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videos, the search tracker (ST). We maintain a library of
training videos containing objects annotated with bounding
boxes. The training videos are then transformed into
representative documents, which are indexed along with the
provided bounding boxes. These documents encode motion
patterns of annotated objects in the training videos.

For tracking to be applied on a new test video, we generate
similar documents from this video. These documents are
matched against the library documents to find video segments
with similar motion patterns. The assumption is that video
segments with similar motion characteristics will have similar
object annotations. Finally, object annotations corresponding
to the retrieved results are transferred and warped to match
the motion in the test video better.

The main contributions of this paper are as follows.
1) We present a method that tackles the problem of

tracking objects in the wild using a search and retrieval
framework by learning long-term motion patterns from
a library of training videos.

2) This approach carries out object tracking without
dedicated object detectors or manual initialization and
is automated in the true sense.

3) This approach demonstrates an empirically effective way
of transferring information learned from one data set
to apply onto other data sets of very different visual
contents such as viewpoints, types of objects, and so on.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III provides the
details of the proposed method with a focus on the offline
library generation and the online test video tracking process.
Section IV elaborates on the experiments done to validate our
approach, and we present our comments and possible future
work and conclusions in Sections V and VI, respectively.

II. RELATED WORK

Object tracking is an active research area in the computer
vision community. Surveys of object tracking algorithms
are provided in [20], [32], and [41]. A large number of
tracking algorithms learn an appearance model from the
initial frame and adapt it to information from incoming
frames. Tracking results in the current frame are incorporated
into the tracking model for subsequent frames. This online
paradigm is called tracking by detection [10], [30]. The
simplest object trackers within this paradigm have used
color histograms [3] and template matching [16]. However,
these methods are susceptible to tracking errors, which leads
to the tracker model incorporating background clutter and
occlusions. Multiple-instance learners [1] and trackers based
on structured label Support Vector Machines (SVM) [12] have
tackled the problem of sampling the right image patches for
online learning. Yi et al. [40] propose a visual tracker that is
insensitive to the quality of manual initialization. The tracker
takes advantage of motion priors for detected target features
from optical flow, thereby handling inaccurate initializations.
This method still relies on either a manual initialization or
an object detector to initialize the tracker reliably in a close
neighborhood of the ground truth to be successful.

In addition, there are methods that learn from annotated data
sets in order to create priors that aid appearance-based trackers.
Manen et al. [21] have proposed an interesting framework
that learns how objects typically move in a scene and uses
that knowledge as a prior to guide appearance-based trackers
to handle occlusions and scene clutter. This method requires
annotations of multiple object tracks in the same scene.
In contrast, our method can track objects in scenes totally
unrelated to the data set we learn from. Rodriguez et al. [29]
use a large database of crowd videos to search and find
priors in order to guide a linear Kalman-filter-based tracker.
The method requires that the query video has a scene
appearance similar to retrieved library videos and that the
target’s position be manually initialized, which are not required
for the proposed approach.

On the front of biologically inspired systems, there are
several works that leverage human contextual knowledge for
computer vision tasks like action recognition [15], object
detection [18], [27], and scene classification [31], [33].

III. SEARCH TRACKER

A. Overview of the Approach

We aim to track objects in unseen videos by finding
matches for motion patterns among a library of videos with
indexed human-generated annotations. There are two distinct
phases in the proposed method. The offline phase operates
on a library of training videos with annotated bounding
boxes. Training videos are transformed into representative
documents, which are indexed along with the provided
bounding boxes. The documents encode long-term motion
patterns of annotated objects. We use optical flow [34] to
represent motion information from videos.

During the second phase, a new test video is accepted for
tracking. Documents similar to those created for the training
videos are generated. These documents incorporate motion
patterns across different scales and spatial locations, which
can be matched to those in the training library. This enables
the use of smaller training libraries to represent diverse motion
patterns. The matching and retrieval process handles detection
and tracking of multiple objects in the test videos.

Once matches for test video documents from the training
database are found, associated annotation bounding boxes are
transferred to the test video. Transferred bounding boxes are
warped to improve the match with motion characteristics of
tracked objects. We utilize nonmaximal suppression to derive
the best bounding boxes from the set of warped bounding
boxes. Subsequently, a smoothing step is carried out to
regularize the scale of bounding boxes for the detected objects.

To summarize, human-generated annotations are leveraged
to track moving objects in challenging scenarios without actual
human review of the test video. A high-level block diagram
depicting the proposed method is presented in Fig. 2. The
library creation process and the proposed query scheme are
explained in the following section.

B. Offline Library Creation

1) Training Video Library: The training video library
consists of around 20 min of publicly available surveillance
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Fig. 2. Block diagram presenting a high-level view of the proposed
system. Representative documents are generated from the query video.
These documents encode object motion characteristics. Query documents
are submitted to the retrieval algorithm to find matches. Annotations
corresponding to found matches are then transferred and warped onto the
query video. The red arrows represent online steps and the blue arrows
represent offline steps of the approach. (Best viewed in color.)

Fig. 3. Example frames from six of the videos included in the library of
training videos. (Best viewed in color.)

videos recorded across ten camera views on the UCSB
campus [35], [39]. The resolution of the videos is 320 × 240
and they are recorded at the rate of 24 frames/s. Note that
this does not constrain the dimensions of test videos. The
library videos capture scenes of pedestrians and bicyclists
on campus bike-paths from various viewpoints. There are a
total of 291 object tracks in the library. Example frames from
the library are shown in Fig. 3. Human-generated annotations
corresponding to individual objects are stored and indexed.
To increase the diversity of motion patterns in the data set,
we have generated horizontally and vertically flipped versions
of library videos.

2) Video Document Generation: We divide the training
videos into small nonoverlapping spatiotemporal cubes and
compute dense optical flow across frames [34]. For each
spatiotemporal cube, optical flow vectors are averaged over
a time step and those exceeding a specified magnitude are
binned into four directions (top, left, bottom, and right). The
binning is performed as a soft decision where an optical flow
vector can belong to two directions (e.g., left and top), the
contribution being directly proportional to how close the vector
is to these directions. The votes for each of the optical flow

Fig. 4. (a) Example frame from a sequence belonging to the training video
library. (b) Visualization of the optical flow magnitude for the shown frame.
(c) Document generated from the sequence. The vertical axis corresponds to
the word, which in turn corresponds to spatial location of a cube and the
observed direction of motion. The horizontal axis corresponds to time steps.
The document is binary valued with the black regions signifying activations.
(Best viewed in color.)

vectors are summed up and thresholded. This generates a 4-b
binary motion code for each cube. For our experiments, we
have set the spatial size of cube to 20× 20 and the temporal
step size to four frames. The spatial locations and the motion
code of the cubes are flattened to a single column vector. Each
of the binary codes in the column vector is termed as words
with them being denoted by the variable w ∈ [0, W ). W is
the number of spatiotemporal cubes in a time step multiplied
by the number of quantized directions. The value of W is
derived as

W = IX ∗ IY ∗ m

cX ∗ cY
(1)

where IX and IY are the video width and height, cX and cY

are the spatiotemporal cube width and height, and m is the
number of binary bits in the motion code. For our experiments,
W = 768. We tried out different values for these design
parameters and got the best performance for the values
specified before. The horizontal axis represents time steps in
the video, indexed by t ∈ [0, T ). An example document is
shown in Fig. 4. Design of the video document is meant to
capture spatial location and directions of object motions from
training videos.

3) Motion and Track Indexing: To enable search and
retrieval of motion patterns from training videos, we divide
the documents along the temporal dimension into fragments.
We choose a parameter T f that denotes the document fragment
length. This is the temporal duration of the basic retrievable
segment of a library video that will be chosen and combined
to represent a query video. A fragment is, hence, a contiguous
subset of T f columns from a video document. In our
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Fig. 5. Query video gets processed as 21 different spatiotemporal volume configurations. Each configuration gets processed into a document individually.
(Best viewed in color.)

experiments, we have fixed T f to 8. Each video fragment
can be represented as a set of activated (w, τ) pairs, where
τ ∈ [0, T f ) is the time relative to the start of the fragment.
Each overlapping segment of a document with duration T f is
indexed as an individual fragment. During training, the library
data are stored and indexed across five database tables.

1) Fragment Forward Index: This table contains a row for
each fragment, mapping from a fragment name to its set
of (w, τ) activations.

2) Fragment Inverse Index: This table contains a row for
each (w, τ) pair, mapping onto the fragment names in
which that pair appears.

3) Flow Fields: This table contains the optical flow
magnitude for each time step in every document. These
will be used later for warping.

4) Track Forward Index: This table contains a row for
each unique track id present in the human-generated
annotations, mapping onto a bounding box for each
frame where the corresponding object is present.

5) Track Inverse Index: This table contains a row for each
fragment, mapping onto the set of track ids annotated
during that fragment’s duration.

C. Online Video Queries

With offline library creation steps complete, the system is
ready to provide tracks for a new unseen input video. Keeping
with the search and retrieval metaphor, an input video is called
a query.

1) Multiscale Video Document Generation: In order to
be able to match motion patterns at multiple scales and
spatial locations from the training video library, we generate
documents for different configurations of the input video.
The configurations are illustrated in Fig. 5. The first
configuration has the video processed at the original scale.

The next four configurations have the video spatially divided
into four quadrants. The quadrants are individually processed
to create one document each. Additional 16 configurations
are generated by spatially dividing the video into 16 parts
of identical sizes and each part generating a document.
In total, for each video, we generate 21 documents. The
spatial dimensions of the spatiotemporal cubes used during
document generation are modulated with the size of the
video configuration such that the number of words W is
constant across configurations. The above method enables the
representation of motion patterns in query videos at different
spatial locations and scales. When retrieving matches for query
videos, we compute matches for all the 21 configurations
and pool the results for further stages of annotation transfer
and warping, as described in Section III-C3. This enhanced
flexibility leads to a reduction in size of the training video
library required to represent arbitrary object motion in query
videos. We then divide the documents of the query video into
fragments, as described in Section III-B2.

2) Library Search and Composition: Consider a fragment
of one of the query video documents

fq = (w, τ) : w ∈ [0, W ), τ ∈ [0, T f ). (2)

We wish to find a set of result fragments from our
library, F r , which composed together approximate the query
fragment

F r = arg max
F ′r

�

w

�

τ

min(R fq (w, τ), R fR (w, τ)) (3)

where

fR =
�

fr∈F ′r
fr (4)

R f (w, τ) =
�
�

�

1

| f | , if (w, τ) ∈ f

0, otherwise.
(5)
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mean distance precision across data sets and methods. The
distance and overlap thresholds are set to 20 pixels and 0.5,
respectively. Fig. 9 presents distance and overlap precision
scores for different values of VOC scores and CLE thresholds.
The ST consistently outperforms all other competing
algorithms by a wide margin.

As we can see, the ST is competitive with respect to the
appearance-based methods. It is important to note that we
do not depend on manually provided initial bounding boxes
or object detectors for the training videos. This gives us a
strong advantage when the manual initialization or good object
detectors are not available especially in test data sets suffering
from poor image quality. The ST outperforms competing
methods by a large margin in the Courtyard data set.
We are able to get this performance from the ST without
any manual initialization. CAVIAR has indoor sequences
set in a shopping mall with a comparatively low image
quality and more scene clutter. Therefore, leveraging motion
patterns helps us outperform all the other algorithms on
CAVIAR. Example result frames are presented in Fig. 10.
These frames illustrate resilience of our algorithm to scene
clutter, illumination changes, and occlusions. In addition, the
aforementioned image quality issues often cause background
subtraction-based tracking (BGS) methods to fail on both the
CAVIAR and the Courtyard sequences. To contrast against
the usage of optical flow and feature tracking methods, we
have provided comparisons with the consensus-based tracking
and matching of keypoints for object tracking (CMT) tracker.
Due to poor image quality of test videos, consistent tracking
of object feature points across multiple points is a difficult
problem and hence leads to a comparatively weaker tracker
performance. Since the ST utilizes aggregated optical flow
information across multiple frames at the same time, the
tracker is robust to such conditions.

In order to compare the performance with respect to
tracking multiple objects, we provide the bounding boxes
generated by the Search Tracker on the PETS 2009 S2L2
sequence to [23]. [23] combines the provided detections into
object tracks using an energy minimization framework. We
compute the MOTA and MOTP scores generated for these
tracks and compare them with the state-of-the-art methods
in Table V. Our method is comparable in performance
with other multiobject trackers. A point to note is that the
competing methods use external sources for object bounding
boxes.

D. Performance Analysis With Varying Library Sizes

We investigate the effect of different library sizes on the
proposed method’s tracking performance. We randomly chose
γ = {0.5, 0.6, 0.7, 0.8, 0.9, 1} fraction of the library videos
and generate sub-libraries. We then run the search and retrieval
algorithm with one of these sublibraries at a time and plot
the overlap precision and the distance precision scores on the
Courtyard data set for the different values of γ in Fig. 11(a).
As can be seen from the plots, the ST’s performance scales
with the size of the associated annotated video library. Since
we apply data augmentation techniques in the form of vertical

TABLE V

COMPARATIVE TABLE OF CLEAR MULTIPLE OBJECT TRACKING SCORES
FOR THE PETS-2009 S2L2 SEQUENCE ACROSS TRACKING

METHODS. A HIGHER VALUE REFLECTS

SUPERIOR TRACKING RESULTS

and horizontal flipping of library videos and also generate
multiscale query video representations, the proposed method’s
performance does not reduce by a large margin due to
reduction in library sizes.

E. Analysis on Annotation Warping

In the annotation warping stage, we control the flexibility
that a transferred bounding box has in fitting optical
flow characteristics of the query video frame, through the
penalty term α from (7). We found the optimal value
of α to be 2000 for our experiments. To investigate the
sensitivity of the proposed method for different values
of α, we execute the proposed tracker on the Courtyard
data set and measure the overlap precision and distance
precision at VOC score thresholds of 0.5 and 20 pixels,
respectively. The tracking performance of the ST is shown
in Fig. 11(b). Low values of α restrict the flexibility of
the transferred bounding box to adapt the test sequence’s
optical flow characteristics, while higher values can lead to
bounding boxes collapsing onto regions of high optical flow
magnitude.

F. Computational Cost

Our experiments were carried out on a single-core 3.5-GHz
workstation using MATLAB. The query stage and the
bounding box composition steps take between 4 and 25 s for
each frame, depending on the number of moving objects in the
scene. The computational cost of the ST is distributed among
the query multiscale fragment computation stage, the library
search and composition stage, and the annotation transfer and
warping stage. The time required per frame for fragment
generation is 53 ms, the library search stage needs 3.7 s, and
the annotation transfer stage requires 9.3 s on average for the
Courtyard data set.

The cost of fragment generation is independent of the
content in query videos. Annotation transfer and warping
requires the largest amount of computation among all the
stages. Since a frame can be a member of multiple query
fragments, the large number of matched annotations and the
accompanying warping procedure adds to the computational
cost. Annotation warping can be made faster by a parallelized
implementation for warping of retrieved candidate bounding
boxes. The optical flow method in [34] provided the most
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Fig. 10. Comparison of our approach with state-of-the-art trackers on CAVIAR and Courtyard data sets. The first (top) row shows images where the target
undergoes illumination and shape variations. In the second row, the target passes through a cluttered scene. The target in the third row undergoes compression
artifacts and an occlusion. The proposed tracker is able to track the targets and it adapts bounding box scale to the target size, whereas the competing trackers
get distracted by scene clutter, have fixed bounding box scales, and fail when the target appearance changes or undergoes occlusions. (Best viewed in color.)

accurate results, but the method is computationally expensive
and this adds to the cost of the ST.

V. DISCUSSION

There are a few limitations to the proposed method. The
ST is designed to work with stationary cameras and will
not be directly applicable to data from pan–tilt–zoom and
mobile device cameras. There may be cases where the motion
present in the test video cannot be modeled by the training
library database, which can be overcome by adding more
video clips to the library. Diversity can also be induced by
generating translated and rotated versions of preexisting library
videos. In addition, with state-of-the-art trackers becoming
more efficient and robust, we could combine automated
tracker outputs instead of depending on human-generated

annotations to create cheaper large-scale video libraries and,
consequently, lead to improved object tracking. We also expect
that this method of directly transferring knowledge available
on one annotated data set to a different data set to be
applicable to other problems like action recognition, activity
analysis, and other tasks that can be analyzed through motion
patterns.

The ST has also limitations with respect to modeling
target motion in crowded sequences. In sequences where
a large number of targets occlude each other, the optical
flow signatures are not discriminative enough to find
a good match from the library data set. In some
cases, very small objects in scenes do not generate
strong optical flow fields, and hence, encoding of motion
becomes challenging. The ST is best suited for tracking


