
DETECTING PACKED EXECUTABLES BASED ON RAW BINARY DATA

Lakshmanan Nataraja, Grégoire Jacobb, B.S. Manjunatha

aDept. of Electrical and Computer Engineering, bDept. of Computer Science,

University of California, Santa Barbara.

ABSTRACT

Packing an executable originally referred to the compression
of the file to reduce its size on disk. Nowadays, packing also
introduces encryption and anti-debug techniques to protect
executables from reverse engineering. This explains why
packers are extensively used in creating new malware
variants which are not detected by traditional signature-based
anti-malware tools. Although universal unpackers exist for
extracting the executable code from packed files, they often
rely on methods based on dynamic analysis, thus making
them computationally expensive and time consuming. Hence,
it is important to detect packed executables beforehand to
avoid unnecessary computations so that only protected
executables need be sent to the unpacker before further
analysis.

In this paper, we propose a new technique for fast
identification of packed executables by analyzing only the
raw binary data. We extract bigram-based features on packed
and unpacked executables and use a support vector machine
for training and testing. Experimental results reveal that we
are able to correctly identify packed executables with a high
detection rate in the range of 95%-98% for a variety of
packers and crypters.

Index Terms—Malware, Detecting Packed Executables,
Bigrams-based Classification.

1. INTRODUCTION

Cyber Security is facing a serious threat in this new age.
Everyday we observe many security breaches, a lot of them
leading to the downloading of malware without the user’s
consent. The number of malware being generated currently is
growing exponentially. At present, most prevalent malware
are remotely controlled bots, spyware, adware which support
organized world-wide criminal activity over the internet.
The inability of anti-virus software to reliably protect
computers and networks against the continuous stream of
malware threats is well known. These software use
traditional signature-based methods to identify if a program
is malicious or not. However, they are not effective due to

the huge bundle of newly generated malware. Further, most
of the malware undergo packing (compression and/or
encryption) which changes the appearance of the original
malicious binaries thus evading detection. In Symantec’s
Global Internet Security threat report released in April 2010
[8], it is reported that Symantec generates thousands of new
signatures every year- 2,895,802 in 2009 as compared to
169,323, in 2008. However, not all these signatures can be
attributed to new malware. As mentioned in [9] more and
more malware are being packed, thus degrading the
performance of traditional anti-virus software, since they are
not effective in unpacking a protected executable. An
executable can be packed using methods such as
compression, encryption or a combination of both. Packers
transform the original executable’s binaries to a different
form and generate new executables by embedding the
compressed, possibly encrypted code with an appended
loading routine. This routine is responsible for the automated
decompression and decryption of the code before executing
them. There are hundreds of packers that exist today, both
commercial and open source. This makes it very easy for
malware writers to create new malware variants which are
not detectable by traditional anti-virus software. Hence,
these software resort to either creating a new signature for
every new packed threat it encounters or try to emulate the
executable code and then scan the image of the code in
memory. In general, it is believed that nearly 80% of
malware are packed [1], [9] and 50% of existing malware are
packed versions of old malware [5].

In our work, we focus on identifying if a given executable is
packed or not. We only use the raw binary information to
extract features that can effectively distinguish between
packed and unpacked executables. In our method, decoding
an executable’s instructions is not necessary to determine if
the file is packed or not. When analyzing large collections of
malware samples, our algorithm can quickly tell which
samples are packed or encrypted. Based on this information,
only packed/encrypted samples that have to be unpacked
need be sent to the un-packer before further analysis.

The main contribution of this paper is that we propose a
novel method to analyze executables to tell whether they are

packed or not. We explore the statistical co-occurrence of
byte codes in executables to distinguish packed and
unpacked files. We show that our method achieves higher
accuracy than other current methods based on entropy
analysis [1] and higher robustness than methods that explore
the structural information of portable executables [2].

The rest of the paper is organized as follows. In Sec. 2, we
briefly review some of the existing methods which detect
packed executables without going inside the actual program
structure. In Sec. 3, we describe our methodology to classify
packed executables from unpacked executables. The
experiments and results are discussed in Sec. 4 and the paper
concludes in Sec. 5.

2. RELATED WORK

Generic unpacking is a very active field of research [9], [10].
The main solution that these methods adopt is performing
dynamic execution in a virtual environment. But our method
focuses on determining if a given executable is packed or
not. In our method, there is no need to execute the code
beforehand. We extract features only from the raw binary
data to tell packed from unpacked executables. Hence, our
method falls under “blind” methods since no actual
disassembling of executable code is necessary. To the best of
our knowledge, only a few such “blind” methods exist in
literature and they are also recent. We will review some of
them below.

Perhaps the first work that was published to distinguish
packed executables from unpacked ones was by Lyda and
Robert [1]. They use entropy analysis on blocks of raw byte
codes to determine the statistical variation between packed
and unpacked executables. Their method works by dividing
an executable into blocks of 256 bytes. They then use the
entropy of the blocks to find variations. Since many blocks
contain a lot of zeros, the entropy in these blocks reduces.
Hence, the authors only consider blocks in which at least half
the bytes are non-zero. The entropy is then computed for the
valid blocks from which the average entropy of all these
valid blocks and the maximum block entropy are found.
Based on these two parameters, the authors perform simple
statistical tests to obtain two thresholds to distinguish packed
from un-packed files. In [4], Ebringer et al also use entropy
analysis to classify different family of packers.

In contrast to [1], Perdisci et al [2] use a pattern recognition
based approach to classify packed executables from
unpacked executables. Similar to the above papers, they
consider executables in portable executable (PE) format,
which is the format used in most Microsoft Windows
operating systems. They perform binary static analysis of a
PE file and extract nine features: number of standard and
non-standard sections, number of executable sections,

number of readable/writable/executable sections, number of
entries in the Import Address Table (IAT), and the entropies
of PE header, code section, data section and the entire PE
file. They then train and test these features on a labeled
dataset using various machine learning classifiers and show
that they obtain an accuracy of close to 95%. In [3], Shafiq et
al use the above technique as a first step to classify packed
and unpacked executables and then use this output for
malware detection. Although this method works fairly well,
the problem with PE feature is that they can be easily
modified to mimic that of a normal executable. For example,
one can mimic standard section names, modify the protection
of sections at runtime or also build a fake Import Address
Table. However, for our method, we neither need any PE
information nor do we need to compute entropy. Our method
relies on statistical properties of the data which is harder to
tamper with.

3. DISTINGUISHING PACKED EXECUTABLES

In order to classify packed executables from unpacked
executables, we use features based on n-grams of the
executable’s byte codes. Detecting malware based on n-
grams analysis of bytes has been shown to be effective in
telling malware from clean files. In one of the seminal papers
[6], Koetler and Maloof gathered 1,971 benign and 1,651
malicious executables and extracted n-grams of byte codes as
features. On various machine learning techniques, they show
that they obtained very high detection rates to classify
malware from clean files. Similarly, Moskovitch et al [7] also
use n-gram based features to classify malware from benign
files. However, in these works, they do not separate the
packed files from unpacked files before processing.

3.1. Feature Extraction

Motivated by the above approaches, we also use n-grams
based features to distinguish packed from unpacked
executables. The reason for using n-grams is that packing
often shifts the bits or transforms the binaries to a different
form which in turn alters the n-grams of byte codes. Further,
packing also usually reduces the size of an executable, due to
which the number of distinct n-grams present in the
executable reduces after packing. Instead of computing the
actual n-grams vector which depends on the size of a file, we
compute the distribution of the n-grams which is vector of
constant size. Further, there is no need to compute the actual
n-grams in order to compute the distribution. To illustrate
better, consider an example where an executable file is read
in hexadecimal form in to a vector ‘hex’, whose length will
be equal to the total number of bytes. Let the first few entries
in the byte sequence of ‘hex’ be ‘0a 1b c4 8a’. Then, the
corresponding bigrams will be 0a1b, 1bc4, c48a. Let ‘disbn’
be the zero vector corresponding to the distribution of the
bigrams. Since the total number of possible bi-grams varies

from ‘0000’ to ‘ffff’, the size of this vector is 65,536. As
shown in Fig.1, the computation of the distribution does not
need the actual computation of bigrams vector.

Fig.1 Pseudo code to compute distribution of bi-grams

3.2. Feature Pruning

As mentioned earlier, we compute the distribution of the n-
grams of byte codes. We choose bigrams since unigram does
not capture all the variations and higher n-grams not only
takes time to compute but their feature vector size is also
large. Once we find the distribution of bi-grams, we sort the

values in descending order. Due to sorting, we lose the
location of bi-grams, although the variation between different
bi-grams is captured. This helps us to distinguish between
unpacked and packed files as shown in Fig.2 which shows
the feature vectors for unpacked, packed and encrypted
executable. While pruning the feature, the top few values are
not considered since they are usually the same for all files.
After discarding the top few values, the size of the feature
vector is reduced to a manageable size.

hex // hex string of chars of input file
disbn // zero array of size 1x65536
for i=0:2:# of bytes -4
 temp = hex(i:i+3); // Example ‘ffff’
 dec = hex2dec(temp) ; // Example 65535
 disbn(dec) +=1; // increment the count
end

0 1000 2000 3000 4000 5000

0

0.5

1

1.5

2

2.5

3

3.5
x 10-5 Ati2mdxx.exe unpacked

bins after sorting

bi
-g

ra
m

 m
ag

ni
tu

de

0 1000 2000 3000 4000 5000

0

1

2

3

4

5

6

7
x 10-6 Ati2mdxx.exe packed

bins after sorting

bi
-g

ra
m

 m
ag

ni
tu

de

 (a) (b)

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2
x 10-5 Ati2mdxx.exe encrypted

bins after sorting

bi
-g

ra
m

 m
ag

ni
tu

de

0 1000 2000 3000 4000 5000

0

1

2

3

4

5

6
x 10

-6 Ati2mdxx.exe compressed and encrypted

bins after sorting

 3.3. Algorithm and Classification

The algorithm to compute the feature is as follows:

1. Read the .exe file in hexadecimal format.
2. Compute the distribution of the bi-grams to obtain a

vector of size 1x65536.

bi
-g

ra
m

 m
ag

ni
tu

de

 (c) (d)
Fig. 2 Bigram-based features computed on different versions of an executable: (a) unpacked (b) packed (UPX) (c) encrypted (Yoda) (d)

compressed and encrypted (Telock)

3. Sort the distribution in descending order.
4. Remove the top few entries.
5. Truncate the size of the vector to a reduced size to

obtain the feature vector.

We compute the features on a labeled dataset of unpacked
and packed executables. We then use a support vector
machine (SVM) with radial basis kernel for training and
testing.

4. EXPERIMENTS

In our experiments, we use 300 unpacked files taken from
the “systems” folder of a Windows XP Service Pack 2
operating system and pack/encrypt them using a host of
packers (UPX, NsPack, Upack, PeCompact, FSG, MEW,
AsPack) and crypters (Telock, Polyene, Yoda). For every
packer/crypter, we get an additional set of 300 files; thus the
total number of packed/encrypted files is 3000. We compute
the feature vector for every executable as described in Sec. 3.
We exclude the top 10 terms after sorting the bigrams
distribution and then take the next 5000 terms as the feature
vector as shown in Fig. 2. For our experiments, we train and
test these features for every packer family. Hence for every
packer, there are totally 600 executables of which 300 are
packed and 300 are unpacked. Among these files, we take
350 files for training and 250 files for testing and use an
SVM with radial basis kernel for classification. The
classification accuracies obtained for training were in the
range 0.98-1.0. The testing results are tabulated in Tab. 1.
We observe that we obtain very high accuracy in the range of
0.95-0.98. Among packers, the best results were obtained for
executables that were packed using NsPack packer and
among crypters, the best results were obtained for Telock,
although the results for other packers/crypters were not far
behind. We compared our results with the entropy tests as
mentioned in [1]. We re-implemented their method in which
they divide the data stream into blocks of 256 bytes and
compute the entropy for every block. Since many blocks
contain a large number of zeros, they consider only blocks in
which at least half the number of bytes are non-zero. Once
this is done, they compute the average entropy over all the
blocks and the maximum entropy. Based on these
parameters, they conduct statistical tests to obtain thresholds
which can distinguish unpacked files from packed or
encrypted files. In [1], the authors state that executables with
average block entropy greater than 6.677 and maximum
entropy greater than 7.199 are statistically likely to be packed
or encrypted. However, when we re-implemented their
method, we observed that executables whose average block
entropy is greater than 5.9 and maximum block entropy is
greater than 7 are statistically likely to be packed or
encrypted and the detection rates for the thresholds used in
[1] were lower. The reason for this difference could be the
fact that the authors in [1] used a smaller dataset with just

two packers and one crypter. In Fig. 3 we show that our
method outperforms the entropy based method of [1].

Packer /
Crypter

Detection
Rates

True
Positives

False
Positives

UPX 0.9769 0.9630 0.0093

Nspack 0.9815 0.9722 0.0093

Upack 0.9698 0.9341 0

Pecompact 0.9773 0.9643 0.0093

FSG 0.9773 0.9643 0.0093

MEW11 0.9772 0.9772 0.0278

Aspack 0.9722 0.9630 0.0185

Telock 0.9857 0.9714 0

Polyene 0.9454 0.9000 0.0093

Yoda 0.9495 0.9273 0.0278

Tab.1 Packer Detection results for various packers

UPX nSpack Upack peCompact FSG MEW Aspack Telock Polyene Yoda
0.8

0.85

0.9

0.95

1

D
et

ec
tio

n
R

at
e

Bigrams
Entropy

Fig. 3 Detection rates for bigrams-based method and entropy

method [1]

In our previous experiments, we trained and tested the
features for every family of packers and crypters. This means
that we have to store support vectors for every family which
is not preferable in a realistic scenario. To see if our method
is more general, we trained with one packer at a time and
tested against the packed executables generated by other
packers/crypters and computed a confusion matrix as shown
in Tab. 2. We observe that even if we train our feature on
packed executables generated by one family of packers, the
classifier is able to detect packed executables from other
family of packers. Among the different packers/crypters, the
classification results were comparatively low only for
executables encrypted using Yoda Crypter. This is because
Yoda does not pack the data and only performs encryption
on the executable. Hence, files encrypted by Yoda do not
show strong variations when compared with other packed

files. Next, we mixed packed files from various packers to
obtain a “mixed bag” of 300 packed samples which we used
for training. We tested it on all the packed executables and
were able to obtain high accuracies (Tab. 2). For all the
results reported in Tab. 2, the false positive was as low as
0.01. We can also see from Tab. 2 that the best results were
obtained for the classifier which uses packed samples from
Polyene.

We also evaluate our method on a small set of non-system
executables and malware. In particular, we take 261
unpacked executables that are programs, applications, etc.
and 207 unpacked botnets obtained from Anubis [11]. We
packed them using UPX to generate 468 packed samples and
run our classifier on the 936 unpacked and packed samples.
The overall detection rate we obtained was 0.9542 with a
false positive of 0.015. We believe that the results would be
similar if we used other packers/crypters.

Finally, we apply our algorithm to malware in the “wild”.
We analyzed 8192 malware collected from Anubis [11]. We
do not know beforehand if these malware were packed or
not. On applying our algorithm, we found that 4649 malware
were likely to be packed and 3543 are likely unpacked. This
corresponds to a packing percentage of 56.75%.

5. CONCLUSION

In this paper, we propose a novel method to distinguish
packed executables from unpacked executables by just using
the raw binary data. We show that features based on bigrams
of byte codes can effectively distinguish packed from
unpacked executables. In contrast to the current methods that
detect packed files without decoding the data, our results
indicate that we are able to obtain higher accuracy when
compared to the entropy based method and also better
robustness when compared to the method that uses PE
information, which can be easily tampered with. With more
and more malware being packed, this method will
particularly be useful in computer security applications as a
first block in telling whether an executable is packed or not
and based on this information, further analysis can be carried
out. In future, we will focus on classifying various packers
that generate packed executables.

6. ACKNOWLEDGEMENTS

We would like to thank Prof. Giovanni Vigna and Prof.
Christopher Kruegel for their timely help and support.

7. REFERENCES

[1] R. Lyda and J. Hamrock, “Using entropy analysis to find
Encrypted and packed malware”, IEEE Security and Privacy, v.5
n.2, pp. 40-45, March 2007.

[2] R. Perdisci, A. Lanzi, and W. Lee, “Classification of packed
executables for accurate computer virus detection,” Pattern
Recognition Letters, Elsevier, v. 29, n.14, pp. 1941-1946, 2008.

[3] M.Z. Shafiq, S.M. Tabish, and M. Farooq, “PE-Probe:
Leveraging Packer Detection and Structural Information to Detect
Malicious Portable Executables,” Virus Bulletin Conference, 2009.

[4] T. Ebringer, L. Sun, and S. Boztas, “A fast randomness test that
preserves local detail,” Virus Bulletin Conference, Oct. 2008.

[5]. A. Stepan, “Improving Proactive Detection of Packed
Malware,”<http://www.virusbtn.com/virusbulletin/archive/2006/03/
vb200603-packed>, 2006.

[6]. J.Z. Kolter, M.A. Maloof, “Learning to detect and classify
malicious executables in the wild”. Journal of Machine Learning
Research v. 7, pp. 2721–2744, 2006.

[7]. Moskovitch et al, “Unknown malcode detection and the
imbalance problem”, Jour. in Computer Virology, v.5, pp. 295-308,
2009.

[8]. Symantec Global Internet Security Threat Report, April 2010,
<http://eval.symantec.com/mktginfo/enterprise/white_papers/b-
whitepaper_internet_security_threat_report_xv_04-2010.en-
us.pdf>,2010.

[9]. F. Guo, P. Ferrie, T. Chiueh, “A study of the packer problem
and its solutions,” Recent Advances in Intrusion Detection (RAID),
2008.

[10]. P. Royal, M. Halpin, D. Dagon, R. Edmonds and W. Lee,
“Polyunpack: Automating the hidden-code extraction of unpack-
executing malware,” ACSAC 2006,pp. 289-300, 2006.

[11]. Anubis: Analyzing Unknown Binaries,
< http://anubis.iseclab.org/>

http://www.virusbtn.com/virusbulletin/archive/2006/03/vb200603-packed
http://www.virusbtn.com/virusbulletin/archive/2006/03/vb200603-packed
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xv_04-2010.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xv_04-2010.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xv_04-2010.en-us.pdf
http://anubis.iseclab.org/

 UPX Nspack Upack Pecompact FSG MEW Aspack Telock Polyene Yoda

UPX 0.9628 0.9740 0.9598 0.9654 0.9406 0.9462 0.9519 0.9790 0.9167 0.8789

Nspack 0.9405 0.9759 0.9537 0.9581 0.9147 0.9165 0.9407 0.9790 0.9074 0.8661

Upack 0.9405 0.9722 0.9638 0.9654 0.9258 0.9239 0.9463 0.9809 0.9093 0.8569

Pecompact 0.9517 0.9759 0.9658 0.9709 0.9239 0.9239 0.9537 0.9809 0.9167 0.8624

FSG 0.9684 0.9629 0.9658 0.9617 0.9647 0.9629 0.9481 0.9733 0.9389 0.8642

MEW 0.9610 0.9740 0.9718 0.9672 0.9536 0.9703 0.9500 0.9714 0.9352 0.8587

Aspack 0.9424 0.9722 0.9577 0.9559 0.9239 0.9239 0.9630 0.9771 0.9111 0.8697

Telock 0.9052 0.9443 0.9437 0.9308 0.8813 0.8757 0.9242 0.9847 0.8926 0.8367

Polyene 0.9554 0.9814 0.9658 0.9709 0.9388 0.9462 0.9519 0.9809 0.9426 0.8826

Yoda 0.9257 0.9536 0.9457 0.9472 0.9109 0.9054 0.9519 0.9790 0.9204 0.9358

Mixed 0.9405 0.9647 0.9598 0.9526 0.9221 0.9128 0.9444 0.9790 0.9148 0.8807

Tab.2 Confusion Matrix showing detection rates of packed executables from different family of
packers/crypters. Each row corresponds to training using the packer in column 1 and testing with the different
families of packers. The rates in ‘bold’ indicate the best detection rate for a packer family or the rates obtained
using same packers for training and testing. It can be seen that for some families (UPX, Nspack, Upack),
features trained using a different family gives higher rates. The last row corresponds to training using a mixed
bag of packed sampled and testing against all the packed executables.

	DETECTING PACKED EXECUTABLES BASED ON RAW BINARY DATA
	ABSTRACT

