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ABSTRACT

Error correction codes of suitable redundancy are used for ensuring perfect data recovery in noisy channels. For
iterative decoding based methods, the decoder needs to be initialized with proper confidence values, called the
log likelihood ratios (LLRs), for all the embedding locations. If these confidence values or LLRs are accurately
initialized, the decoder converges at a lower redundancy factor, thus leading to a higher effective hiding rate.
Here, we present an LLR allocation method based on the image statistics, the hiding parameters and the noisy
channel characteristics. It is seen that this image-dependent LLR allocation scheme results in a higher data-rate,
than using a constant LLR across all images. The data-hiding channel parameters are learned from the image
histogram in the discrete cosine transform (DCT) domain using a linear regression framework. We also show
how the effective data-rate can be increased by suitably increasing the erasure rate at the decoder.
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1. INTRODUCTION

While designing data hiding schemes for noisy channels, we encode the data bits using error correction codes of
sufficient redundancy to ensure perfect data recovery, even after channel errors. An example of an end-to-end
data hiding system is shown in Fig. 1. For exactly the same hiding setup, if the iterative decoding in the error
correction framework can be made to converge at a lower redundancy factor, the effective hiding rate can be
increased. This can be done by proper initialization of the decoder confidence values (called log-likelihood ratios
(LLRs), explained in Sec. 2) at the embedding locations. In this paper, we propose methods for the accurate
initialization of the LLR values.

Our previous hiding schemes1,2 have used quantization index modulation (QIM)3 for embedding in quantized
discrete cosine transform (DCT) coefficients. For perceptual transparency, we do not modify coefficients that
lie in the range [-0.5,0.5].1 These coefficients are mapped to zero and are regarded as erasures (denoted by ‘e’
in Fig. 1). Repeat accumulate (RA) codes4 are well suited for such high erasure channels1 - RA codes with a
redundancy factor of q are used in the example in Fig. 1. The effective hiding channel in Fig. 1 includes both
the image and the attack channel and is characterized by a 2×3 transition probability matrix A (mapping R to
Z ′ in Fig. 1). As shown in Fig. 1, R is the binary codeword obtained after using RA-coding with redundancy
q for a message M of N bits. Z ′ is a ternary sequence (elements in Z ∈ {0, 1, e}) obtained from the quantized
DCT coefficients corresponding to the Nq embedding locations in the noisy received image. A is expressed as[

p00 p01 p0e

p10 p11 p1e

]
. Assuming a symmetric channel, the error probability pe equals p01 (and p10) and the erasure

probability per equals p0e (and p1e).
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Figure 1. Embedding is done in the DCT domain using quantization index modulation (QIM) and error robustness is
provided using a repeat accumulate (RA) coding framework.

2. COMPUTING THE LOG LIKELIHOOD RATIO

Let a certain image coefficient be equal to y and the corresponding embedded bit be b. The LLR value LLR(y)
denotes the logarithm of the ratio of the likelihood that a 0 was transmitted through that coefficient (Pr(b = 0|y))
to the likelihood that a 1 was transmitted (Pr(b = 1|y)).

LLR(y) = log
(

Pr(b = 0|y)
Pr(b = 1|y)

)
(1)

In our experiments, ∆, the quantization interval used by the QIM framework, equals 1 and the embedding
logic used is that the coefficient is changed to the nearest even/odd integer when 0/1 is the bit to be embedded.
Let x denote a DCT coefficient which gets quantized to Q(x) after QIM-based embedding. Due to channel noise
n, this modified coefficient is further changed to y; assuming an additive noise model, n = y − Q(x). Since
consecutive quantization levels corresponding to 0 (or 1) are spaced at a distance of 2 (∆ = 1) apart, the error
probability pe is expressed as follows:

pe =
∞∑

a=1

Pr(n > (2a− 1)∆/2, n < (2a + 1)∆/2) +
∞∑

a=1

Pr(n < −(2a− 1)∆/2, n > −(2a + 1)∆/2)

The noise distribution falls off sharply on either side of 0. Assuming the noise to be concentrated mainly in



[−∆,∆],

∞∑
a=1

Pr(n > (2a− 1)∆/2, n < (2a + 1)∆/2) ≈ Pr(n > ∆/2).

Under this assumption, pe ≈ Pr(n > ∆/2) + Pr(n < −∆/2),
therefore (1− pe) ≈ Pr(|n| ≤ ∆/2).

Let ‘0’ be embedded in x and it is converted to Q(x), the nearest even integer c; where c = 2t, t ∈ Z. Due
to noise n, the received coefficient y = n + c. If the channel noise is small enough so that y still rounds off to c
(the nearest integral value of y is called round(y)), the embedded bit (0) is correctly decoded. From the peaky
nature of the noise n around 0, we assume that the possible quantization levels that can get mapped to c, after
noise addition and rounding, are (c±1) - this assumes n ∈ [−∆,∆]. Thus, when the received coefficient y rounds
off to c, ‘1’ could have been embedded if the noise exceeds ∆/2 (or is less than −∆/2) and the coefficient after
QIM-based mapping Q(x) is (c− 1) (or (c + 1)).

Assuming c is even, Pr(b = 0, round(y) = c) = Pr(Q(x) = c)× Pr(round(c + n) = c) =
Pr((c− 1) < x < (c + 1))× Pr(b = 0)× Pr(|n| < 0.5) =

Pr((c− 1) < x < (c + 1))/2× Pr(|n| < 0.5),
under the assumption that Pr(b = 0) = 1/2.

Assuming c is even, Pr(b = 1, round(y) = c) =
Pr(Q(x) = (c− 1))× Pr(round(c− 1 + n) = c) + Pr(Q(x) = (c + 1))× Pr(round(c + 1 + n) = c) =

{Pr((c− 2) < x < c)/2× Pr(n > 0.5) + Pr(c < x < (c + 2))/2× Pr(n < −0.5)}.

Assuming Nc = Pr((c− 0.5) ≤ x < (c + 0.5)),
P r(Q(x) = c) = Pr((c− 1) < x < (c + 1))/2, ⇒ Pr(Q(x) = c) = (Nc + Nc−1/2 + Nc+1/2)/2,

where Nc denotes the fraction of embeddable DCT coefficients whose value changes to c on rounding. It also
corresponds to the cth bin in the normalized DCT histogram with integer-valued bin indices.

Using the above relations, we obtain

LLR(y|round(y) = c, c 6= 0) = ± log
(

(Nc + Nc−1/2 + Nc+1/2)(1− pe)
(Nc + Nc−1 + Nc+1 + Nc−2/2 + Nc+2/2)pe/2

)
, (2)

where the ± signs are for c = even/odd, respectively, and LLR(y) is kept at 0 when round(y) = 0.

The distribution of the AC DCT coefficients has been approximated as Laplacian.5,6 Always, Nc−1 > Nc >
Nc+1 holds, for c ≥ 1, and Nc ≈ N−c, by symmetry. If we assume Nc ≈ (Nc−1 + Nc+1)/2, then LLR(y) reduces
to:

LLR(y|round(y) = c, c 6= 0) = ± log
(

1
pe
− 1

)
(3)

It is experimentally observed that the LLR allocation methods using (2) and (3) result in similar embedding
rates. Hence, in subsequent experiments, the image-dependent LLR is computed using the relatively simpler
expression (3). The next issue is computing pe for a given image and noise channel.



3. OBTAINING THE CHANNEL PARAMETERS FROM THE IMAGE DCT
HISTOGRAM

In our data hiding setup, the effective channel also includes the host image and hence, the channel characteristics
are image dependent. We have experimented with the normalized histogram in the DCT domain as an image
feature that affects the channel properties. We use a linear regression model to determine the error and erasure
rates for a given image and known hiding parameters. These rates are empirically obtained for the training
images. The normalized histogram of all the coefficients in the hiding band is computed and a window of (2m+1)
histogram bins is considered, centered at the 0th bin - the bins are denoted by {N−m, · · · , N−1, N0, N1, · · · , Nm}.

pe =
m∑

i=−m

we,iNi, per =
m∑

i=−m

wer,iNi (4)

where the {we,i} and {wer,i} terms are determined based on a Minimum Mean Squared Error (MMSE) criterion
using the empirically computed pe and per, for the training images.

The experimental setup is as follows: out of a set of 1000 images, half are used for training and the rest
for testing. Data embedding is performed using Yet Another Steganographic Scheme (YASS),2 our recently
proposed JPEG steganographic framework. Here, a 8× 8 block is chosen randomly to hide data out of a B ×B
big-block (B > 8); we have used B = 9 in the experiments. The design quality factor used for hiding is called
QFh and a certain number (num = 10) of top AC DCT coefficients, encountered during zigzag scan for a 8×8
DCT-domain block, is used as the embedding band. After hiding, the images are JPEG compressed at an output
quality factor QFa of 75. These parameters (B,QFh, num, QFa) are kept the same for the training and testing
sets. With respect to Fig. 1, YASS just provides a method to select the “Nq” image coefficients to be used for
hiding - any other method which uses QIM based hiding and RA code based error correction can also be used.

We plot the normalized estimation error for pe (or per), in Fig. 2 (or Fig. 3) which equals the average
estimation error in pe (or per), divided by the average value of pe (or per). It is seen that the normalized
estimation error decreases significantly upto m = 5.
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Figure 2. Variation in the normalized estimation error for pe with m, where (2m + 1) weights are used to estimate pe

4. EFFECTIVENESS OF IMAGE DEPENDENT LLR ALLOCATION SCHEME

By definition (1), LLR(y) is positive/negative when 0/1 is the more likely bit and equals zero for an erasure.
If the absolute value of y were less than 0.5, LLR(y) = 0 (erasure); else, depending on whether the received
coefficient were close to an even or odd integer, LLR(y) is set to α or −α (as used in1,2), where the scaling
factor α reflects the decoder’s confidence in the accuracy of the decoded bit values. In our proposed approach,
the scaling factor of α has to be adjusted depending on the hiding channel characteristics.
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Figure 3. Variation in the normalized estimation error for per with m, where (2m + 1) weights are used to estimate per

In Table 1, the scaling factor α is varied and it is shown that the effective data-rate (that can be perfectly
recovered) varies significantly depending on α. Here, the hiding rate is expressed in terms of bpnc (data-bits
embedded per non-zero DCT coefficient). The bpnc is averaged over 250 images. The QIM-based hiding is
incorporated in the YASS framework in these experiments. The parameters used are the same as in Sec. 3 for
the estimation of pe and per: B = 9, QFh is varied from 50-75, num = 10 and QFa = 75. The q factor in RA-q
framework is gradually increased till the embedded data bits are perfectly recovered - the minimum q at which
perfect recovery occurs is called qopt.

It is also seen that the proper choice of α, αopt (that α value which results in the highest hiding rate, i.e.
the lowest value of qopt, for a given set of hiding parameters {QFh, QFa, num, B}) decreases with increasing
noise levels. The explanation is that as QFh increases from 50 to 75, with QFa being fixed at 75, the JPEG
compression induced noise increases and hence, the confidence in the decoded bits decreases leading to a lower
αopt. The method that uses a constant α of αopt for all the images under the same hiding conditions is called
Method 1 (M1). The image-dependent LLR allocation method that uses (3) is called Method 2 (M2).

The results in Table 1 show the best-case results using a constant α - here, α is fixed based on the hiding
conditions and does not vary per image. It is seen that the average bpnc obtained using αopt (M1) is less than
that obtained using the image-dependent LLR allocation scheme (M2). The trend holds consistently for QFh

values in the range [50,75].

Table 1. The average bpnc for 250 images is tabulated for varying α and QFh, using B=9, QFa=75, num=10 (hiding
band consists of top 10 AC DCT elements) in the YASS formulation. It is observed that αopt = 9, 7, 4 and 3 for QFh =
50, 60, 70 and 75, respectively. Since αopt lies in [1,6] for QFh = 70 and 75, the bpnc values for α in [7,12] have not been
shown.
HH

HHHQFh

α
1 2 3 4 5 6 7 8 9 10 11 12 M2

50 0.0442 0.0854 0.1140 0.1316 0.1433 0.1476 0.1485 0.1498 0.1506 0.1498 0.1488 0.1468 0.1555
60 0.0491 0.0941 0.1234 0.1390 0.1395 0.1414 0.1426 0.1412 0.1402 0.1357 0.1276 0.1175 0.1537
70 0.0471 0.0891 0.1104 0.1109 0.1098 0.0986 - - - - - - 0.1236
75 0.0418 0.0774 0.0859 0.0812 0.0635 0.0413 - - - - - - 0.0985

4.1 Increasing the Hiding Rate Using More Erasures

At the encoder side, the erasure cutoff δenc used is 0.5. Therefore, coefficients in the range [-0.5,0.5] are erased.
At the decoder side, we have further increased the erasure cutoff δdec (δdec ≥ 0.5). Therefore, at the decoder,
LLR(y) is computed as shown in (5) and (6).



if |y| ≤ δdec, LLR(y) = 0, for both M1 and M2 (5)

else LLR(y) =

 ±αopt, for M1, if round(y) is even/odd

± log
(

1
pe
− 1

)
, for M2, if round(y) is even/odd (6)

If δdec > δenc, the decoder will have an increased erasure rate (p1e increases) while p11 decreases. Also, the
number of erasures wrongly mapped to ‘1’ (pe1) decreases, while pee increases. In this changed setup, it is seen
that the effective data-rate (bpnc) increases as δdec is increased from 0.5 and then decreases after a certain point,
for both M1 and M2. The bpnc for M2 is consistently higher than that using M1, as shown in Table 2. For M1,
we have used αopt of 9, 7, 4 and 3 for for QFh of 50, 60, 70 and 75, respectively. It is seen that the bpnc is
maximum for δdec of 0.60, 0.60, 0.65 and 0.70 for QFh of 50, 60, 70 and 75, respectively.

Table 2. The bpnc value varies depending on δdec, the cutoff value used at the decoder. The hiding parameters used for
YASS are B = 9, QFa = 75 and num = 10.

QFh δdec = 0.50 δdec = 0.60 δdec = 0.65 δdec = 0.70
M1 M2 M1 M2 M1 M2 M1 M2

50 0.1506 0.1555 0.1560 0.1592 0.1555 0.1580 0.1549 0.1570
60 0.1426 0.1537 0.1538 0.1597 0.1536 0.1586 0.1534 0.1576
70 0.1109 0.1236 0.1266 0.1329 0.1287 0.1339 0.1260 0.1330
75 0.0859 0.0985 0.1007 0.1072 0.1030 0.1080 0.1055 0.1086

5. CONCLUSIONS

We have presented an image-dependent LLR allocation method where the LLR values are computed based on
both the DCT domain image histogram and the hiding channel. We have shown that the effective hiding rate
can be significantly improved by assigning accurate LLR values for initializing the RA decoder. Though we
have used RA codes in our experiments, the method used for LLR allocation is general enough to be used for
other iterative decoding (turbo coding) schemes. Future work shall focus on extending this LLR computation
framework for other hiding schemes (apart from QIM) which use iterative decoding based error correction.
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