
Abstract

Dimensionality reduction methods are of interest in
applications such as content based image and video
retrieval. In large multimedia databases, it may not be
practical to search through the entire database in order to
retrieve the nearest neighbors of a query. Good data struc-
tures for similarity search and indexing are needed, and
the existing data structures do not scale well for the high
dimensional multimedia descriptors. We investigate the
use of weighted multi-dimensional scaling (WMDS) for
dimensionality reduction. The main objective of the
WMDS is to preserve the local topology of the high dimen-
sional space, i.e., to map the nearest neighbors in the high
dimensional space to nearest neighbors in the lower
dimensional space. In addition to the well known retrieval
accuracy as a measure of performance, we propose two
additional measures that take into account the ordinal
relationships among the nearest neighbors. Experimental
results are given. 

1   Introduction
The dimensionality of image descriptors (feature vec-

tors) used in image retrieval applications, in general, is
quite high. Typical descriptor dimensions range from few
tens to several hundreds. For example, a color histogram
may contain 256 bins. This high dimensionality of the fea-
ture vectors creates problems in constructing efficient data
structures for search and retrieval. It is well known that
most of the indexing structures do not scale well when the
dimensionality of the feature vector exceeds 20 [11]. For
this reason, there is considerable interest in reducing the
dimensionality of the descriptors while preserving the
original topology of the high dimensional space. 

Previously investigated methods for dimensionality
reduction include Principal Component Analysis (PCA)
[9], Singular Value Decomposition (SVD) [5], Self-Orga-
nizing Map (SOM) [6], Fastmap [4] and Multidimensional
Scaling (MDS) [2]. SOM is quite often used for the classi-
fication and clustering of the feature vectors to constrain
the search space [7]. PCA or SVD [2] amount to rotating
the coordinate axes of the high dimensional vector space
so that projections onto the new axes result in uncorrelated

feature points. Dimensionality reduction is achieved by
using few of the rotated axes as basis vectors. In MDS, the
low dimensional representation is found by minimizing
certain cost functions. One example of such a cost func-
tion is the difference in pairwise distances between feature
points in the original and lower dimensional space. In an
ideal situation, for any given query one should find the
same set of nearest neighbors in the lower dimensional
space as in the original high dimensional space. 

We propose a modified version of the MDS cost func-
tion that is motivated by the following observations in the
context of image retrieval. (a) it is important to ensure that
the top M retrievals (nearest neighbors) are preserved in
the reduced dimensional space. M is typically a fraction of
the entire database, and as such not all pairwise distances
need be considered. (b) often the ordinal relationships of
the retrievals are of much interest, and this relationship be
preserved as well in the reduced dimension space. The
proposed weighted MDS has two advantages over the tra-
ditional MDS. Unlike the traditional MDS, it requires
much fewer data points (pairwise distances) to achieve the
same level of performance as MDS. Further, it compares
favorably with MDS in preserving the local topology, as
our experimental results in Section 4 demonstrate. 

In the next section we describe the weighted MDS
approach. Section 3 discusses several performance metrics
to evaluate the effectiveness of descriptors in a reduced
dimensional space. Experimental results are given in Sec-
tion 4 and concluding remarks in Section 5. 

2   Weighted Multidimensional Scaling 
(WMDS)

Let  denote the space of the high dimensional fea-
ture vectors. Let  denote the reduced dimensional fea-
ture space. Let  and  represent the feature
descriptors in the original high dimensional space and in
the reduced lower dimensional space, respectively. Let

 be the distance between two
objects  and  in the original feature space. Let

 be the corresponding distance in
the lower dimensional space. We assume Euclidean dis-
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tances between feature vectors. Then, the objective of
weighted MDS (WMSD) is to minimize the cost function 

(1)

where N is the total number of objects in the database and
 is a weighting factor associated with . For

 for all  and  in (1), we have the traditional loss
function defined for MDS

(2)

The minimization of (2) results in a configuration of N
points in . It is clear that the objective is to preserve the
pairwise distances in the new reduced dimensional space.
Note that since  and , among all 
pair distances,  of them are independent con-
straints to be satisfied in the minimization of (2). This loss
function has been used in [3],[4], and different optimiza-
tion methods have been investigated. We use the iterative
majorization method [3] in our implementations for mini-
mizing the .

The minimization techniques can be carried out even
when partial information on the distances is available (see
[3], Chapter 6). Figure 1 shows some results wherein only
a partial set of pairwise distances are used. The perfor-
mance is measured in terms of retrieval accuracy (see
below). The pair distances are selected at random. Note
that the performance using only 50% of the data is compa-
rable with that of using the entire distance matrix. 

This observation that partial data can be used in MDS
leads us to the weighted MDS formulation wherein the
distance constraint on the nearest neighbors is given prior-
ity. This is particularly appealing in the context of image
retrieval in that we are typically interested only in the top
few retrievals. Preserving the local topology of the higher
dimensional space in the reduced dimensions is important.
Thus, one can specify the weights  in the WMDS to be
inversely proportional to the s. Since the number of
nearest neighbors considered is also of interest, we pro-
pose the following choices of 

(3)

where  is the distance between an object  and its
mth nearest neighbor. Since the value of  drops
quite fast, one can further threshold its value to speed-up
computations without affecting the quality of the results.

3   Performance Measures
Retrieval accuracy is often used as a measure of effec-

tiveness of a descriptor in image retrieval applications. For 
evaluating the performance of the dimensionality reduc-

tion methods, we focus only on preserving the local topol-
ogy of the high dimensional space and not on the
perceptual similarity measure.

Notations: Let  denote a query object. Let
 be an ordered set of the first M

nearest neighbors of  in . The elements are arranged
such that 

Similarly, let  be the ordered set

of the first M nearest neighbors of  in . Let

         

w h e r e  .

Let  be a permutation of , in

which the element are arranged such that

        

Let , the cardinality of . Then the
retrieval accuracy for a query object  is computed as

. 
Retrieval accuracy alone is not a sufficient measure of

performance. Often the order in which the items are
retrieved is of equal importance. Consider Figure 2(b) and
Figure 2(c). Both correspond to retrievals using the first
picture in each row as the query, and the retrieval rates are
the same for both cases. However, if the users are asked to
rank the performances, results in Figure 2(b) are perceptu-
ally more appealing than the results in Figure 2(c). One
reason being that perceptually more similar items appear
farther away in the rank-ordered list in Figure 2(c). If we
assume that the ground truth corresponds to the nearest
neighbors in , then one can impose an additional con-
straint that requires maintaining the ordinal relationships
in the reduced dimensional space .
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Fig 1. Retrieval accuracy using MDS and partial distances. “p”
denotes the percentage of data used.
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It may help to consider another simple example
wherein a query  has the top 5 nearest neighbors as

 in . Consider two sets of nearest
neighbors in reduced dimensional space:

 and . Here
" " represent items not in the ground truth. Both  and

 have K=3 retrievals from the ground truth (corre-
sponding to 60% retrieval rate) but clearly the first set 
preserves the topology better for the query  than the sec-
ond set . 

For a given set , for , define
(4)

For example,  and . A
normalized measure based on the rank of the retrieved
nearest neighbors can be defined as: 

(5)
 is normalized to [0,1], with a higher value indicating

a better retrieval set. For the two examples  and 
mentioned in the previous paragraph, the values of 
are 0.8 and 0.4, respectively, even though both have the
same retrieval accuracy. However, this still does not take
into account the relative positions in which the objects
appear. Thus  and  both
have the same . 

To address this, in addition to the individual ranks of
the retrieved objects, we need to consider their ordinal
relationships as well. One objective measure is to compare
the rank of the object in  to its rank in , as in the fol-
lowing:

(6)

where  is the maximum possible distance between
two permutations and is given by 

(7)

 is also normalized to [0,1], with a smaller 
indicating a better retrieval.  together with  can
be used to evaluate the effectiveness of the descriptors if
the ground truth for each query is know. When the  for
two sets of retrieval are about the same,  provides a
quantitative measure that can be used to rank order the
effectiveness. In Figure 2, the  for retrievals in (b)
( =0.69) is about the same as that for (c) (  = 0.65), but

 captures the relative ordering quite well. The  for (b)
is 0.33, only half as much as the  for (c), which is 0.66.
Perhaps a good overall effectiveness measure is the ratio

. 
We note that the average retrieval rate defined in the

MPEG-7 core experiments [12] is very similar to the 
defined above (except that the optimal value of the aver-
age retrieval rate is "0" in [12] and a higher value indicates
a poorer performance of the descriptors.) 

4   Experimental Results
A texture image database collected from MPEG-7

evaluation data set is chosen as the test data set [12]. It
consists of 832 real world texture images from 52 different
texture classes and each of them contains 16 texture
images. We use the Gabor texture features described in [8]
as our image descriptors. In [8], a given image is filtered
using scale and orientation sensitive filters modeled using
Gabor functions. The mean and standard deviations of the
filtered outputs are used to construct the texture descriptor.
We use a total of 24 filters, thus creating a 48-dimensional
texture descriptor for each image in the database. 

Fig 2. The left most image in each row is the query image. 
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In evaluating the performance of dimensionality reduc-
tion, the nearest neighbors for each image object in the
high dimensional space is used as the ground truth. Since
each image has 16 textures from the same class, we set
M=16 in computing the retrieval accuracy. 

Figure 3 gives an evaluation of the reduced dimen-
sional descriptors obtained using the WMDS method. Dif-
ferent sets of nearest neighbors are considered,
corresponding to m=25, 50, 100, and 200 in (3). Note that
the performance for m=50 is within 10% of the full dimen-
sional MDS. In terms of the number of pairwise distances
used in computing the mapping, this is comparable to
p=16% in Figure 1. For p=16% of data, MDS method per-
forms significantly worse. However, 16% of the data
points is randomly selected in the experiments. It is inter-
esting to note that the WMDS with m=50 outperforms the
full MDS when the reduced dimensionality exceeds 20.
For values of m much less than 50, the performance of the
WMDS is not good, as is evident by the curve for m=25 in
Figure 3. 

 Figure 4 plots the  as a function of number of
dimensions (of ) for WMDS and MDS. We observe that
m=50 offers a good trade-off between computational com-
plexity and performance.

5   Conclusions
We have presented a simple but effective method for

dimensionality reduction using weighted MDS. On a tex-
ture image dataset, we have demonstrated that using a
fraction of the nearest neighbors, one can compute a lower
dimensional representation that is quite effective. This
method compares favorably in terms of computational
complexity with the full MDS method. We are currently
evaluating and comparing the performance of WMDS
with other dimensionality reduction methods such as the
FastMap and SVD. One issue that has not been addressed
in this work is the mapping of new feature vectors onto the

lower dimensional space, and different techniques for
computing this transformation are being investigated.
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Fig 3. Retrieval accuracy using WMDS. “m” denotes the num-
ber of top nearest neighbors considered, as specified in (3)
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