general sense) are performed indirectly: first by identifying a flow direction at each pixel

location that points to the closest boundary; then followed by the detection of locations that encounter two

opposite directions of edge flow. Since any of the image attributes such as color, texture, or their combina-

5

tion can be used to define the edge flow, this scheme provides a general framework for integrating different

types of image information for boundary detection.

3.1 Definition of the Edge Flow

Let us define the general form of edge flow vector at image location with an orientation as:

(1)

where

• is the edge energy at location along the orientation .

• represents the probability of finding the image boundary if the corresponding flow at loca-

tion “flows” in the direction .

• represents the probability of finding the image boundary if the corresponding flow at

location flows backwards, i.e., in the direction .

The first component of edge flow is used to measure the energy of local image information

change (such as intensity/color, texture, and phase difference), and the remaining two components

and are used to represent the probability of flow direction. The basic steps for detecting image

boundaries is summarized as follows:

• At each image location, we first compute its local edge energy and estimate the corresponding flow

direction.

• The local edge energy is iteratively propagated to its neighbor if the edge flow of the corresponding

neighbor points in a similar direction.

• The edge energy stops propagating to its neighbor if the corresponding neighbor has an opposite

direction of edge flow. In this case, these two image locations have both their edge flows pointing at

each other indicating the presence of a boundary between the two pixels.

F s θ

F s θ,() F E s θ,() P s θ,() P s θ π+,(), ,[]=

E s θ,() s θ

P s θ,()

s θ

P s θ π+,()

s θ π+

E s θ,()

P s θ,()

P s θ π+,()

6

• After the flow propagation reaches a stable state, all the local edge energies will be accumulated at

the nearest image boundaries. The boundary energy is then defined as the sum of the flow energies

from either side of the boundary.

Some Definitions

A two dimensional isotropic Gaussian function is defined as

. (2)

The first derivative of Gaussian (GD) along the x-axis is given by

, (3)

and the difference of offset Gaussian (DOOG) along the x-axis is defined as:

(4)

where is the offset between centers of two Gaussian kernel and is chosen proportional to. By rotating

these two functions, we generate a family of the Gaussian derivative and the difference of offset Gaussian

functions along different orientations :

, (5)

,

, .

Note that the parameter is clearly denoted for all the previous functions. As can be seen later, this

parameter will correspond to the scale (or resolution) level at which the boundary detection and image seg-

mentation are conducted.

3.2 Intensity Edge Flow

Computing :

Now consider an image at a given scale as , which is obtained by smoothing the original

image with a Gaussian kernel . The scale parameter will control both the edge energy

computation and the local flow direction estimation, so that only edges larger than the specified scale are

Gσ x y,() 1 2πσ()⁄() x
2

y
2

+() 2σ2⁄–[]exp=

GDσ x y,()
∂Gσ x y,()

∂x

x

σ2
------Gσ x y,()–= =

DOOGσ x y,() Gσ x y,() Gσ x d+ y,()–=

d σ

θ

GDσ θ, x y,() GDσ x' y',()=

DOOGσ θ, x y,() DOOGσ x' y',()=

x' x θcos y θsin+= y' x θsin– y θcos+=

σ

E s θ,()

σ Iσ x y,()

I x y,() Gσ x y,()

7

detected. The edge flow energy at scale is defined to be the magnitude of the gradient of the

smoothed image along the orientation :

(6)

where and represents the unit vector in the gradient direction. We can rewrite (6) as

. (7)

This edge energy indicates the strength of the intensity change. Many existing edge detectors actually use

similar operations to identify the local maxima of intensity changes as edges. The distinguishing part of the

edge flow model is that the edge energy is represented as a flow vector by assigning probabilities to its flow

directions. Boundary detection itself is formulated as a dynamic process wherein the local edge energies

flow in the direction of most probable image boundaries closest to the corresponding locations.

Computing :

For each of the edge energy along the orientation at location , we now consider two possible flow

directions; the forward () and the backward (), and estimate the probability of finding the nearest

boundary in each of these directions. These probabilities can be obtained by looking into the prediction

errors toward the surrounding neighbors in the two directions. Consider the use of image information at

location to predict its neighbor in the direction. Ideally they should have similar intensity if they

belong to the same object and the prediction error can thus be computed as

(8)

where is the distance of the prediction, and which should be proportional to the scale at which the image

is being analyzed. In the experiments we choose . A large prediction error in a certain direction

implies a higher probability of finding a boundary in that direction. Therefore, the probabilities of edge

flow direction are assigned in proportion to their corresponding prediction errors:

(9)

E s θ,() σ

I σ x y,() θ

E s θ,()
n∂

∂
I σ x y,()

n∂
∂

I x y,()* Gσ x y,()[] I x y,()* n∂
∂

Gσ x y,()= = =

s x y,()= n

E s θ,() I x y,()* GDσ θ, x y,()=

P s θ,()

θ s

θ θ π+

s θ

Error s θ,() I σ x d θ y d θsin+,cos+() I σ x y,()–=

I x y,()* DOOGσ θ, x y,()=

d

d 4σ=

P s θ,() Error s θ,()
Error s θ,() Error s θ π+,()+
---=

8

The idea of this approach to computing the flow probabilities comes from [5, 23]. It has been sug-

gested that the human visual system uses a predictive coding model to process image information. This

model (although the details vary) has been successfully used in interpreting many vision phenomena such

as the retinal inhibitory interactions [23], and the coding of textured patterns [5].

Figure2 shows the computation of and using the GD and the DOOG functions.

Notice the relative positioning of the two DOOG filters with respect to a given pixel location . As

mentioned earlier, this offset depends on the scale parameter.

Figure3 shows a comparison of the edge flow model with the conventional approaches to detecting

edges. Instead of seeking the local maxima of the intensity gradient magnitude (or finding the zero-cross-

ings of the second derivative of image intensity), we construct the flow vectors whose energy is equivalent

to the magnitude of the intensity gradient and whose direction is estimated by the prediction errors. As can

be seen from Figure3(b), the edge flows on the right side of boundary all have their directions pointing to

the left because in that region, and the edge flows on the left side all point to the right

because of . After the flow is propagated (see Section5) and reaches a stable state, the

edge locations are identified as those places where two opposite edge flows meet each other, and the

boundary energy is equal to the integration of the gradient magnitude (shaded area). This example illus-

trates that the edge flow model gives identical results as a zero crossing for noise-free step edges (this

result can also be easily derived analytically using (7)-(9)). However, real images usually do not contain

such ideal edges.

3.3 Texture Edge Flow

Much of the same formulation of Section 3.2 for intensity edges carries over to image attributes such

as color and texture. In this section we consider textured images and compute the texture edge flow using

the directional gradient in the texture feature maps.

The texture features are extracted based on a Gabor wavelet decomposition scheme proposed in [16].

However, in contrast with the use of a fixed set of Gabor filters for computing the texture features, the bank

E s θ,() P s θ,()

x y,()

σ

P left() P right()>

P right() P left()>

9

of Gabor filters used here are generated according to the scale parameter specified by the user. This

parameter defines the resolution at which the image boundaries are considered. Therefore, only the pat-

terns with sizes smaller than that scale are considered as elements of a texture (i.e., texels), and anything

larger than that scale will be treated as an object.

The strategy for Gabor filter bank design proposed in [16] is particularly useful for this purpose.

Given the scale parameter, define the lowest center frequency of the Gabor filters to be

cycles/pixel. This value is based on the consideration of the Gaussian smoothing window and the distance

 used in computing the prediction error, so that the window size covers at least one cycle of the

lowest spatial frequency. Furthermore, the highest center frequency is set to 0.45 cycles/pixel. The

number of scales in the filters is determined according to the lowest center frequency so that the fil-

ters cover the spectrum appropriately. ranges from 1 for the small scale to 5 for the large scale. The num-

ber of orientations is fixed to 6 in the experiments. Figure4 shows the Fourier transforms of the Gabor

filter banks which are generated for different value of . See Appendix A for a more detailed explanation

of the Gabor filter bank design.

The complex Gabor filtered images can be written as:

(10)

where , is the total number of filters, is the amplitude, and is the

phase. By taking the amplitude of the filtered output across different filters at the same location , we

form a texture feature vector

(11)

which characterizes the local spectral energies in different spatial frequency bands. For most of the tex-

tured regions, this feature vector is good enough for distinguishing their underlying pattern structure. Some

exceptions are illusory boundaries such as the ones in Figure8(c). In this case, the phase information

 has to be incorporated in order to detect the discontinuity. We will discuss this in Section3.4. In

σ

σ U l 1 4σ()⁄

d 4σ=

Uh

S U l

S

K

σ

Oi x y,() I x y,()* gi x y,() mi x y,() φi x y,()[]exp= =

1 i N≤ ≤ N S K⋅= m x y,() φ x y,()

x y,()

Ψ x y,() m1 x y,() m2 x y,() … m, N x y,(), ,[]=

φ x y,(){ }

10

the following, let us first consider the formulation of edge flow using the texture features . The

texture edge energy, which is used to measure the change in local texture information, is given by

(12)

where and is the total energy of the subband. The weighting coefficients normal-

ize the contribution of edge energy from the various frequency bands.

Similar to the intensity edge flow, the direction of texture edge flow can be estimated based on the tex-

ture prediction error at a given location:

(13)

which is the weighted sum of prediction errors from each texture feature map. Thus, the probabilities

 and of the flow direction can be estimated using (9).

3.4 Edge Flow Based on Gabor Phase

In this section, the phase information of Gabor filter output is used to construct an edge flow field for

detecting boundaries. We have not found much use of phase information at this time on real images, but the

scheme does detect very accurately the illusory boundaries shown in Figure8 and Figure9.

From (10), the complex Gabor filtered image can be written as

(14)

where and represent the real and imaginary parts of Gabor filtered output, respectively.

The phase of the filtered image can be expressed as:

. (15)

This phase information will contain discontinuities at because the operation of inverse tangent only

provides the principal value of the phase. In order to compute without discontinuity, phase

unwrapping is required. A general strategy for solving the unwrapping problem is to add or subtract

from the part of phase function that lies after a discontinuity. However, this phase unwrapping problem can

become very difficult if too many zero points (both the real and imaginary parts are zero here, and there-

fore, the phase is undefined) are in the image [23].

F s θ,() Ψ

E s θ,() mi x y,()* GDσ θ, x y,() wi⋅
1 i N≤ ≤

∑=

wi 1 αi⁄= αi i wi

Error s θ,() mi x y,()* DOOGσ θ, x y,() wi⋅
1 i N≤ ≤

∑=

P s θ,() P s θ π+,()

O x y,() Re x y,() j Im x y,()⋅+=

Re x y,() Im x y,()

φ x y,() Im x y,() Re x y,()⁄[]atan=

π±

φ x y,()

2π

11

The unwrapped phase can be decomposed into a global linear phase component and a local phase

component. The local phase contains information about the locations where the texture property changes.

In other words, within a uniform textured region, the phase will vary linearly, and it changes its

varying rate when a boundary between different texture regions is crossed. As a result, the local phase has

been used in many texture segmentation schemes [1, 2, 3].

In order to compute the edge flow field using the phase information, there are two problems that we

have to consider here. First, we have to compute the phase derivatives without unwrapping the phase. Sec-

ond, instead of just using the DOOG functions to compute the prediction error, we have to include a first-

order predictor to compensate for the global linear phase component.

Consider the formula

. (16)

Assuming the derivative of the phase exists everywhere, we can compute the phase derivative using the fol-

lowing equation without going through the phase unwrapping procedure:

(17)

where is complex conjugate. The phase derivative with respect to any arbitrary orientation can be com-

puted in a similar manner.

Without loss of the generality, we first consider the design of a linear phase predictor along the x axis

, (18)

and therefore, the prediction error is equal to

. (19)

However, because the first two terms in equation (19) are wrapped phases, the prediction error has to be

further corrected by adding or subtracting such that it always lies between and . Because the lin-

ear component of the phase has been removed by the first-order predictor, the magnitude of the prediction

φ x y,()

xd
d

x()atan 1 1 x
2

+()⁄=

x∂
∂ φ x y,() O∗ x y,()

x∂
∂

O x y,()⋅ m x y,()2⁄imag=

*

φ̂ x a y,+() φ x y,() a
x∂

∂ φ x y,()⋅+=

Error φ x a y,+() φ x y,() a
x∂

∂ φ x y,()⋅––=

2π π– π

12

error is usually much smaller than. As a result, the prediction error contributed by the phase wrap-

ping can be easily identified and corrected. The general form of computing the phase prediction error can

be written as

(20)

where and is an integer which ensures that the prediction error is always

between and . One can use the second derivative of the phase to compute the corresponding phase

edge energy. However, for simplicity in implementation, we directly use the prediction error to represent

the phase “edge” energy.

4 Edge Flow Integration

4.1 Combining Different Types of Edge Flows

The edge flows obtained from different types of image attributes can be combined together to form a

single edge flow field for boundary detection. Consider

, and (21)

(22)

where and represent the energy and probability of the edge flow computed from image

attribute , . is the weighting coefficient associated with

image attribute .

Now let us consider the use of combined color and texture information for boundary detection. For a

given color image, the intensity edge flow can be computed in each of three color bands (R, G, B) using

(7), (8), and (9), and the texture edge flow can be calculated from the illuminance .

Then the overall edge flow can be obtained by combining them as in (21) and (22) with

. In the following experiments and

.

π 2π

Error s θ,() φ x a θ y a θsin⋅+,cos⋅+()

φ x y,()– a
n∂

∂ φ x y,() 2πk x y,()+⋅–

=

n θ θsin,cos()= k x y,()

π– π

E s θ,() Ea s θ,() w a()⋅
a A∈
∑= w a() 1=

a A∈
∑

P s θ,() Pa s θ,() w a()⋅
a A∈
∑=

Ea s θ,() Pa s θ,()

a a intesity/color, texture, and phase{ }∈ w a()

a

I R G B+ +() 3⁄=

A red, green, blue, texture{ }= w texture() 0.4=

w red() w green() w blue() 0.2= = =

13

4.2 Combining Edge Flows from Different Directions

In the example of Figure3, the final direction of edge flow at each location is simply determined by

selecting the direction with larger probability because there are only two possible directions to be consid-

ered in the 1-D case. However, for a given image, the computed edge flows can range from 0 to. In order

to identify the best direction for searching for the nearest boundary, the following scheme is used:

Suppose we have edge flows , we first identify a continu-

ous range of flow directions which maximizes the sum of probabilities in that half plane:

(23)

Then, the final resulting edge flow is defined to be the vector sum of the edge flows with their directions in

the identified range, and is given by

, (24)

where is a complex number with its magnitude representing the resulting edge energy and angle rep-

resenting the flow direction. Figure5(a)-(b) show an example of the final edge flows after combining dif-

ferent directions of edge flows (scale pixels). As can be seen, the direction of each local edge flow

points to its nearest boundary.

5 Edge Flow Propagation and Boundary Detection

After the edge flow of an image is computed, boundary detection can be performed by itera-

tively propagating the edge flow and identifying the locations where two opposite direction of flows

encounter each other. At each location, the local edge flow is transmitted to its neighbor in the direction of

flow if the neighbor also has a similar flow direction (the angle between them is less than 90 degrees). The

steps are:

1. Set and .

2. Set the initial edge flow at time to zero.

π

F E s θ,() P s θ,() P s θ π+,(),,[]
0 θ π<≤{ }

Θ s() max
θ

P s θ',()
θ θ' θ π+<≤

∑
 
 
 

arg=

F s() E s θ,() jθ()exp⋅
Θ s() θ Θ s() π+<≤

∑=

F s()

σ 2=

F s()

n 0= F0 s() F s()=

Fn 1+ s() n 1+

14

3. At each image location, identify the neighbor which is in the direction of edge flow

, i.e., .

4. Propagate the edge flow if : ; otherwise the edge

flow stay at its original location, .

5. If nothing has been changed, stop the iteration. Otherwise, set and go to the step 2 and

repeat the process.

Once the edge flow propagation reaches a stable state, we can detect the image boundaries by identi-

fying the locations which have non-zero edge flows coming from two opposing directions. Let us first

define the edge signals and as the vertical and horizontal edge maps between image pix-

els as shown in Figure6(a), and let

(25)

be the final stable edge flow (see Figure6(b)). Then, the edge signals and will be turned

on if and only if the two neighboring edge flows point at each other. Once the edge signal is on, its energy

is defined to be the summation of the projections of those two edge flows towards it. Summarizing:

• Turn on the edge if and only if ; then

.

• Turn on the edge if and only if ; then

.

Figure6(c) shows an example of boundary detection. Note that only the edge signals with two opposite

directions of flow from their neighboring pixels are turned on.

After the edge signals are detected, the connected edges are used to form a boundary, whose energy is

defined to be the average of its edge signals and . A certain threshold for the energy is

used to remove weak boundaries.

Figure5(c) shows an example of the edge flow propagation using the flower image. As can be seen,

the edge flows are concentrated only along the two sides of the image boundaries with their flow directions

s s' x' y',()=

Fn s() Fn s()∠ y' y–
x' x–
------------ 

 atan=

Fn s'() Fn s()⋅ 0> Fn 1+ s'() Fn 1+ s'() Fn s()+=

Fn 1+ s() Fn 1+ s() Fn s()+=

n n 1+=

V x y,() H x y,()

F h x y,() v x y,(),() F s()()real F s()()imag,()= =

V x y,() H x y,()

V x y,() h x 1 y,–() 0 andh x y,() 0<>

V x y,() h x 1 y,–() h x y,()–=

H x y,() v x y 1–,() 0 and> v x y,() 0<

H x y,() v x y 1–,() v x y,()–=

V x y,() H x y,()

15

pointing at each other. Figure5(d) illustrates the result of boundary detection after turning on the edge sig-

nals between two opposite directions of edge flows.

6 Boundary Connection and Region Merging

After boundary detection, disjoint boundaries are connected to form closed contours and result in a

number of image regions. The basic strategy for connecting the boundaries are summarized as follows.

• For each open contour, we associate a neighborhood search size proportional to the length of the

contour. This neighborhood is defined as a half circle with its center located at the unconnected end

of the contour.

• The nearest boundary element which is within the half circle is identified.

• If such a boundary element is found, a smooth boundary segment is generated to connect the open

contour to the nearest boundary element.

• This process is repeated few times (typically 2-3 times) till all salient open contours are closed.

At the end, a region merging algorithm is used to merge similar regions based on a measurement that

evaluates the distances of region color and texture features, the sizes of regions, and the percentage of orig-

inal boundary between the two neighboring regions. This algorithm sequentially reduces the total number

of regions each time by checking if the user’s preferred number has been approached to the best extent.

Figure7(a)-(b) shows an example of boundary detection after the edge flow propagation. The disjointed

boundaries are connected to form closed contours and result in an initial image segmentation as shown in

Figure7(c). This initial segmentation is further processed by the region merging algorithm to group similar

regions, and the final segmentation result is illustrated in Figure7(d).

7 Experimental Results

Figure8 shows three images which contain intensity, texture, and illusory boundaries respectively.

The scheme described in Section3 is used to construct the edge flow field for these different image

attributes. The final segmentation results after the post-processing (edge flow propagation, boundary detec-

tion, boundary connection, and region merging) are illustrated. As can be seen, these three images, which

16

traditionally require different algorithms to segment, can now be processed under the same framework

using the edge flow model. Figure9 shows few more segmentation results on some typical images pub-

lished in the literature.

7.1 Segmenting Natural Color Photographs

We have applied this segmentation algorithm to segment about 2,500 real natural images from Corel

color photo CDs (volume 7,Nature). To the best of our knowledge, this is first time that a general-purpose

segmentation algorithm has been demonstrated on such a large and diverse collection of real natural

images. The usefulness of the proposed scheme lies in the fact that very little parameter tuning or selection

is needed. The three parameters controlling segmentation are

1. Image attributes to be used to detect boundaries: color (gray intensity), texture, or combination of

color and texture.

2. The preferred scale to localize the desirable image boundaries.

3. The approximate number of regions (for the region merging algorithm).

Each photo CD contains 100 images, and the same parameters were used for the entire image set on a give

CD. The experimental results indicate that the proposed algorithm resulted in visually acceptable perfor-

mance on this diverse image collection. Figure10 shows some of the image segmentation results.

The average computational time for segmenting a color image on a SUN Sparc20 worksta-

tion is about 4-10 minutes, depending on the types of image attributes used for constructing the edge flow.

The texture edge flow is computationally more expensive because it requires the Gabor filtering as a pre-

processing to extract features and the prediction has to be performed in each of the feature planes.

An image retrieval system which utilizes the proposed edge flow based segmentation algorithm for

automatically analyzing images has been demonstrated in [14]. A web demonstration is available athttp://

vivaldi.ece.ucsb.edu/Netra.

128 192×

17

7.2 Segmenting Large Aerial Photographs

Here we consider the use of edge flow model for segmenting large aerial photographs. The technique

which we developed here has been used to process the images for geographical information retrieval in the

UCSB Alexandria Digital Library project [13, 22].

Because the typical size of an airphoto is large (usually contain more than pixels), an accu-

rate pixel-level segmentation could be computationally expensive. For most of the pattern classification

and image retrieval applications, however, such a precise segmentation is often not necessary. To this end,

we extend the edge flow model to perform a coarse image segmentation based on the texture features

extracted from the equally partitioned image blocks. The prediction is performed between the neighboring

blocks and a flow vector which points to the closest boundary at each block location is constructed.

In the experiment, each aerial photograph is first partitioned into blocks of pixels. From each

block, a texture feature vector is computed. Now consider a set of texture features

 which are extracted from an airphoto with blocks, where

and represent the numbers of partitions in height and width, respectively. Given the texture feature at

image block , we can predict its surrounding eight neighbors to have the same texture feature if they

belong to the same homogeneous region. Thus, the prediction errors can be computed as

(26)

where . Figure11 shows the spatial relationship between the neighboring feature vectors. For

simplicity, the texture edge energy is set to be the same as . Note that there are two

edge energies associated with each orientation now in contrast with the previous cases. The probabilities of

5K 5K×

64 64×

f h w,()
1 h Nh 1 w Nw≤ ≤,≤ ≤ 

 
 

Nh Nw× Nh

Nw

h w,()

Error s 0,() f h w 1+,() f h w,()–=

Error s π 4⁄,() f h 1– w 1+,() f h w,()–=

Error s π 2⁄,() f h 1– w,() f h w,()–=

Error s 3π 4⁄,() f h 1– w 1–,() f h w,()–=

Error s π,() f h w 1–,() f h w,()–=

Error s 5π 4⁄,() f h 1+ w 1–,() f h w,()–=

Error s 3π 2⁄,() f h 1+ w,() f h w,()–=

Error s 7π 4⁄,() f h 1+ w 1+,() f h w,()–=

s h w,()=

E s θ,() Error s θ,()

18

edge flow direction (forward and backward) along each of the four orientations ()

are assigned based on (9). By using the strategy described in Section4.2, the different directions of edge

flows can be combined together to identify the best direction for searching for the closest boundary.

Following the edge flow computation, the resulting local edge flow is propagated to its neighbors if

they have the same directional preference. The flow continues till it encounters an opposite flow. After the

propagation reaches a stable state, the final edge flow energy is used for boundary detection. The detected

boundary are then connected to form an initial set of image regions. At the end, a conservative region

merging algorithm is used to group similar neighboring regions. Figure12 shows one of such image seg-

mentation result. This segmentation scheme help to represent and organize the image information in a

more efficient way. Description of an image retrieval system for searching similar regions from an airphoto

collection can be found in [13].

8 Discussions

In this paper we have presented a novel framework for detecting image boundaries and demonstrated

its use in segmenting a large variety of natural images. In contrast to the traditional approaches, the edge

flow model utilizes a predictive coding scheme to detect the direction of change in various image attributes

and construct an edge flow field. By iteratively propagating the edge flow, the boundaries can be detected

at image locations which encounter two opposite directions of flow in the stable state. The only significant

control parameter (not including the region merging post-processing) is the image scale, which can be

adjusted to the user’s requirements.

For simplicity, a single scale parameter has been used for the entire image segmentation in our current

implementation. However, this might not be appropriate for some images which contain multiple scale

information. There is a need to locally adjust the scale parameter depending on the local texture/color

properties such that meaningful boundaries at each image location can be detected. This local scale control

remains as a future research problem.

0 π 4⁄ π 2⁄ and3π 4⁄, , ,

19

As indicated in the experiments, the use of texture information increases the processing time signifi-

cantly in performing image segmentation. One can use local image statistics to determine if the image is

textured or not [11], and thus determine if texture segmentation is required.

A note regarding performance evaluation: Since no ground truth is available for the color images from

the stock photo galleries, no quantitative performance evaluation can be provided at this time. However,

our experiments with some of the synthetic texture mosaics have given results better than most of the algo-

rithms that we are currently aware of in the segmentation literature. A visual inspection of the results indi-

cate that the segmentation is of acceptable quality and well suited for applications such as image browsing

wherein the automatic segmentation is critical. The segmentation results of 2,500 natural color images

from a Corel photo gallery can be found athttp://vivaldi.ece.ucsb.edu/Netra.

Appendix A:

Gabor Functions and Wavelets

Gabor functions are Gaussians modulated by complex sinusoids. In two dimensions they take the

form:

(27)

The 2-D Fourier transform of is

, (28)

where and . Let be the mother Gabor wavelet, then this self-similar

filter dictionary can be obtained by appropriate dilations and rotations of the mother wavelet through the

generating function:

(29)

,

,

g x y,() 1
2πσxσy
------------------- 

  1
2
--- x

2

σx
2

------ y
2

σy
2

------+
 
 
 

–exp 2πjWx[]exp⋅=

G x y,()

H u v,() 1
2
--- u W–()2

σu
2

--------------------- v
2

σv
2

------+–
 
 
 

exp=

σu 1 2πσx⁄= σv 1 2πσy⁄= g x y,()

gmn x y,() a
m–

G x' y',()= a 1 m n,,>, integer=

x' a
m–

x θ y θsin+cos()=

y' a
m–

x θ y θcos+sin–()=

20

where and is the total number of orientations.

Gabor Filter Dictionary Design

The non-orthogonality of the Gabor wavelets implies that there is redundant information in the fil-

tered images, and the following strategy is used to reduce this redundancy. Let and denote the

lower and upper center frequencies of interest. Let be the number of orientations and be the number

of scales in the multi-resolution decomposition. Then the design strategy is to ensure that the half-peak

magnitude cross-sections of the filter responses in the frequency spectrum touch each other as shown in

Figure4. This results in the following formulas for computing the filter parameters and (and thus

 and).

, (30)

(31)

(32)

where , and .

References

[1] A. C. Bovic, M. Clark, W. S. Geisler, “Multichannel texture analysis using localized spatial filters,”
IEEE Trans. Pattern Anal. and Machine Intell., Vol. 12, pp. 55-73, January 1990.

[2] J. M. H. Du Buf, “Gabor phase in texture discrimination,” Signal Processing, Vol. 21, pp. 221-240,
1990.

[3] J. M. H. Du Buf and P. Heitkämper, “Texture features based on Gabor phase,” Signal Processing,
Vol. 23, pp. 225-244, 1991.

[4] J. Canny, “Computational approach to edge detection,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 8, No. 6, pp. 679-698, Nov. 1986.

[5] J. G. Daugman and C. J. Downing, “Demodulation, predictive coding, and spatial vision,” Journal of
the Optical Society of America A, Vol. 12, No. 4, pp. 641-660, April 1995.

[6] R. Deriche, “Optimal edge detection using recursive filtering,” Proc. IEEE ICCV, pp. 501-505, 1987.

[7] D. Dunn, W.E. Higgins, and J. Wakeley, “Texture segmentation using 2-D Gabor elementary func-
tions,” IEEE Trans. Pattern Anal. and Machine Intell., Vol. 16, pp. 130-149, Feb. 1994.

θ nπ K⁄= K

U l Uh

K S

σu σv

σx σy

a Uh U l⁄()
1

S 1–

=

σu

a 1–()Uh

a 1+() 2 2ln
---------------------------------=

σv
π
2k
------ 

  Uh 2 2
σu

2

Uh

 
 
 

ln– 2 2
2 2ln()2σu

2

Uh
2

--------------------------–ln

1
2
---–

tan=

W Uh= θ π K⁄= m 0 1 … S 1–, , ,=

21

[8] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biological Cybernetics, 61, pp 103-
113, 1989.

[9] M. Gökmen and A. K. Jain, “ -space representation of images and generalized edge detector,”
IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 764-769, San Francisco, CA, June
18-20, 1996.

[10] A. K. Jain and F. Farroknia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recog-
nition, 24(12), 1167-1186, 1991.

[11] K. Karu, A. K. Jain, and R. M. Bolle, “Is there any texture in the image?” Pattern Recognition, Vol.
29, No. 9, pp. 1437-1446, 1996.

[12] J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt.
Soc. Am. A, Vol. 7, pp. 923-932, May 1990.

[13] W. Y. Ma and B. S. Manjunath, “A texture thesaurus for browsing large aerial photographs,” to
appear in Journal of the American Society for Information Science, 1997.

[14] W. Y. Ma and B. S. Manjunath, “NeTra: a toolbox for navigating large image databases,” in IEEE
Int. Conf. on Image Processing, 1997.

[15] B. S. Manjunath and R. Chellappa, “A Unified approach to boundary detection,” IEEE Trans. Neural
Networks, Vol. 4, No. 1, pp. 96-108, January 1993.

[16] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and retrieval of image data,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 837-842, Aug. 1996.

[17] J. Mao and A. K. Jain, “Texture classification and segmentation using multiresolution simultaneous
autoregressive models,” Pattern Recognition, Vol. 25, No. 2, pp. 173-188, 1992.

[18] D. Marr and E. Hildreth, “Theory of edge detection,” in Proc. of Roy. Soc., (Sec B, 207), pp. 187-
217, 1980.

[19] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp. 629-639, July 1990.

[20] Y. Rubner and Carlo Tomasi, “Coalescing texture descriptors,” Proc. of the ARPA Image Under-
standing Workshop, pp. 927-935, Feb. 1996.

[21] J. Shen and S. Castan, “An optimal linear operator for edge detection,” Proc. IEEE Int. Conf. on
Computer Vision and Pattern Recognition, pp. 109-114, 1986.

[22] T. R. Smith, “A digital library for geograpgically referenced materials,” IEEE Computer, pp.54-60,
May 1996.

[23] M. V. Srinivasan, S. B. Laughlin, and A. Dubs, “Predictive coding: a fresh view of inhibition in the
retina,” Proc. R. Soc. London Ser. B 216, 427-459, 1982.

[24] V. Torre and T. Poggio, “On edge detection,” IEEE Trans. Pattern Anal. Machine Intell., Vol. 8, No.
4, pp. 147-163, 1986.

[25] A. P. Witkin, “Scale-space filtering,” Proc. 8th Int. Joint Conf. on AI.(Karlsruhe, West Germany), pp.
1019-1022, 1983.

[26] S. R. Yhann and T. Y. Young, “Boundary localization in texture segmentation,” IEEE Trans. Pattern
Anal. and Machine Intell., Vol. 4, pp. 849-855, June 1995.

λτ

22

FIGURE 1. Image segmentation often require additional information from the user in order to select a
proper scale to segment the objects or regions of interest, (a) shows an image with five different “beans”
regions, (b) is the segmentation result using a smaller scale, and (c) is the segmentation result using a
larger scale.

(a)

(b) (c)

Consider each “beans”
region as a texture

Consider each bean as an
object

DOOGσ θ π+,

DOOGσ θ,

GDσ θ,

Error s θ π+,()

Error s θ,()

E s θ,()

I(x,y)

FIGURE 2. The computation of and using the GD and DOOG functions along a
orientation . The shaded regions indicate the negative regions in the filter responses.

E s θ,() P s θ,()
θ

23

10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

x

10 20 30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

12

14

16

18

20

x
10 20 30 40 50 60 70 80 90 100 110

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

x
10 20 30 40 50 60 70 80 90 100 110

0

2

4

6

8

10

12

14

16

18

20

x

(a)

(b)

FIGURE 3. A comparison of the edge flow model with the conventional approach to detecting edges. (a)
Traditional method of edge detection. (b) Edge flow model.

P(left)P(right)

magnitude of
the first derivative

Edge

zero-crossing
of the second
derivative

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 4. Fourier transforms of the Gabor filters, which are used to extract texture features for performing
the image segmentation at different scales. (a) and , (b) and , and (c)

 and . The contour indicate the half-peak magnitude of the filter response.
σ 5.0= S 5= σ 1.25= S 3=

σ 1.0= S 2=

(a) (b) (c)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

24

FIGURE 5. (a) A flower image. (b) The final edge flow field. (c) The result after edge flow propagation. (d)
The result of boundary detection.

(a)

(b)

(c)

(d)

25

I(x,y)

Horizontal edge
map H(x,y)

x

y

Vertical edge
map V(x,y)

(a)

FIGURE 6. (a) Edge signals and image pixels, (b) The stable flow field vector F, and (c) Boundary
detection based on the edge flow.

(b)

F

h(x,y)

v(x,y)

(c)

FIGURE 7. (a) A color flower image. Note that the detailed edge flow of image within the small window has
been shown in Figure5, (b) boundary detection using the edge flow model, (c) result after the boundary
connection, and (d) result after the region merging.

(a) (b)

(c) (d)

26

FIGURE 8. The use of edge flow model for detecting different type of image boundaries. From top to
bottom are original image, edge flow computation, edge flow propagation, and boundary detection. (a)
Intensity edges. (b) Texture boundaries. (c) Illusory boundaries.

(a) (b) (c)

27

FIGURE 9. Image segmentation using edge flow model. (a) Using texture edge flow, (b) Using edge flow
based on the Gabor phase.

(a)

(b)

28

FIGURE 10. Segmentation results of the real natural images from the Corel photo CDs. (a) scale parameter
 pixels, (b) pixels, (c) pixels, (d) pixels, and (e) pixels.σ 3= σ 4= σ 3= σ 6= σ 2=

(a) (b)

(c)

(d) (e)

29

f(h+1,w)

f(h-1,w-1)

f(h,w)f(h,w-1)

f(h+1,w-1) f(h+1,w+1)

f(h,w+1)

f(h-1,w) f(h-1,w+1)

(a) (b)

FIGURE 11. (a) The spatial relationship between neighboring feature vectors of image blocks, and (b)
probabilities of edge flow toward different directions.

30

(a)

(b)

FIGURE 12. Segmenting large aerial photographs using the edge flow model.

