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Abstract. We present an object-level metric for segmentation perfor-
mance which was developed to quantify both over- and under-segmen-
tation errors, as well as to penalize segmentations with larger
deviations in object shape. This metric is applied to the problem of
segmentation of cell nuclei in routinely stained H&E histopathology im-
agery. We show the correspondence between the metric terms and qual-
itative observations of segmentation quality, particularly the presence of
over- and under-segmentation. The computation of this metric does not
require the use of any point-to-point or region-to-region correspondences
but rather simple computations using the object mask from both the
segmentation and ground truth.

1 Introduction

The subject of objective and quantitative evaluation of segmentation perfor-
mance has received less attention than has the development of various segmen-
tation algorithms themselves. This has been noted by many researchers in the
fields of computer vision and image analysis [1,2,3,4,5,6,7].

In our development of a quantitative metric, we avoid metrics of segmenta-
tion performance that rely on point-to-point or region-to-region correspondences
(e.g., [2,8,9]). We also avoid empirical goodness metrics, as defined in [6], whereby
properties of a “good” segmentation are defined a priori according to human per-
ception of a “good” segmentation; in our application domain of cancer imagery it
is difficult to define a single model which applies to all image objects. While there
is much research in the use of multiple ground truths, often manually defined
by multiple human experts, we stick to the case of one ground truth assumed
to be the gold standard and quantify the segmentation performance at the level
of image objects. This falls under the empirical discrepancy metrics as defined
in [6].

We present here our research on the segmentation of cell nuclei in routine
H&E stained histopathology imagery. In our use of the term “segmentation,”
we are referring to an object-level segmentation, i.e., a delineation of individual
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nuclei, thus more standard metrics such as Receiver Operating Characteristics
(ROC) curve analysis are not directly applicable. The pixel-level classification
of nuclei pixels is described in our previous work [10].

In Section 2 we will first describe an object-level metric for segmentation ac-
curacy (Section 2.1) as well as an analysis of the variation of our metric with seg-
mentation quality (Section 2.2), a methodology for specification of object-level
ground truth (Section 2.3), and a summary of our work on the segmentation met-
ric (Section 2.4). We briefly discuss the application of our shape-based segmen-
tation metric to non-elliptical objects in Section 3. We then present results for
example nuclei segmentations in Section 4, including a standard watershed-based
segmentation (Section 4.1), a combined shape-based and watershed-based seg-
mentation (Section 4.2), and summarize our segmentation results (Section 4.3).
Conclusions are presented in Section 5.

2 Segmentation Metric

The following metric was defined with the segmentation of cell nuclei, i.e.,
roughly circular or elliptical objects, in mind. For the segmentation of cell nu-
clei, we wish to penalize not only the size of regions missed and extraneous
regions, but also the shape of those same regions. Additionally we include terms
to penalize over- and under-segmentation. We introduce the quadrant sum as a
method of quantifying deviation in shape from the ground truth by comparing
the mass across two orthogonal axes through the object’s center of mass. While
this section will focus on elliptical objects, we will show the use of the quadrant
sum for arbitrarily shaped objects in Section 3.

2.1 Definition

We define our segmentation metric as:
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where
0 ≤ αi ≤ 1, i = 1, . . . , 5 .

Taking each additive term Equation 1, we will define all variables. N is the
number of ground truth nuclei defined in the user markup and ND is the number
of nuclei detected by the segmentation algorithm; thus the summation averages
scores for individual nuclei. We penalize for each nucleus detected1:
1 For the sake of clarity and brevity we have not included in Equation 1 the necessary

clipping functions to assure that each term is less than 1. We will discuss the need for
these clipping functions and explicitly display them in the discussions of individual
terms to follow.
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1. The number of segmented regions:

term1 = α1 min
(

1,
SR − 1

δSR

)
(2)

We define SR as the number of segmented regions overlapping the ground
truth nucleus, and δSR as the upper limit for number of segmented regions.
For a perfect segmentation there would be only one segmented region per
ground truth region and δSR = 1 would be an intuitive value for evaluation
of very good segmentations; we leave this as a parameter, however, to allow
for comparison of poorer segmentations with more tendency to oversegment.
We use the minimum function to clip this term to a maximum value of 1.
Overall, the weight α1 can be thought of as the penalty for an oversegmented
nucleus, similar to the oversegmentation term of [4].

2. The size and shape of the region of pixels missed:

term2 = α2 min
(

1,
1

1.75
·
(

PM

GT
+ min

(
1,

2 · QSPM

GT

)))
(3)

We define PM as the number of pixels missed: pixels belonging to the ground
truth markup of the nucleus, but missed by the segmentation algorithm. GT
is the number of pixels in the ground truth markup, thus, PM

GT quantifies
the size of the region of missed pixels. This is similar to the percentage of
misclassified pixels used in [5].

We also look at the spatial distribution of the missed pixels, since we wish
to penalize certain spatial distributions more than others. For example, a
distribution of missed pixels in an annulus about the centroid of the nucleus
will affect the shape and other higher-level feature statistics far less than a
distribution of missed pixels encompassing half of the nucleus. Note that this
is a different approach than a simple pixel distance error as in [5] and tends
towards an appreciation of accurate higher-level measurements as in [7]. We
take the “quadrant sum” of the pixels missed, QSPM as follows:

QSPM = ‖r1 + r3 − r2 − r4‖ + ‖r1 + r2 − r3 − r4‖ (4)

where ri are the number of pixels in the i = 1, 2, 3, 4 quadrants:
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(5)

where θPM is the angle of the polar representation of the pixels missed. Thus,
QSPM is a measure of symmetry about the x- and y-axes of the region with
the origin at the grouth truth centroid. Due to the discrete nature of the
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regions, it is possible that QSPM may slightly exceed GT
2 ; to compensate for

this, we take the minimum of 1 and 2·QSP M

GT .
Overall, α2 can be thought of as the penalty regions of pixels missed,

penalizing both size and shape. More details of the performance of this QS
term is explained in Figure 1 for circular and elliptical regions, including the
motivation for our normalization factor of 1.75. While this is a simple and
easy to compute metric, there is no reason why another shape metric could
not be substituted, with appropriate attention to the inclusion of the size
metric.

3. The size and shape of the region of excess pixels:

term3 = α3 min
(
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1
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·
(
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+ min
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)))
(6)

Similar to term 2, we define EP as the number of excess pixels: pixels seg-
mented as part of the nuclear region that do not correspond to the ground
truth markup. We quantify the size of the region of extra pixels by EP

GT . We
also take the “quadrant sum” of the excess pixels, QSEP and normalize by
GT
2 . Again, we take the minimum of 1 and 2·QSEP

GT and normalize the sum
of the two factors by 1.75. α3 is thus the penalty for size and shape of ex-
cess pixel regions, and is related to the degree of undersegmentation of the
nucleus.

Averaging these three terms provides a measure of the segmentation perfor-
mance on all detected nuclei. We also wish to weight this average by the general
detection rate. Thus we scale the average of the previous three terms by:

4. The fraction of nuclei detected:

term4 = 1 − α4
N − ND

N
(7)

This term with α4 = 1 would simply be the detection rate. We leave this as
a parameter since in the segmentation of nuclei, we are interested more in
the accuracy of the nuclei that are segmented than in the actual detection
rate. This harkens back to the theory of Ultimate Measurement Accuracy [7],
wherein it is the accuracy of further image analyses that determine the ac-
curacy of the underlying segmentation.

Finally we wish to penalize over the whole region of ground truth:

5. The number of extra segmented regions:

term5 = α5 min
(

1,
ER

N · δER

)
(8)

This term looks at the excess segmented regions that have no correspondence
to a ground truth nucleus. We define ER as the number of excess segmented
regions and δER as the fraction of total ground truth nuclei that we will
allow as excess regions. α5 is, therefore, the penalty for excess segmented
regions, similar to the concept of noise in [4].
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when half of the region is missed. The
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(c) Additive effect of the QS and size
metrics. The combination of these two
metrics yields the desired penalty. Note
the maximum value of ∼ 1.75.

Fig. 1. Values of the QS metric for pixels missed in discrete elliptical and circular
regions. The QS metric in these plots has been normalized by GT

2 , and the size metric
by GT .

Overall, the choice of αi reflects a weighting of the relative importance of
the various penalties. Similarly, the choice of δSR and δER reflects a choice in
the latitude given to certain errors in segmentation. A reasonable choice for
default parameters would be α = [0.5 0.5 0.5 1 0.5], δSR = 1, and δER = 1,
reflecting an equal penalty for under- and over-segmentation errors (α1, α2, and
α3), a direct weighting by the detection rate (α4), equal importance given to the
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correct detection and segmentation of cell nuclei and the avoidance of erroneously
detected and segmented nuclei (α5), one segmented region allowed per nucleus
(δSR), and weighting of the erroneously segmented regions proportional to the
total number of cell nuclei (δER). It is important to note, however, that while
the choice of these parameters will effect the absolute values of the metric terms,
a direct comparison of segmentation performance for different algorithms may
be achieved with any reasonable parameter choice.

2.2 Metric Variation Versus Segmentation Quality

We apply our segmentation metric (Equation 1) to the watershed transform of
the complemented Euclidean distance transform (WSCDT) of a thresholded red
channel for an example image. The threshold is varied over the entire range of
values it can assume, [0,255], and we retain all pixels less than the threshold.
The use of the red channel is due to the high contrast for nuclei in this channel.

We compute the WSCDT as follows:

1. Compute the negative of the Euclidean distance transform on the comple-
mented binary image, setting the distance of all background pixels in the
binary image to a depth of −∞.

2. Compute the watershed transform on the resulting distance transform.

By varying the threshold we compute a variety of binary images. We compute
the segmentation metric (Equation 1) of the WSCDT segmentation of these
binary images to gain a sense of the expected variation in our metric for a
range of segmentation possibilities. These possibilities include the two extremes
whereby either all or none of the pixels has been classified as nuclei. We display
the performance of the individual metric terms as well as the overall performance
in Figure 2. It is important to note that we are plotting the performance of the
individual terms rather than the terms themselves; thus we are plotting the
subtraction of each term from a value of 1.

We see in Figure 2 that the performance is zero for both extremes of the
threshold classification. Observation of individual terms shows expected trends,
namely that:

– Term 1 (extra GT regions) decreases in performance as the threshold in-
creases. This is due to the thresholded nuclei regions becoming larger with
more complicated boundaries which results in the distance transform having
multiple minima per connected component.

– Term 2 (pixels missed) increases in performance as more pixels are attributed
to nuclei. The dip in performance at high thresholds is due to an assumption
that the largest watershed region is the background which becomes invalid
as nearly the entire image is classified as foreground.

– Term 3 (extra pixels) decreases in performance as nuclei tend to merge in
the binary thresholded image.

– Term 4 (nuclei detected) increases in performance as more pixels are at-
tributed to nuclei.



214 L.E. Boucheron, N.R. Harvey, and B.S. Manjunath

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
er

fo
rm

an
ce

Metric Terms

 

 
Extra GT regions
PM size and shape
EP size and shape
Nuclei detected
Extra regions
Total performance

Fig. 2. Metric variation versus segmentation quality for an example image. The red
channel was thresholded, retaining all pixels less than the threshold, and was then
segmented with the WSCDT method. It should be noted that all terms plotted here are
performance, i.e., one minus the penalty, where the penalties are the terms previously
discussed in relation to the segmentation metric. The terms are denoted by a brief
description in the legend, but they are also plotted in numerical order, i.e., blue circles
are term 1, red squares are term 2, and so forth.

– Term 5 (extra regions) decreases in performance as more extraneous regions
are thresholded as nuclei. The performance of this term returns to 1 for a
threshold of 256, since there are no longer any extraneous regions; this is not
apparent in Figure 2 since we have downsampled the plot for less clutter.

We note here that analysis of the individual metric terms is useful for quantifying
segmentation, but we have integrated the terms into one metric to allow for single
parameter to compare and/or optimize between different segmentations.

2.3 Ground Truth Image Markup Within a Truth Window

While it is easy to specify a pixel-level markup within a designated truth window,
such a specification becomes more complicated with an object-level markup. In
a pixel-level markup, an object that spans the truth window boundary can be
marked up to the boundary without losing any important information for the
overall classification. In an object-level markup, however, the actual extent and
border of the object is of utmost importance. Moreover, if objects are marked
within a rough concept of a truth window, the truth window may contain parts
of objects that have not been delineated by the user. This will lead to erroneously
low performance since the segmentation metric will assume that these regions
were incorrectly segmented as image objects.

To help alleviate this problem, after the delineation of objects within the
truth window is complete, the truth window is recomputed as the minimum
bounding rectangle of the object markups. Using this new truth window, the user
is asked to mark a minimum of one point for each unmarked object that is either
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completely or partially enclosed by the new truth window. This information is
used in a connected-components analysis to determine if extra segmented regions
are associated with an object that has not been delineated in the ground truth
markup.

2.4 Summary

We have presented a general segmentation metric computed on an object level.
This metric uses simple quantities that are easy to compute using the segmen-
tation and ground truth masks, namely the regions of pixels missed by the seg-
mentation and the regions of extra pixels not associated with a ground truth
region. We have also shown the variation in this metric for a variety of segmen-
tations using a simple watershed-based segmentation (WSCDT) and discussed
the ground truth markup process for evaluation of the metric.

3 Application of the QS Shape Metric to Non-elliptical
Objects

We would like to briefly discuss the applicability of the QS metric to non-
elliptically shaped objects; we will be using the concepts of the PM QS metric,
but the arguments are identical for the EP case. The use of the centroid of the
ground truth object is what allows this metric to work for irregularly shaped
objects. For a planar object with uniform density, the mass (number of pixels
in our case) will be equal across any arbitrary line through the center of mass
(equivalent to the centroid in the uniform density case). By defining orthogonal
axes through the centroid, we can eliminate the chance of the arbitrary line cor-
responding to a reflectional symmetry of the region of pixels missed. We show an
example of the application of the PM QS metric in Figure 3 for a hand silhouette.
Further research into the use of our segmentation metric for arbitrarily-shaped
objects is currently ongoing. In particular, the practical application of this met-
ric may warrant a different normalization value than the theortical maximum of
∼ 1.75 for the combined size and shape metrics for EP and PM.

4 Watershed-Based Segmentation

We investigate here two simple watershed-based segmentation methods for de-
lineation of cell nuclei. We assign the default weights (discussed in Section 2.1)
of α = [0.5 0.5 0.5 1 0.5], δSR = 1, and δER = 1.

4.1 Watershed on the Complemented Distance Transform

We use the WSCDT method, as described in Section 2.2, on the pixel-level
nuclei classifications from [10]. We present quantitative results in Table 1 and an
example segmentation in Figure 4. The results in Table 1 represent the results
averaged over the entire dataset of 58 images. The example semgnetaions in
Figure 4 include the performance for the single example image.
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(a) Original hand sil-
houette with GT =
5270 object pixels.

(b) Erosion by 1 pixel;
total of PM = 524
pixels eroded (missed).
2·QS

GT
= 0.188, PM

GT
=

0.099, term2 = 0.107.

(c) Thumb removed;
total of PM = 524
pixels missed. 2·QS

GT
=

0.397, PM

GT
= 0.099,

term2 = 0.227.

Fig. 3. Application of the QS and size metrics to an example silhouette and “seg-
mentations.” Qualitatively, the segmentation in (b) retains more resemblance to the
original silhouette in (a) than does the segmentation in (c), where the entire thumb is
missed. A size metric alone would rank the two results in (b) and (c) as equally good
segmentations, while the use of the QS metric penalizes the change in shape of (c).
Note that in (b) the addition of the shape metric does not change the value of the
original size-based metric by much (0.8%).

4.2 Marker-Based Watershed Segmentation

We use a prior assumption about the shape of cell nuclei, namely that they are
roughly circular in shape and approximately the same diameter. Byun et al. [11]
use an inverted Laplacian of Gaussian (LoG) filter for detection of nuclei in
fluorescent confocal retinal imagery. For use in our brightfield imagery, we use a
non-inverted LoG filter in the same “blobdetector” framework of [11].2 We use
the detection capabilities of this method as a seed for a subsequent watershed
segmentation. This method (WSBlob) proceeds as follows:

– Detect nuclei using the red channel of the imagery and use these locations as
foreground markers for the watershed transform. A filter size of 25 pixels in
diameter (average nucleus diameter) and an inter-blob distance of 12 (half
the filter diameter) was empirically chosen.

– Use the eroded complement of the binary nuclei classification as background
markers.

Quantitative results for the WSBlob method are presented in Table 1 and an
example segmentation in Figure 4. As for the WSCDT, the results in Table 1 are
averaged over the entire dataset and example segmentations in Figure 4 include
the performance for the example image.
2 Code available at http://www.bioimage.ucsb.edu/software.html

http://www.bioimage.ucsb.edu/software.html
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(a) Original RGB image. (b) Original binary image (refer to [10]
for more details).

(c) WSCDT, P = 0.2974. (d) WSBlob, P = 0.3843.

Fig. 4. Example watershed-based segmentations. Note the tendency of the WSCDT
method to oversegment and the tendency of the WSBlob method to undersegment.

4.3 Summary

Referring to Table 1, we see terms 1 and 3 display the most difference between
the two methods. In particular, WSCDT displays a worse performance for term
1 (extra GT regions) and better performance for term 3 (extra pixels), indicating
a tendency for WSCDT to oversegment as compared to WSBlob which tends to
undersegment. These observations are validated by observation of the example
segmentations in Figure 4.

We have presented the application of our segmentation metric to the problem
of segmentation of cell nuclei. We have shown the overall metric performance and
the performance of individual terms for each segmentation method. We have also
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Table 1. Nuclei segmentation term performance

Method P term1 term2 term3 term4 term5

WSCDT 0.18 0.38 0.82 0.60 0.96 0.44
WSBlob 0.25 0.69 0.94 0.31 0.98 0.52

used the metric terms as a quantitative basis to compare the performance of the
two methods, which corresponds well with the qualitative observations of general
segmentation accuracy as illustrated by the example segmentations.

Further work should include observer studies to correlate the metric to the
visual assessment of many individuals. Additionally, future and ongoing research
includes the comparison of our metric to other applicable metrics, e.g., those
presented in [2] and [9].

5 Conclusions

We have presented an object-level segmentation metric and its constituent terms
and have shown that they correspond well with the qualitative observations of
segmentation accuracy, including the general tendency of an algorithm to over-
or under-segment an image. This metric also allows for a direct quantitative
comparison between the outputs of different segmentation algorithms. While the
metric defines a single performance, we have shown the usefulness of observing
the performance of the individual metric terms.

We have also discussed a new method for specification of ground truth for
this object-level segmentation problem. This involves not only the delineation
of cell nuclei within an approximate truth window, but also the marking of
non-delineated objects within the truth window. This allows us to focus our
segmentation evaluation on only those objects that were delineated by the
user.

In comparison to other work in segmentation evaluation, our metric does not
require the computation of region or boundary correspondences which can be
complicated. Instead we have introduced a metric based on simple subtrations of
object masks and other object-level metrics (e.g., number of segmented regions).
Additionally, we compute the segmentation performance on an object-by-object
basis.
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