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Abstract

Tracking of curvilinear structures is a task of funda-
mental importance in the quantitative analysis of bio-
logical structures such as neurons, blood vessels, reti-
nal interconnects, microtubules, etc. The state of the
art HMM-based contour tracking scheme for tracking
microtubules, while performing well in most scenarios,
can miss the track if, during its growth, it intersects an-
other microtubule in its neighbourhood. In this paper
we present a graphical model-based tracking algorithm
which propagates across frames information about the
dynamics of all the microtubules. This allows the al-
gorithm to faithfully differentiate the contour of interest
from others that contribute to the clutter, and maintain
tracking accuracy. We present results of experiments
on real microtubule images captured using fluorescence
microscopy, and show that our proposed scheme out-
performs the existing HMM-based scheme.

1. Introduction

With the advent of powerful microscopes and high-
resolution image capturing equipment, it has now be-
come possible to capture enormous amounts of im-
ages and data of biological specimen and phenomenon.
Manual inspection and analysis of data of such mag-
nitude by a trained human expert is practically impos-
sible. Hence developing computational algorithms to
automate the task of data analysis has become a very
important and challenging task [1]. In this paper we
focus on images of microtubules in live cell images,
captured using fluorescence microscopy, and propose a
graphical model-based open contour tracking algorithm
for tracking these microtubules. While existing micro-
tubule tracking algorithms [1], [2] is prone to missing
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tracks in the presence of high clutter from other micro-
tubules in the vicinity, our algorithm is designed to over-
come the clutter and successfully track the contour.

Microtubules are filamentous subcellular structures
that are composed of tubulin protein sub-units. These
sub-units, by adding on to and dissociating from the
tubulin polymer, make the microtubules grow and
shorten over time. They are also capable of slight lateral
motion over time, making them highly dynamic struc-
tures. They are known to play a significant role in many
essential cellular processes [4]. Figure 1 shows a sam-
ple image of microtubules.

Figure 1. Microtubules imaged using fluo-
rescence microscopy.

The problem of reliably tracking microtubules has
been addressed in the literature in the past. In [2], mi-
crotubule tips are tracked using a graph matching algo-
rithm, and then entire body is traced using active con-
tours with the tracked tip as the anchor point. But this
algorithm can be sensitive to the accuracy of tip detec-
tion, upon which the active contour-based body-tracing
is dependent. Another approach is to estimate the ex-
pected tip position by correlating a feature correspond-
ing to the tip, thereby to construct the trace of the mi-
crotubule [3]. Most of these contour-based approaches
follow the principle of applying a local curvature con-
straint, both spatially and temporally, to estimate the
predicted microtubule track in the new frame.

More recently, an HMM-based tracking algorithm
was proposed in [1] which uses a deformable trellis to



track the microtubule body. The deformable trellis ele-
gantly accounts for both length as well as shape vari-
ations of the microtubules. But with this algorithm,
if the microtubule being tracked intersects another mi-
crotubule during its growth/shortening phases, the esti-
mated contour track tends to miss the actual track of the
microtubule of interest, depending on the angle of in-
tersection. This is mainly because, the extension of the
trellis in the new frame to account for the microtubule’s
growth depends mainly on the evidence for existence
of microtubule beyond its tip (as estimated in the pre-
vious frame). Note that this does not take into account
whether such evidence comes from growth of the mi-
crotubule of interest or from another one in the vicinity.
This ambiguity can be overcome by propagating across
frames the temporal information about the activity of
the cluttering microtubules as well, and this is the chief
motivation for our proposed work.

In our algorithm, we propose to use a graphical
model to formulate the problem of estimating micro-
tubule positions as a multi-class probabilistic pixel la-
beling problem. We propagate across frames the pos-
terior probabilities of locations of all the microtubules,
and the track of the microtubule of interest is estimated
only on the pixels having significant probability of be-
longing to the microtubule of interest, thereby maintain-
ing tracking accuracy.

2 Methodology

In this section we present our algorithm to track
curvilinear structures in the presence of clutter induced
by other similar-looking structures in the near vicinity.
The algorithm uses the estimated contour position in
the previous frame as prior information for the current
frame and employs a factor graph to elegantly combine
it with information from the current frame.

We formulate the problem of estimating the positions
of microtubules as a 3-class probabilistic pixel labeling
problem using a factor graph-based graphical model.
We define the joint probability distribution function of
pixel labels as being factored into functions which cap-
ture the unary and binary-interaction potentials, which
in turn represent the priors and likelihoods, respectively.
We perform statistical inference on this factor graph us-
ing belief propagation to obtain aposteriori probabili-
ties of the labels at each pixel. A deformable trellis us-
ing an arc-emission HMM representation [1], defined
on the posterior probabilities, is used to estimate the en-
tire body track. The tracing method described in [5]
is used to initialize the tracking procedure in the first
frame. Figure 3 shows an outline of the algorithm.

2.1 Factor Graph Formulation

Let us consider an image I containing more than
one curvilinear structure. One of these would be the
structure of interest to be tracked, in the presence the
others in the near vicinity. Let there be M pixels in
I , and let xi represent the label of the ith pixel, with
Ł = {lCoI , lBgC , lBg} denoting the set of labels cor-
responding to “contour of interest” (lCoI ), “other con-
tour” (lBgC) and “background” (lBg).

xi xj

α(xi, xj)

β(xi)

Figure 2. Illustration of the graphical
model employed in our algorithm. The cir-
cles represent pixels while squares and
hexagons denote the factors capturing
the pair-wise interaction and unary poten-
tials, respectively

The factor graph employed in our algorithm is illus-
trated in Figure 2. Each pixel in the image I corre-
sponds to a node in the graph, represented by circles,
their unary and binary interaction potentials being rep-
resented by hexagons and squares, respectively. Then
the joint pdf p(x) of all the pixels taking their respec-
tive labels can be written as

p(x) =
1
Z

M∏
i=1

β(xi)
M∏

m=1,n∈Nm

α(xm, xn) (1)

where Nm represents the neighbourhood of pixel m,
in the 4-connected neighbourhood sense, and Z is the
normalizing factor. The function α(xi, xj) captures the
pair-wise interaction between neighbouring pixels i and
j while β(xi) denotes the unary potential at pixel i.

2.1.1 Prior and Likelihood Probabilities

The unary potential function β(xi), defined to depend
only on the pixel location, is assigned the prior proba-
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Figure 3. Flowchart of the proposed track-
ing algorithm.

bility of observing label xi at that location, i.e.,

β(xi) = p−(xi). (2)

where β(xi) is derived from posterior probabilities
computed on the previous frame, and in the first frame,
is initialized using user input on the contour of interest.

The binary potential α(xi, xj) is defined as the like-
lihood of having labels xi and xj at pixels i and j re-
spectively. Supposing that oij is a feature measuring
the of evidence supporting the labels at locations i and
j, we define α(xi, xj) as

α(xi, xj) = p(oij |xi, xj) (3)

The probabilities p(oij |xi, xj) for all i and j are ob-
tained from the foreground (i.e., contour) and back-
ground models that are learnt offline on an image on
which the ground truth is known.

We choose the feature oij as the average second or-
der directional derivative in the direction perpendicular
to the line joining pixels i and j, i.e.,

oij =
∫ 1

0

f((1−τ)ix+τjx, (1−τ)iy+τjy, θ)dτ (4)

where [ix iy]T and [jx jy]T are the cartesian coordinates
of pixels at locations i and j, respectively. The quantity
f(ix, iy, θ) = vTH(ix, iy)v, v = [cos θ sin θ]T and

θ = tan−1
(

(jy−iy)
(jx−ix)

)
+ π

2 . The matrix H(ix, iy) rep-
resents the Hessian evaluated on the image at the pixel
location i. With oij as the feature of choice, we com-
pute gaussian models for the foreground P (o|C) and
background P (o|C̄). The probabilities p(oij |xi, xj) for
various combinations of xi and xj are computed simply
by evaluating P (o|C) and P (o|C̄) for o = oij .

2.2 Statistical Inference and Track Estimation

With the factor graph defined as described above, we
perform statistical inference on it using belief propaga-
tion. The aposteriori probabilities thus obtained give
the ‘best’ pixel labeling scheme, in a probabilistic sense.

Borrowing from the work in [1], we construct a de-
formable trellis on the probability map corresponding
to the label lCoI , i.e., p(xi|xi = lCoI). We define a de-
formable trellis centred along the contour track found in
the previous frame, and define an arc emission HMM,
λ = (A,B, π), on these probabilities. We use the aver-
age second order directional derivative computed on the
probability map as the feature of choice for estimating
the transition probabilities. Using Viterbi decoding, we
estimate body-track of the microtubule of interest as the
optimal track on the trellis.

3 Experimental Results

In order to validate our algorithm and show its
improved tracking performance over the HMM-based
tracking described in [1], we tested it on tracking of
microtubules in real live cell images. The time-lapse
images of microtubules were captured 4 seconds apart
during their growth and shortening phases, each image
sequence containing about 40 frames. The ground truth
for the microtubule tracks were gathered by having ex-
perts manually track the microtubules using polyline
approximations to the microtubule bodies.

A total of 25 microtubules were selected and tracked
over their sequence. Tracking was considered success-
ful if the tracked tip position was within 6 pixels (set
by biologists) from that of the ground truth. With this
as metric, the performance of our algorithm was found
to be comparable to that of existing scheme in all the
general cases. In about 10 % of the cases where micro-
tubule of interest intersected with another, our scheme
performed better than the existing scheme.

Figures 4 and 5 illustrate two cases where our algo-
rithm performed better than the existing scheme. Figure
4 shows a microtubule that grows and intersects with
another one. At the intersection, the existing HMM-
based scheme misses the track of the microtubule of in-
terest while the proposed algorithm successfully tracks
it without getting distracted by the track of the neigh-
bouring microtubule. Figure 5 illustrates another sce-
nario where the microtubule grows and then shortens
abruptly. The existing scheme mistakenly jumps to the
track of the neighbouring one eventhough the micro-
tubule of interest shortens before intersecting, while our
proposed algorithm faithfully tracks it during both its
growing and shortening phases.



(a) HMM-based method (b) Proposed method

Figure 4. Illustration of a microtubule
in its growth phase. Tracking outputs
(green) obtained using (a) the existing
HMM-based method and (b) the proposed
factor graph-based method. The ground
truth is marked in red.

4 Conclusion

In this paper we propose a graphical model-based
contour tracking algorithm that is able to track contours
even in the presence of intersections and clutter in the
neighbourhood. The most noteworthy contribution of
our work lies in casting the problem of locating the con-
tours as that of estimating the best probabilistic pixel la-
beling scheme. This allows us to perform body-tracing
of the contour only on pixels that have a high probabil-
ity of lying on the contour of interest. Thus it avoids
getting distracted by tracks of other contours in the near
vicinity. Results of extensive experiments on tracking
of microtubules in real images clearly bring out the ad-
vantages of our scheme.
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