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ABSTRACT

We consider the problem of active steganography, wherein the
goal is to survive benign attacks in addition to maintaining statistical
and perceptual transparency. The stego image can be “advertised”
in uncompressed format, but they can survive JPEG compression
upto a certain design quality factor while still resisting statistical ste-
ganalysis. The data is hidden in the discrete cosine transform (DCT)
coefficients using the statistical restoration framework: a fraction of
the coefficients are used for hiding and the rest are used for restoring
the statistics. In order to advertise the images in uncompressed for-
mat, we must restore the unquantized or continuous statistics. This
paper extends the statistical restoration framework so as to make
only integer perturbations to the pixel values while modifying the
transform coefficients, thus matching their histogram computed us-
ing very small bin-width. We present numerical results confirming
the applicability of the presented technique.

Index Terms— Steganography, steganalysis, fractional bin-
width, optimal pixel perturbations, statistical restoration

1. INTRODUCTION

We consider the problem of active steganography in this paper,
wherein the goal is to transmit a message by secretly embedding it
into a cover (the host signal) in such a way that (i) the very existence
of the hidden message is not revealed to a third party and (ii) the
message can be recovered even after benign or malicious processing
of the stego signal (host with embedded data). Although most prior
works have focussed on passive steganography in which no attacks
are assumed (see, for example, [1, 2, 3]), we believe that robustness
against “benign” processing such as compression or additive noise
is highly desirable. For instance, a digital image with hidden con-
tent may get compressed as it changes hands, or if it goes over a
low bandwidth link such as a wireless channel. It is to be noted
that though we do not explicitly model attacks in this paper, the pre-
sented method is designed to survive compression and other mild
distortion-constrained attacks without giving up its steganographic
security, and hence it fits into the active steganography model.

Specifically, we look at the problem of surviving JPEG com-
pression while “advertising” the image in uncompressed format
and maintaining statistical as well as perceptual transparency. To
achieve this, we follow the framework of statistical restoration pro-
posed in our prior work [4, 5], wherein a fraction of the host symbols
are used for hiding and the rest are used to restore the statistics of
the stego to match that of the original host.
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In order to advertise the images in uncompressed format, we must
restore the unquantized or continuous statistics in the transform do-
main. Such a scheme employing statistical restoration with quanti-
zation index modulation (QIM) hiding was first demonstrated in [4].
The results showed much improvement over standard QIM hiding,
but the steganography was still detectable more than 20% of the time.
The reason is the presence of unavoidable round-off errors since the
pixel values must always be integers. For restoring the continuous
statistics, we must consider histograms computed with very small
bin-widths, which makes the system susceptible to round-off errors.
This is a practical limitation that must be considered by any stegano-
graphic scheme embedding data in the transform domain. There is
always a risk of leaking the presence of embedded data due to the
fact that these round-off errors modify the statistics of the transform
coefficients.

In this paper, we present a method that allows us to make integer
modifications to the pixel values during the statistical restoration of
the transform coefficients. The price we pay is the lowered rate of
embedding. Though the general ideas can be applied to restoration
in any transform domain or with any hiding method (QIM or spread
spectrum), we present in this paper the specific case of QIM hiding
in the discrete cosine transform (DCT) domain, thus surviving JPEG
compression upto a certain quality factor (QF) by design.

A limitation of the presented method is the possibility of it being
detected by recent steganalysis techniques ([6, 7]) that exploit cover
memory. While our recent work on second-order statistical restora-
tion addresses these issues [8], the main contribution of the present
paper is a method allowing integer perturbations to the pixels while
embedding and restoring transform coefficient histograms with very
fine bin-widths. Extending the presented scheme for higher order
steganalysis would be an interesting avenue for future work.

Another impending issue is the choice of bin-width. Scott [9] pro-
poses a framework for computing the optimal histogram bin-width
for data analysis. For the DCT coefficients, Scott’s framework rec-
ommends bin-width values of the order of 10−4 (not considering
noise due to round-off). Using our method, we could restore the
DCT histogram upto a bin-width of 10−2, which makes the scheme
vulnerable to steganalysis. In spite of the limitations mentioned in
this and the previous paragraph, we believe that the presented ap-
proach provides a fair contribution, as it solves an important practi-
cal problem not previously considered in the literature.

2. PROBLEM FORMULATION

Let us define three discrete cosine transform (DCT) based features
- “actual”, “quantized” and “unquantized” DCT. The DCT terms
computed per 8×8 block are the “actual” DCT terms. After divid-



ing the actual DCT terms by a certain quality factor matrix (with-
out rounding the resultant terms), we obtain the “unquantized” DCT
(UQDCT) terms. On rounding them, we obtain the “quantized” DCT
(QDCT) terms.

In the statistical restoration framework, certain 8×8 blocks are
used for hiding and the rest for compensation. Let X denote the ma-
trix of image pixels, belonging to compensation blocks, and ψ de-
note the 2D-DCT transform, performed per 8×8 block in X , which
converts X to Y , as in (1). The matrix of DCT terms Y is then trans-
formed to the UQDCT matrix Z - every 8×8 block in Y , denoted
by Y 8×8, is divided element-wise by the 8×8 JPEG quantization
matrix M , corresponding to a certain quality factor QF, to produce
Z8×8, the corresponding 8×8 block in Z, as shown in (1).

Y = ψ(X), Z8×8
ij =

Y 8×8
ij

Mij
, 1 ≤ i, j ≤ 8 (1)

where Mij is the element in the ith row and jth column of M .
Let us now outline the histogram matching problem in the sta-

tistical restoration framework. We use a pre-decided group of ele-
ments per 8×8 UQDCT block for hiding and compensation and call
this feature set D. Let D be divided into two disjoint sets - H and
C, which are meant for hiding and compensation, respectively, as
shown in (2), and are generated from different blocks. The com-
pensation set C is thus a subset of the UQDCT set Z. We divide
the set D into 1-D bins and find their respective bin-counts (num-
ber of terms per bin). We use BD(i) to denote the bin-count of the
ith bin of D. Since the normalized bin-count gives the probability
mass function (PMF), compensating for the bin-counts is equivalent
to restoring the PMF. Data embedding is performed using dithered
QIM in the hiding blocks to change H to H ′. For maintaining the
perceptual transparency, we only embed data in UQDCT terms of
magnitude greater than 0.5, the motivation being the Selective Em-
bedding in Coefficients (SEC) scheme proposed in [10]. The goal
of statistical restoration is to change the compensation terms C to
C′ such that PD′ , the PMF of D′, obtained from D after hiding and
compensation, is same as that of D.

D = H ∪ C, D′ = H ′ ∪ C′ (2)
H ∩ C = φ ⇒ BD(i) = BH(i) + BC(i), ∀ i (3)

H ′ ∩ C′ = φ ⇒ BD′(i) = BH′(i) + BC′(i), ∀ i (4)
To obtain PD = PD′ , we need BD′(i) = BD(i), ∀ i (5)

⇒ BC′(i) = BC(i) + BH(i)−BH′(i), ∀ i (6)

BH′ is computed from the UQDCT stream obtained from the hid-
ing blocks in the stego image and not from the hidden stream in the
actual image - this is done to avoid errors in UQDCT computation
(causing errors in computation of BH′ ) because of pixel-rounding
in the hiding blocks. If BC′(i), the desired bin-count for the ith bin
of the compensation coefficients, is negative, compensation is not
possible for that bin.

For histogram computation, we consider only those terms that lie
in a desired frequency band and have magnitude less than or equal
to a certain threshold T . Since the distribution of the UQDCT coef-
ficients peaks sharply near 0 and falls off sharply for higher values,
higher valued terms may be ignored in the histogram computation.

Let the new set of UQDCT terms for the compensation blocks be
Z′ (the set of the desired compensation terms for these blocks is C′).
In (7), the change in pixel values of X required to exactly convert Z
to Z′ is ∆X . The matrix of DCT terms Y in (1) gets changed to Y ′.

Y ′ = ψ(X + ∆X), Z′8×8
ij =

Y ′8×8
ij

Mij
, 1 ≤ i, j ≤ 8 (7)

Now, the exact value of the pixel changes ∆X may also involve
some fractional terms. Once we round off the pixel changes, the re-
sulting Z′ may no longer satisfy the histogram matching constraint.
The aim is to find a set of integer ∆X values which ensures the
histogram matching in UQDCT domain. A smaller perturbation in
Z due to rounding of the pixel changes may offset the histogram
matching for smaller bin-widths.

3. ESTIMATION OF THE BEST PIXEL PERTURBATIONS

In (1), X represents the entire pixel matrix for the compensation
blocks. For simplicity, let us consider one 8×8 block of the image
and treat it as X . Similarly, Z, in (1), can be considered as the corre-
sponding 8×8 UQDCT matrix. Though X and Z are 8×8 matrices,
we can also represent them by 64-dimensional vectors ~X and ~Z, as
in (8). While converting the 8×8 matrix to a 64-dimensional vector,
we read the matrix column-wise. The conversion from X to Z in (1)
can be represented by a matrix A (2D-DCT followed by element-
wise division by the JPEG quantization matrix M ). In (8), A is a
64×64 matrix while ~X and ~Z are 64×1 vectors.

A ~X = ~Z (8)

We compute A by using the superposition principle. Say, we set
the ith term in the column vector ~X to 1, while the rest are 0, and
perform 2D-DCT followed by component-wise division by M to
obtain ~Z. Thus, Aji = ~Zj , 1 ≤ j ≤ 64, where Aji is the element in
the jth row and ith column of A and ~Zj is the jth element of ~Z. We
vary i 64 times to compute all the elements in A. The matrix A is
invertible since both the operations which constitute A, 2D-DCT and
component-wise division by M (no rounding off), are reversible.

Out of the 64 terms per compensation block, we compensate us-
ing a certain mid-band of UQDCT coefficients. Z consists of two
disjoint sets - Zc and Znc. Zc refers to the compensation terms of Z
lying in this select band of Nc coefficients, which are considered for
histogram computation, while Znc refers to the rest of the terms in
the block (non-compensation terms) - Nc equals 19 in Fig. 1 where
Zc and Znc are demarcated.

Fig. 1. Compensation (Zc terms denoted by C) and non-
compensation terms (Znc terms denoted by N) per 8×8 DCT block

Let the vectors ∆~Z1 and ∆~Z2 denote the limits for the perturba-
tion of the terms in ~Z. Perturbation of the elements of ~Z and ~X are
denoted by ∆~Z and ∆ ~X , respectively. For notational convenience,
we use ~≤ to denote term-by-term inequality between 2 vectors.

~F ~≤ ~E ⇒ ~Fi ≤ ~Ei, 1 ≤ i ≤ N (9)



where vectors ~F and ~E are each of length N and ~Fi is the ith ele-
ment of ~F . Since A is invertible, the pixel perturbation limits ∆ ~X1

and ∆ ~X2 can be obtained as follows:

∆~Z1 ~≤∆~Z ~≤∆~Z2 ⇒
∆~Z = A∆ ~X = α(∆~Z1) + (1− α)(∆~Z2), α ∈ [0, 1] (10)

⇒ ∆ ~X = α(A−1∆~Z1) + (1− α)(A−1∆~Z2), α ∈ [0, 1] (11)

Bounds on ∆ ~X: ∆ ~X1 = A−1(∆~Z1), ∆ ~X2 = A−1(∆~Z2) (12)

(10) follows from the property of convex sets. Since pixel changes
must be integers, ∆ ~X should be a rounded version of a weighted
average of ∆ ~X1 and ∆ ~X2, i.e.

∆ ~X = round(α∆ ~X1 + (1− α)∆ ~X2), 0 ≤ α ≤ 1, (13)

Considering ∆Z1 and ∆Z2 as 8×8 matrices, we now explain how
their compensation (∆Zi,c, i = 1, 2) and non-compensation terms
(∆Zi,nc, i = 1, 2) are determined. For every compensation term
z ∈ Zc, we have a corresponding c′ ∈ C′, where C′ denotes the
set of the desired compensation terms, as in (2); let c′ ∈ [iW, (i +
1)W ], i.e. c′ lies in the ith bin where the bin-width is W . The
limits of the allowed perturbation ∆z for z are then [iW − z, (i +
1)W − z]. Let ∆z1 = (iW − z) and ∆z2 = ((i + 1)W − z) be
the corresponding elements in ∆Z1,c and ∆Z2,c, respectively. This
ensures that ∆~Z1,c ~≤∆~Zc ~≤∆~Z2,c holds true.

For the Znc terms, we have set a perturbation range of [−δ, δ] (in
our experiments, we have used δ = 0.1) - the goal being to min-
imize the perturbation to maintain good perceptual quality. The
perturbation limit for a 8×8 matrix is obtained by combining the
limits for the compensation and non-compensation terms: ∆Zi =
∆Zi,c ∪ ∆Zi,nc, i = 1, 2. There are two requirements from the
UQDCT ∆Z terms in the compensation blocks - histogram match-
ing for the compensation terms (ensured by ∆~Z1,c ~≤∆~Zc ~≤∆~Z2,c)
and minimum perturbation, obtained by absolute summation over
the perturbations, for the non-compensation terms, as in (14).

We now describe how we meet these requirements. Given a 8×8
matrix X , we can determine ∆~Z1 and ∆~Z2 (the sequence being:
X → Z → Z′ → ∆Z1 & ∆Z2), and from them ∆ ~X1 and ∆ ~X2,
using (12). For finding the best pixel perturbation, we need the opti-
mal value of the weight α in (13). For a certain weighting factor α,
we find ∆ ~X using (13). From ∆ ~X , we compute ∆~Z (=A∆ ~X) and
subsequently, ∆~Zc and ∆~Znc. We vary α from 0 to 1 in steps of
0.01 and using (14), we choose the optimal weight αopt. Thus, the
best pixel perturbation ∆ ~Xopt is ∆ ~X computed using α = αopt.

αopt = arg min
α

{
∑

z∈∆Znc

|z|} under the constraint that

{∆~Z1,c ~≤∆~Zc ~≤∆~Z2,c} holds true (14)

If only the histogram matching condition is satisfied, after varying α
over [0,1], we choose the α that provides the minimum perturbation,
even though it may exceed δ=0.1 for individual ∆Znc terms. If we
fail to obtain perfect histogram matching, for any α ∈ [0,1], we
compute ∆X using that α which provides the minimum perturbation
and also reduces the number of histogram mismatches.

4. EXPERIMENTS AND RESULTS

For the steganalysis experiments, we use a total of 4500 images. We
use half of them for training and the other half for testing. Both
the training and testing sets have half the images as cover and the

other half as stego. For testing the accuracy of our fractional bin-
width based steganographic methods, we use support vector machine
(SVM) based steganalysis. During the training phase, we develop
separate SVM classifiers trained on each feature set used for ste-
ganalysis. The SVM classifiers are then used to distinguish between
cover and stego images in the testing phase.

We use 15% of the 8×8 blocks for hiding and the rest for compen-
sation. From each block, the first 19 AC DCT coefficients (with val-
ues in the range [−T, T ] where T is the threshold), that occur during
a zigzag scan, as shown by the C terms in Fig. 1, are used for his-
togram computation. The steganographer may use different quality
factor matrices to generate the UQDCT terms, different thresholds
(T ) and different bin-widths (W ) for the UQDCT histogram compu-
tation. The steganalyst can use his own choice of these parameters.
Therefore, for a given set of steganographic parameters, we experi-
ment with a range of steganalytic parameters (Tables 1-4). Also, we
study steganalysis results obtained using the histogram of the actual
DCT coefficients as features (Table 2). Intuitively, the detectability
for histogram-based steganalysis should be higher in the actual DCT
domain, as compared to UQDCT, due to the higher dynamic range.

In Tables 1-4, PFA and Pmiss denote the probability of false
alarm and of missed detection, respectively. Ptotal gives the total
detection error (PFA + Pmiss). For undetectable hiding, the de-
tector is reduced to random guessing and Ptotal will be close to 1.
The design parameters - quality factor, threshold and bin-width used
for steganography are denoted by QF d, Td and Wd, respectively.
For steganalysis, the corresponding terms are QFs, Ts and Ws, re-
spectively. The steganalyst may JPEG-compress the images (we as-
sume the JPEG attack quality factor QF a = QF s) before statistical
analysis or he may directly analyze the uncompressed images pro-
vided by the steganographer - the detection results for these cases
are denoted by “JPEG” and “Noise Free”, respectively, in Tables 1-
4. Except in Table 4, Ts is not explicitly mentioned - ideally, the
steganalyst can consider an arbitrarily high threshold for better de-
tection. However, given the size of the training set (2250 images),
we limit the feature vector size (equal to the number of histogram
bins = 2d Ts

Ws
e) to 400 for proper training of SVMs. Thus, given a

bin-width Ws, the maximum allowed value of Ts can be found out.

We experimentally show in Table 1 that the integer pixel pertur-
bation based scheme proposed in this paper improves upon the sta-
tistical restoration based scheme without integer perturbations [4, 5]
when the fractional bin-width based UQDCT histogram is used for
steganalysis. Though the high resolution histogram was compen-
sated for during the statistical restoration process, the round-off er-
rors lead to histogram mismatches in the UQDCT domain. The in-
teger perturbation scheme counters the round-off effects and hiding
is almost undetectable, as shown by the much higher value of Ptotal.

We also test for recoverability of the embedded data after JPEG-
compressing the image at a quality factor QF a, which is greater than
or equal to the design quality factor QF d. Since the SEC [10] based
hiding scheme is adaptive, we use a error-correcting code (ECC)
based framework for data retrieval. For QF d and QF a both equal
to 50, we can embed 7000 bits on an average (using 15% hiding)
for 512×512 images, the results being averaged over 100 images.
The average bit error rate (BER) is 10−2, without using the ECC
framework. For QF d=50 and QF a=75, the BER (without ECC)
decreases to 10−3. For a non-adaptive scheme, we can use the range
[-0.5,0.5] for data hiding: we achieve a higher embedding rate at the
cost of increased perceptual distortions.



Table 1. Comparing the performance of the steganography scheme
(denoted by “Old”) used in [4, 5] with the pixel perturbation
scheme (denoted by “New”) proposed here, for fractional bin-width
based steganalysis in UQDCT domain - for steganography, we use
Wd=0.10, Td=30 and QF d=50. QF s is set to 50.

Steganalysis Noise Free (Old) Noise Free (New)
Ws PFA Pmiss Ptotal PFA Pmiss Ptotal

1.00 0.21 0.15 0.36 0.48 0.52 1.00
0.50 0.15 0.17 0.32 0.54 0.44 0.98
0.10 0.25 0.12 0.37 0.93 0.07 1.00

Table 2. Actual DCT histogram based steganalysis - we use Td=30,
QF d=50 and vary Wd. The feature used for steganalysis is the DCT
histogram computed using a bin-width of 0.5 considering values in
the range [-200,200]. JPEG compression occurs at QF=50.

Steganography Noise Free JPEG
Wd PFA Pmiss Ptotal PFA Pmiss Ptotal

0.50 0.00 0.00 0.00 0.01 0.05 0.06
0.10 0.00 0.01 0.01 0.50 0.22 0.72
0.02 0.36 0.53 0.89 0.19 0.65 0.84

Table 3. Variation of detectability with bin-width, using the UQDCT
histogram for steganalysis. For steganography, we use Td=30 and
QF d=50. QF s is set to 50. For different Wd used for steganogra-
phy, we vary the Ws used for steganalysis.

Steganography Steganalysis Noise Free JPEG
Wd Ws PFA Pmiss Ptotal PFA Pmiss Ptotal

0.10 0.10 0.93 0.07 1.00 0.58 0.26 0.84
0.10 0.05 0.00 0.02 0.02 0.53 0.32 0.85
0.50 0.50 0.84 0.15 0.99 0.11 0.09 0.20
0.50 0.25 0.00 0.06 0.06 0.08 0.14 0.22

Table 4. Variation of detectability with threshold, using the UQDCT
histogram for steganalysis. For steganography, we use QF d=75,
Td=30 and Wd=0.10. For steganalysis, we use the same bin-width
and quality factor and vary Ts.

Steganalysis Noise Free JPEG
Ts PFA Pmiss Ptotal PFA Pmiss Ptotal

20 0.68 0.26 0.94 0.03 0.79 0.82
25 0.73 0.18 0.91 0.02 0.79 0.81
30 0.34 0.21 0.55 0.08 0.50 0.58

4.1. Discussion

For actual DCT histogram based steganalysis, the matching of the
DCT histogram requires a high resolution matching in UQDCT do-
main - therefore, detection for uncompressed and JPEG images is
avoided for a bin-width of 0.02 (Table 2). However, when the
steganographer uses slightly larger bin-widths (≈ 0.1), the hiding
becomes nearly undetectable only after JPEG compression. When a
higher bin-width (≈ 0.5) is used during steganography for UQDCT
domain steganalysis, the reverse happens - hiding is not detected
in the distortion-free case but gets detected after JPEG attacks (Ta-
ble 3). For uncompressed images, UQDCT domain steganalysis
succeeds if the bin-width is lower than that used for steganogra-

phy (Table 3). For JPEG images, detection is avoided even when
a lower bin-width is used for steganalysis than for steganography,
i.e. Ws < Wd (Table 3). Also, the detection rate increases (Ptotal

decreases) when the steganalyst uses a higher threshold (Table 4) - a
larger threshold implies a more detailed histogram which can better
capture mismatches between original and stego image histograms.
Thus, from a steganalyst’s perspective, he should always use a very
small bin-width and a high threshold for histogram computation.
However, the steganalyst cannot make the bin-width arbitrarily low
or the threshold arbitrarily high because that makes the feature vec-
tor dimension too high for proper training of the SVMs, unless the
size of the training image set is proportionately large.

5. CONCLUSIONS

We have demonstrated a practical method allowing active image
steganography that ensures steganographic security while being ro-
bust to compression attacks. The images with hidden content can be
advertised in uncompressed format without being detected. This has
been made possible by an approach that allows integer perturbations
to pixel values while matching the transform coefficient histograms
at very fine resolutions. Avenues of future work include improving
the hiding capacity and incorporating the presented approach into
stego schemes that preserve second-order statistics [8].
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