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1 Introduction

In many domains, the similarity between two images de-
pends on the spatial locations of their features. The earth
mover’s distance (EMD), first proposed by Werman et al.
[8], measures such similarity. It yields higher-quality image
retrieval results than the Lp-norm, quadratic-form distance,
and Jeffrey divergence [6], and has also been used for simi-
larity search on contours [3], melodies [7], and graphs [2].

Computing the EMD is an expensive linear-
programming problem: It takes 41 s to compute the
EMD between 12-dimensional features extracted from
images partitioned into 8×12 tiles, so searching a database
of 4,000 images can take 46 h.

In this paper, we redefine the EMD to work with mul-
tidimensional feature vectors, and show how the computa-
tion can be performed separately for each dimension. We
then develop lower bounds that are reasonably tight and can
be computed quickly. A multi-resolution indexing scheme
based on either sequential scan or the M-tree [1] can answer
similarity queries more than 500 times faster by combining
the two techniques.

2 The Earth Mover’s Distance

The following definition of the EMD between images ex-
tends Werman et al.’s [8] formulation for grayscale images,
and applies to feature vectors extracted from image tiles.
The image feature can be of any dimensionality; we show
later that the distance can be computed independently for
each dimension of the feature vector and added up to get
the total distance. All feature values must be non-negative,
but this is not an important restriction, as they can be made
positive by adding the same large number to all feature val-
ues of all images. This will not affect the value of the EMD.

Suppose that the imagesA and B are composed ofn
tiles. For any two tilesi ∈ A and j ∈ B, the ground dis-
tance ci j is the spatial distance between them (normally the
L2-distance). Feature vectors are extracted from each tile.
The feature vectors ofA are{~a0, . . . , ~an−1}, and those ofB
are{~b0, . . . , ~bn−1}. Each feature vector~ai or ~b j is a column
vector ofd values. A weight vector~w= [w1 . . .wd]T assigns
a weight to each dimension. Normally,~w = [1. . .1]T, but a

different~w may be useful when several image features are
concatenated into one vector.

The EMD is computed by finding a minimal-costn×n
flow matrixF = {~fi j }, where each~fi j is aflowof mass from
tile i to tile j such that imageA is transformed into image
B. Note that each~fi j is a column vector ofd elements.

The cost of moving mass~fi j from tile i to tile j is the
ground distance fromi to j multiplied by the mass to be
moved, orci j~wT ~fi j . Here, the weight vector~w is used to
combine thed elements of~fi j into a scalar. The EMD can
then be defined as

min
F

n−1∑
i=0

n−1∑
j=0

ci j~w
T ~fi j

subject to ~fi j ≥ ~0,
∑n−1

j=0
~fi j = ~ai , and

∑n−1
i=0

~fi j = ~b j ,
element-wise and∀i, j ∈ {0, . . . ,n−1}.

So far we have assumed that the images have the same
total mass, i.e.,

∑n−1
i=0 ~ai =

∑n−1
j=0

~b j . In general, this is not
true. For instance, when the image feature is intensity, a
generally dark image will have a lower total mass than a
generally light image. The images may be normalized such
that the intensities add up to the same value [8], but this
causes problems, as the distinction between a dark image
and a light image disappears. Instead, we introduce a spe-
cial “tile” called thebankto each image, and allow flows to
and from it. The effect of these flows is to allow the total
mass of one image to be increased in order to match the total
mass of the other, but at a cost proportional to the increase.
The bank tile has the same ground distanceα (a parameter)
to all the other tiles, and, of course, a ground distance of 0
to itself. The banks (n-th tiles) of the imagesA andB are
initialized as~an =

∑n−1
j=0

~b j and~bn =
∑n−1

i=0 ~ai . The EMD
can now be restated to include flows to and from the banks:

ρAB = min
F

n∑
i=0

n∑
j=0

ci j~w
T ~fi j (1)

subject to ~fi j ≥~0,
n∑

j=0

~fi j = ~ai , and
n∑

i=0

~fi j = ~b j ,

element-wise and∀i, j ∈ {0, . . . ,n}.
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Figure 1. An example of EMD computation between two
images A and B. The ground distance matrix~c is shown
on the left while the optimal flow matrix~F is shown on the
right. The flows are shown by arrows with the corresponding
mass. The EMD is1.4+α.

Notice that whenα < 1/2, the EMD is the same as the
L1 distance (scaled by 2α) because a flow from tilei to the
bank and back to tilej is never more expensive than a flow
directly from i to j. Figure 1 shows an example of EMD
computation. The example assumes thatα ≥ 0.7.

3 Decomposing the EMD

As defined in Eq. (1), the EMD is a large linear program-
ming problem because the flows are vectors of the same di-
mensionality as the image features. However, there are no
direct flows from one dimension to another (“crosstalk”),
so the flows can be decomposed, and only one dimension
considered at a time. Consequently, we can solved smaller
linear programming problems (whered is the dimensional-
ity of the feature vector) and then combine their solutions.
Theorem 1 states this formally.

Theorem 1 (decomposition).The minimum cost when all
dimensions of the feature vector are considered simultane-
ously is the same as the sum of minimum costs when each di-
mension of the feature vector is considered separately, i.e.,

ρAB = min
F

n∑
i=0

m∑
j=0

ci j

d∑
k=1

wk fi jk =
d∑

k=1

min
Fk

n∑
i=0

m∑
j=0

ci j wk fi jk

Proof sketch.The constraints in Eq. (1) are all element-
wise; so, they can be separated and solved independently,
and then added up to get the actual solution.

When the dimensions of the feature vectors are indepen-
dent, the EMD formulation in Eq. (1) can be applied di-
rectly. Otherwise, principal component analysis (PCA) can
be used to find their independent bases, and the EMD com-
puted from them. Another approach is to cluster the dimen-
sions so that there is no crosstalk between them, and then

compute the EMD separately for each cluster. This is a nat-
ural solution, for instance, for protein localization images,
where features are extracted for each protein independently.

4 Multi-Resolution Lower Bounds

Theorem 1 makes the EMD-computation’s running time
proportional to the dimensionality of the feature vector. The
number of variables in the LP problem increases quadrat-
ically with the number of tiles, however, so the running
time is still high when the number of tiles is large—which
seems necessary for capturing the characteristics of some
classes of images. For instance, we were able to increase
the classification accuracies of confocal images of retinas
from 90 % to 96 % by raising the number of tiles from 6
to 24. This, however, also increased the running time from
4 ms to 62 ms per computation. With 96 tiles, the accuracy
was 98 %, but each computation took 2.9 s.

In this section, we show how, using a small number of
tiles, we can compute a lower bound for the distance that
would be computed using a large number of tiles. This al-
lows us to combine the high speed of few tiles with the high
accuracy of many tiles. This is crucial to indexing the EMD.

From any imageA with n = nx×ny tiles (not including
the bank), we can construct a coarser-grained imageA′ with
n′ = n′x×n′y tiles (n′x = nx/2,n′y = ny/2 andn′ = n/4). Each
tile i′ of A′ corresponds to the 4 tiles ofA whose indicesi
satisfy the constraints

ix = 2i′x + p and iy = 2i′y +q (2)

where i′ = i′yn
′
x + i′x, i = iynx + ix, and p,q ∈ {0,1}. The

feature value~a′i of a tile i in A′ is computed as the sum of
the feature values of the 4 corresponding tiles inA:

a′i′ =


1∑

p=0

1∑
q=0

a〈2i′x+p,2i′y+q〉 if i′ 6= n′

an if i′ = n′
(3)

Our lower bound for the EMD between two imagesA
andB is the EMD between their summariesA′ andB′, but
with one crucial modification: The ground distancec is re-
placed by another ground distancec′.

c′i′ j ′ =


[
max{0,2|i′x− j ′x|−1}2 +max{0,2|i′y− j ′y|−1}2

] 1
2

if i′, j ′ 6= n′

0 if i′ = j ′ = n′

α otherwise
(4)

The c′-distance between two coarse tilesi′ and j ′ is never
more than thec-distance between any fine tile correspond-
ing to i′ and any fine tile corresponding toj ′. The following
lemma states this formally. (Proof omitted.)

Lemma 1. If i, j, i ′, and j′ satisfy the constraints of Eq. (2),
then c′i′ j ′ ≤ ci j .



We can now solve the linear programming problem

ρ′AB = min
F′

n/2∑
i′=0

n/2∑
j ′=0

c′i′ j ′~w
T ~f ′i′ j ′ (5)

subject to ~f ′i′ j ′ ≥~0,

n/2∑
j ′=0

~f ′i′ j ′ =
~a′i′ , and

n/2∑
i′=0

~f ′i′ j ′ =
~b′j ′ ,

element-wise and∀i′, j ′ ∈ {0, . . . ,n/2}.

This is less computationally demanding because the
number of variables is reduced by a factor of 16. The fol-
lowing theorem claims thatρ′AB is a lower bound forρAB.
(Proof omitted because of space limitations.)

Theorem 2 (lower bound). The distanceρ′AB, defined in
Eq. (5), computed from the coarse images A′ and B′ using
the modified ground distance c′, is a lower bound for the
EMD ρAB, defined in Eq.(1).

Although the lower bound is presented in terms of reg-
ular tiles, it can be formulated using arbitrary regions [4].
It can also be adapted to work with an alternative defini-
tion of EMD, used by Rubner et al. [6], where the image
is clustered into regions of similar feature values and the
mass is the number of pixels in each region [4]. Finally, the
lower bound can be generalized to apply even when there
is crosstalk, i.e., when there are flows directly from one di-
mension of one region to another dimension in another re-
gion. (The definition in Eq. (1) allows for such flows only
indirectly, through the bank.)

Multi-resolution lower bounds. So far, a coarser sum-
mary of an image has been obtained by combiningn level-0
tiles into n′ = n/4 level-1 tiles. An even coarser summary
can be obtained by repeating this process, combining then′

level-1 tiles into even fewern′′ = n′/4 level-2tiles, and so
on. The ground distance between tiles at leveli (i > 0) is
the minimum pairwise distance between the corresponding
tiles at level(i − 1). Multiple levels of lower bounds are
key to building efficient index structures for computation-
ally costly distances such as the EMD: Most objects can be
pruned based on lower bounds computed from the higher-
level summaries, and the time-consuming lower-level dis-
tances need only be computed for the remaining ones.

5 Experimental Results

We measured the effect our lower bounds (Theorem 2)
had on range queries andk-nearest-neighbor queries on a
database of 12-dimensional Color Layout Descriptors [5]
extracted from 3932 retinal images, both using sequential
scan and an M-tree [1]. The sequential-scan algorithms
compute lower bounds for the distances to all objects. The
M-tree algorithms are similar to Ciaccia et al.’s original

search algorithms for the M-tree [1], but make conserva-
tive choices during the search using the lower bounds. Two
levels of lower bounds were used in the experiments.

For range queries (with range equal to 3.7 % of the
largest distance in the database, which returns 25 objects on
average), the lower bounds resulted in a speedup of 36 com-
pared to sequential scan without lower bounds. The lower
bounds madek-NN queries (k = 25) 7 times faster.

Range search on the M-tree without using lower bounds
is slower than sequential scan, except for small ranges, be-
cause exact distances are computed for each internal node
searched. With lower bounds, the M-tree performs well, an-
swering range queries 36 times faster than sequential scan
without lower bounds, but not significantly faster than se-
quential scanwith lower bounds.

The M-tree without lower bounds speeds upk-NN
queries (k = 25) 2.2 times compared to sequential scan
without lower bounds. Adding lower bounds increases this
speedup to 5.4.

Theorem 1 (decomposition) can reduce the running time
of EMD computations by factors of up to 14. This effect is
orthogonal to the speedup from using lower bounds; com-
bined with the speedup from Theorem 2, this can result in
speedups of over 500.

A more thorough experimental evaluation of our pro-
posed techniques is available [4].
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