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ABSTRACT 
 
Packing an executable originally referred to the compression 
of the file to reduce its size on disk. Nowadays, packing also 
introduces encryption and anti-debug techniques to protect 
executables from reverse engineering. This explains why 
packers are extensively used in creating new malware 
variants which are not detected by traditional signature-based 
anti-malware tools. Although universal unpackers exist for 
extracting the executable code from packed files, they often 
rely on methods based on dynamic analysis, thus making 
them computationally expensive and time consuming. Hence, 
it is important to detect packed executables beforehand to 
avoid unnecessary computations so that only protected 
executables need be sent to the unpacker before further 
analysis.   
 
In this paper, we propose a new technique for fast 
identification of packed executables by analyzing only the 
raw binary data. We extract bigram-based features on packed 
and unpacked executables and use a support vector machine 
for training and testing. Experimental results reveal that we 
are able to correctly identify packed executables with a high 
detection rate in the range of 95%-98% for a variety of 
packers and crypters.  
 

Index Terms—Malware, Detecting Packed Executables,  
Bigrams-based Classification. 
 

1. INTRODUCTION 
 
Cyber Security is facing a serious threat in this new age. 
Everyday we observe many security breaches, a lot of them 
leading to the downloading of malware without the user’s 
consent. The number of malware being generated currently is 
growing exponentially. At present, most prevalent malware 
are remotely controlled bots, spyware, adware which support 
organized world-wide criminal activity over the internet.  
The inability of anti-virus software to reliably protect 
computers and networks against the continuous stream of 
malware threats is well known. These software use 
traditional signature-based methods to identify if a program 
is malicious or not. However, they are not effective due to 

the huge bundle of newly generated malware. Further, most 
of the malware undergo packing (compression and/or 
encryption) which changes the appearance of the original 
malicious binaries thus evading detection.  In Symantec’s 
Global Internet Security threat report released in April 2010 
[8], it is reported that Symantec generates thousands of new 
signatures every year- 2,895,802 in 2009 as compared to 
169,323, in 2008.  However, not all these signatures can be 
attributed to new malware. As mentioned in [9] more and 
more malware are being packed, thus degrading the 
performance of traditional anti-virus software, since they are 
not effective in unpacking a protected executable. An 
executable can be packed using methods such as 
compression, encryption or a combination of both.  Packers 
transform the original executable’s binaries to a different 
form and generate new executables by embedding the 
compressed, possibly encrypted code with an appended 
loading routine. This routine is responsible for the automated 
decompression and decryption of the code before executing 
them.  There are hundreds of packers that exist today, both 
commercial and open source. This makes it very easy for 
malware writers to create new malware variants which are 
not detectable by traditional anti-virus software.  Hence, 
these software resort to either creating a new signature for 
every new packed threat it encounters or try to emulate the 
executable code and then scan the image of the code in 
memory.  In general, it is believed that nearly 80% of 
malware are packed [1], [9] and 50% of existing malware are 
packed versions of old malware [5].  
 
In our work, we focus on identifying if a given executable is 
packed or not. We only use the raw binary information to 
extract features that can effectively distinguish between 
packed and unpacked executables.  In our method, decoding 
an executable’s instructions is not necessary to determine if 
the file is packed or not. When analyzing large collections of 
malware samples, our algorithm can quickly tell which 
samples are packed or encrypted. Based on this information, 
only packed/encrypted samples that have to be unpacked 
need be sent to the un-packer before further analysis.  
 
The main contribution of this paper is that we propose a 
novel method to analyze executables to tell whether they are 



packed or not. We explore the statistical co-occurrence of 
byte codes in executables to distinguish packed and 
unpacked files. We show that our method achieves higher 
accuracy than other current methods based on entropy 
analysis [1] and higher robustness than methods that explore 
the structural information of portable executables [2].   
 
The rest of the paper is organized as follows. In Sec. 2, we 
briefly review some of the existing methods which detect 
packed executables without going inside the actual program 
structure. In Sec. 3, we describe our methodology to classify 
packed executables from unpacked executables. The 
experiments and results are discussed in Sec. 4 and the paper 
concludes in Sec. 5.  
 

2. RELATED WORK 
 
Generic unpacking is a very active field of research [9], [10]. 
The main solution that these methods adopt is performing 
dynamic execution in a virtual environment. But our method 
focuses on determining if a given executable is packed or 
not. In our method, there is no need to execute the code 
beforehand. We extract features only from the raw binary 
data to tell packed from unpacked executables. Hence, our 
method falls under “blind” methods since no actual 
disassembling of executable code is necessary. To the best of 
our knowledge, only a few such “blind” methods exist in 
literature and they are also recent. We will review some of 
them below. 
 
Perhaps the first work that was published to distinguish 
packed executables from unpacked ones was by Lyda and 
Robert [1].  They use entropy analysis on blocks of raw byte 
codes to determine the statistical variation between packed 
and unpacked executables. Their method works by dividing 
an executable into blocks of 256 bytes. They then use the 
entropy of the blocks to find variations. Since many blocks 
contain a lot of zeros, the entropy in these blocks reduces. 
Hence, the authors only consider blocks in which at least half 
the bytes are non-zero. The entropy is then computed for the 
valid blocks from which the average entropy of all these 
valid blocks and the maximum block entropy are found. 
Based on these two parameters, the authors perform simple 
statistical tests to obtain two thresholds to distinguish packed 
from un-packed files. In [4], Ebringer et al also use entropy 
analysis to classify different family of packers.  
 
In contrast to [1], Perdisci et al [2] use a pattern recognition 
based approach to classify packed executables from 
unpacked executables. Similar to the above papers, they 
consider executables in portable executable (PE) format, 
which is the format used in most Microsoft Windows 
operating systems. They perform binary static analysis of a 
PE file and extract nine features: number of standard and 
non-standard sections, number of executable sections, 

number of readable/writable/executable sections, number of 
entries in the Import Address Table (IAT), and the entropies 
of PE header, code section, data section and the entire PE 
file. They then train and test these features on a labeled 
dataset using various machine learning classifiers and show 
that they obtain an accuracy of close to 95%. In [3], Shafiq et 
al use the above technique as a first step to classify packed 
and unpacked executables and then use this output for 
malware detection.  Although this method works fairly well, 
the problem with PE feature is that they can be easily 
modified to mimic that of a normal executable. For example, 
one can mimic standard section names, modify the protection 
of sections at runtime or also build a fake Import Address 
Table. However, for our method, we neither need any PE 
information nor do we need to compute entropy. Our method 
relies on statistical properties of the data which is harder to 
tamper with.  
 

3. DISTINGUISHING PACKED EXECUTABLES 
 

In order to classify packed executables from unpacked 
executables, we use features based on n-grams of the 
executable’s byte codes. Detecting malware based on n-
grams analysis of bytes has been shown to be effective in 
telling malware from clean files. In one of the seminal papers 
[6], Koetler and Maloof gathered 1,971 benign and 1,651 
malicious executables and extracted n-grams of byte codes as 
features. On various machine learning techniques, they show 
that they obtained very high detection rates to classify 
malware from clean files. Similarly, Moskovitch et al [7] also 
use n-gram based features to classify malware from benign 
files. However, in these works, they do not separate the 
packed files from unpacked files before processing.   
 
3.1. Feature Extraction 
 
Motivated by the above approaches, we also use n-grams 
based features to distinguish packed from unpacked 
executables. The reason for using n-grams is that packing 
often shifts the bits or transforms the binaries to a different 
form which in turn alters the n-grams of byte codes. Further, 
packing also usually reduces the size of an executable, due to 
which the number of distinct n-grams present in the 
executable reduces after packing.  Instead of computing the 
actual n-grams vector which depends on the size of a file, we 
compute the distribution of the n-grams which is vector of 
constant size. Further, there is no need to compute the actual 
n-grams in order to compute the distribution.  To illustrate 
better, consider an example where an executable file is read 
in hexadecimal form in to a vector ‘hex’, whose length will 
be equal to the total number of bytes. Let the first few entries 
in the byte sequence of ‘hex’ be ‘0a 1b c4 8a’. Then, the 
corresponding bigrams will be 0a1b, 1bc4, c48a. Let ‘disbn’ 
be the zero vector corresponding to the distribution of the 
bigrams. Since the total number of possible bi-grams varies 



from ‘0000’ to ‘ffff’, the size of this vector is 65,536.  As 
shown in Fig.1, the computation of the distribution does not 
need the actual computation of bigrams vector.  
 
 
 
 
 
 
 
 

Fig.1 Pseudo code to compute distribution of bi-grams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Feature Pruning 
 
As mentioned earlier, we compute the distribution of the n-
grams of byte codes. We choose bigrams since unigram does 
not capture all the variations and higher n-grams not only 
takes time to compute but their feature vector size is also 
large. Once we find the distribution of bi-grams, we sort the 

values in descending order. Due to sorting, we lose the 
location of bi-grams, although the variation between different 
bi-grams is captured.  This helps us to distinguish between 
unpacked and packed files as shown in Fig.2 which shows 
the feature vectors for unpacked, packed and encrypted 
executable. While pruning the feature, the top few values are 
not considered since they are usually the same for all files. 
After discarding the top few values, the size of the feature 
vector is reduced to a manageable size.    

hex // hex string of chars of input file 
disbn // zero array of size 1x65536   
for i=0:2:# of bytes -4 
    temp = hex(i:i+3);  // Example ‘ffff’ 
    dec = hex2dec(temp) ; // Example 65535  
    disbn(dec) +=1; // increment the count 
end  
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 3.3. Algorithm and Classification 
 
The algorithm to compute the feature is as follows: 
 

1. Read the .exe file in hexadecimal format. 
2. Compute the distribution of the bi-grams to obtain a 

vector of size 1x65536. 
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          (c)           (d) 
Fig. 2 Bigram-based features computed on different versions of an executable: (a) unpacked (b) packed (UPX) (c) encrypted (Yoda) (d) 

compressed and encrypted (Telock) 



3. Sort the distribution in descending order. 
4. Remove the top few entries. 
5. Truncate the size of the vector to a reduced size to 

obtain the feature vector.   
 
We compute the features on a labeled dataset of unpacked 
and packed executables. We then use a support vector 
machine (SVM) with radial basis kernel for training and 
testing.    
 

4. EXPERIMENTS 
 
In our experiments, we use 300 unpacked files taken from 
the “systems” folder of a Windows XP Service Pack 2 
operating system and pack/encrypt them using a host of 
packers (UPX, NsPack, Upack, PeCompact, FSG, MEW, 
AsPack)   and crypters (Telock, Polyene, Yoda).  For every 
packer/crypter, we get an additional set of 300 files; thus the 
total number of packed/encrypted files is 3000.  We compute 
the feature vector for every executable as described in Sec. 3. 
We exclude the top 10 terms after sorting the bigrams 
distribution and then take the next 5000 terms as the feature 
vector as shown in Fig. 2. For our experiments, we train and 
test these features for every packer family. Hence for every 
packer, there are totally 600 executables of which 300 are 
packed and 300 are unpacked. Among these files, we take 
350 files for training and 250 files for testing and use an 
SVM with radial basis kernel for classification. The 
classification accuracies obtained for training were in the 
range 0.98-1.0. The testing results are tabulated in Tab. 1. 
We observe that we obtain very high accuracy in the range of 
0.95-0.98. Among packers, the best results were obtained for 
executables that were packed using NsPack packer and 
among crypters, the best results were obtained for Telock, 
although the results for other packers/crypters were not far 
behind.  We compared our results with the entropy tests as 
mentioned in [1]. We re-implemented their method in which 
they divide the data stream into blocks of 256 bytes and 
compute the entropy for every block. Since many blocks 
contain a large number of zeros, they consider only blocks in 
which at least half the number of bytes are non-zero. Once 
this is done, they compute the average entropy over all the 
blocks and the maximum entropy. Based on these 
parameters, they conduct statistical tests to obtain thresholds 
which can distinguish unpacked files from packed or 
encrypted files.  In [1], the authors state that executables with 
average block entropy greater than 6.677 and maximum 
entropy greater than 7.199 are statistically likely to be packed 
or encrypted. However, when we re-implemented their 
method, we observed that executables whose average block 
entropy is greater than 5.9 and maximum block entropy is 
greater than 7 are statistically likely to be packed or 
encrypted and the detection rates for the thresholds used in 
[1] were lower. The reason for this difference could be the 
fact that the authors in [1] used a smaller dataset with just 

two packers and one crypter. In Fig. 3 we show that our 
method outperforms the entropy based method of [1].  
 
 

Packer / 
Crypter 

Detection 
Rates 

True 
Positives 

False 
Positives 

UPX 0.9769 0.9630 0.0093 

Nspack 0.9815 0.9722 0.0093 

Upack 0.9698 0.9341 0 

Pecompact 0.9773 0.9643 0.0093 

FSG 0.9773 0.9643 0.0093 

MEW11 0.9772 0.9772 0.0278 

Aspack 0.9722 0.9630 0.0185 

Telock 0.9857 0.9714 0 

Polyene 0.9454 0.9000 0.0093 

Yoda  0.9495 0.9273 0.0278 

Tab.1 Packer Detection results for various packers 
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Fig. 3 Detection rates for bigrams-based method and entropy 

method [1] 
 
In our previous experiments, we trained and tested the 
features for every family of packers and crypters. This means 
that we have to store support vectors for every family which 
is not preferable in a realistic scenario. To see if our method 
is more general, we trained with one packer at a time and 
tested against the packed executables generated by other 
packers/crypters and computed a confusion matrix as shown 
in Tab. 2. We observe that even if we train our feature on 
packed executables generated by one family of packers, the 
classifier is able to detect packed executables from other 
family of packers.  Among the different packers/crypters, the 
classification results were comparatively low only for 
executables encrypted using Yoda Crypter. This is because 
Yoda does not pack the data and only performs encryption 
on the executable. Hence, files encrypted by Yoda do not 
show strong variations when compared with other packed 



files. Next, we mixed packed files from various packers to 
obtain a “mixed bag” of 300 packed samples which we used 
for training. We tested it on all the packed executables and 
were able to obtain high accuracies (Tab. 2). For all the 
results reported in Tab. 2, the false positive was as low as 
0.01. We can also see from Tab. 2 that the best results were 
obtained for the classifier which uses packed samples from 
Polyene.  
 
We also evaluate our method on a small set of non-system 
executables and malware. In particular, we take 261 
unpacked executables that are programs, applications, etc. 
and 207 unpacked botnets obtained from Anubis [11]. We 
packed them using UPX to generate 468 packed samples and 
run our classifier on the 936 unpacked and packed samples. 
The overall detection rate we obtained was 0.9542 with a 
false positive of 0.015. We believe that the results would be 
similar if we used other packers/crypters.  
 
Finally, we apply our algorithm to malware in the “wild”. 
We analyzed 8192 malware collected from Anubis [11]. We 
do not know beforehand if these malware were packed or 
not. On applying our algorithm, we found that 4649 malware 
were likely to be packed and 3543 are likely unpacked.  This 
corresponds to a packing percentage of 56.75%.  
 
 
 
 

5. CONCLUSION  
 
In this paper, we propose a novel method to distinguish 
packed executables from unpacked executables by just using 
the raw binary data. We show that features based on bigrams 
of byte codes can effectively distinguish packed from 
unpacked executables. In contrast to the current methods that 
detect packed files without decoding the data, our results 
indicate that we are able to obtain higher accuracy when 
compared to the entropy based method and also better 
robustness when compared to the method that uses PE 
information, which can be easily tampered with.  With more 
and more malware being packed, this method will  
particularly be useful in computer security applications as a 
first block in telling whether an executable is packed or not 
and based on this information, further analysis can be carried 
out. In future, we will focus on classifying various packers 
that generate packed executables.  
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 UPX Nspack Upack Pecompact FSG MEW Aspack Telock Polyene Yoda 

UPX 0.9628 0.9740 0.9598 0.9654 0.9406 0.9462 0.9519 0.9790 0.9167 0.8789

Nspack 0.9405 0.9759 0.9537 0.9581 0.9147 0.9165 0.9407 0.9790 0.9074 0.8661

Upack 0.9405 0.9722 0.9638 0.9654 0.9258 0.9239 0.9463 0.9809 0.9093 0.8569

Pecompact 0.9517 0.9759 0.9658 0.9709 0.9239 0.9239 0.9537 0.9809 0.9167 0.8624

FSG 0.9684 0.9629 0.9658 0.9617 0.9647 0.9629 0.9481 0.9733 0.9389 0.8642

MEW 0.9610 0.9740 0.9718 0.9672 0.9536 0.9703 0.9500 0.9714 0.9352 0.8587

Aspack 0.9424 0.9722 0.9577 0.9559 0.9239 0.9239 0.9630 0.9771 0.9111 0.8697

Telock 0.9052 0.9443 0.9437 0.9308 0.8813 0.8757 0.9242 0.9847 0.8926 0.8367

Polyene 0.9554 0.9814 0.9658 0.9709 0.9388 0.9462 0.9519 0.9809 0.9426 0.8826

Yoda 0.9257 0.9536 0.9457 0.9472 0.9109 0.9054 0.9519 0.9790 0.9204 0.9358

Mixed 0.9405 0.9647 0.9598 0.9526 0.9221 0.9128 0.9444 0.9790 0.9148 0.8807

Tab.2 Confusion Matrix showing detection rates of packed executables from different family of 
packers/crypters. Each row corresponds to training using the packer in column 1 and testing with the different 
families of packers. The rates in ‘bold’ indicate the best detection rate for a packer family or the rates obtained 
using same packers for training and testing. It can be seen that for some families (UPX, Nspack, Upack), 
features trained using a different family gives higher rates. The last row corresponds to training using a mixed 
bag of packed sampled and testing against all the packed executables. 
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