
Performance Analysis of the Two-State Signal-Dependent
Rank Order Mean Filter

Michael S. Moore* and Sanjit K. Mitra

Department of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106 USA

ABSTRACT

One well-studied image processing task is the removal of impulse noise from images. Impulse noise can be introduced
during image capture, during transmission, or during storage. The signal-dependent rank order mean (SD-ROM)
filter has been shown to be effective at removing impulses from 2-D scalar-valued signals. Excellent results were
presented for both a two-state and a multi-state version of the filter. The two-state SD-ROM filter relies on the
selection of a set of threshold values. In this paper, we examine the performance of the algorithm with respect to
the thresholds. We take three different approaches. First, we discuss the performance of the algorithm with respect
to its root signals. Second, we present a probabilistic model for the SD-ROM filter. This model characterizes the
performance of the algorithm in terms of the probability of detecting a corrupted pixel while avoiding uncorrupted
pixels. Finally, we apply the insight gained from the root signal analysis and the statistical model to optimized
thresholds found using a computerized search algorithm for a large number of images and noise conditions.

Keywords: Impulse noise, nonlinear filters, SD-ROM filter, probabilistic model, thresholds

1. INTRODUCTION

One of the most common image processing tasks involves the removal of noise from images. Noise can be introduced
during image capture, during transmission, or during storage. However, most images share characteristics with noise
sources to a greater or lesser degree. Therefore, at its core, this task requires a balance between the improvement
gained by a particular filter as noise is removed from an image and the degradation introduced by a particular filter
as the noise-like components of the original image are also removed.

As a result, many different types of filters have been developed to handle different kinds of noise sources.1,2

One common noise model corrupts a signal by introducing impulse noise. In this case, most of the original samples
are unaltered, but the few samples that are changed can vary drastically. One group of filters, collectively called
decision-based filters2,3 or state-conditioned filters,4 estimates the state of the sample in question. If the sample is
determined to be uncorrupted, it is passed through the filter unchanged. If the sample is corrupted, an appropriate
estimate is chosen to replace it.

The signal dependent rank order mean (SD-ROM) filter has been shown to be effective at removing impulses
from 2-D scalar-valued signals.4 Excellent results were presented for both a two-state and a multi-state version of
the filter. Although a specific design method was developed for the multi-state SD-ROM, no method was proposed
for the simpler two-state algorithm. The two-state SD-ROM relies upon four threshold values. Although guidance
based on experience with the filter and several test images was given for selecting threshold values, the thresholds
were not directly related to the algorithm performance.

In this paper, we look at the two-state SD-ROM filter in greater detail. First, we discuss the performance of
the algorithm with respect to its root signals. The SD-ROM algorithm passes many signals that would normally be
altered by a median filter. Second, we present a probabilistic model for the SD-ROM filter. This model characterizes
the performance of the algorithm in terms of the probability of correct detection of a corrupted pixel. The model
depends on assumed distributions of the background image and the noise source. By numerically maximizing the
probability of a correct result, thresholds can be found for given background and noise distributions. Finally, we

*Correspondence: Email: msmoore@iplab.ece.ucsb..edu, WWW: http://iplserv.ece.ucsb.edu/users/msmoore

apply the insight gained from the root signal analysis and the statistical model to optimized thresholds found using
a computerized search algorithm for a large number of images and noise conditions.

Overall, the approaches presented in this paper are useful for explaining the performance of the SD-ROM filter
under various conditions. Although the optimal thresholds were rarely found using indirect techniques, the results
support several generalizations that can be made about threshold selection.

2. BACKGROUND

2.1. Median Filter

A key characteristic of impulse noise is the high probability of a large deviation from the original signal value. For
well-behaved input signals, the impulses will appear as outliers in the distribution of a local neighborhood of the
noisy signal. The process of removing impulses from a corrupted signal can be thought of as estimation of the value
of each sample given the noisy signal. A traditional method of estimating the center of a distribution, in the presence
of outliers, is to use the median filtering approach attributed to Tukey.5,6

In image processing, the median filter operates on a relatively small local region centered on the current pixel of
interest. A typical filter uses a three by three or five by five window. Larger windows remove more impulses, but
take longer to sort and distort the image in easily apparent ways.2,7

The median filter has several desirable characteristics. The median of a set of numbers is the value with the
minimum total distance to all of the other values in the set.8 Therefore the median filter is robust with respect to
the outliers. The output of the filter is always one of the input values, so the set of values in an image does not
grow with median filtering. The filter also passes several common image structures without change. Signals that are
not changed by a filter are called root signals. A signal repeatedly filtered by a median filter will converge to a root
signal.7

The median filter has root signals that encompass several common image region characteristics. As shown in
Figure 1, constant signals, ramp signal, and step edges are passed unchanged (in the absence of impulse noise) by
the median filter. However, several other common structures, such as the ends of lines, one pixel wide lines, and
corners, are removed by a median filter. Figure 1 shows several examples.

2.2. SD-ROM Filter

The signal-dependent rank order mean (SD-ROM) algorithm has been proposed as an alternative to the median
filter. The filter has been applied in several applications, such as removing impulses,4 streaks,9 and scratches from
images and impulse noise from audio signals.10

(a) (d)

(b) (e)

(c) (f)

Figure 1. Median filtering examples. Examples (a) through (c) demonstrate root signals. Examples (d) through
(f) show structures that are removed by the median filter. In each diagram, the left square is the input, the middle
row represents the sorted values, and the right square is the output.

Figure 2. Graphical SD-ROM example. The left square represents the input image. The next row show the sorted
surrounding values with the unsorted center value in the middle. The third section shows the result of the difference
operation with respect to the thresholds. The right square is the result. The second threshold was exceeded, so the
center pixel was replaced.

The SD-ROM algorithm works in two steps. First, a small neighborhood around a sample is used to determine if
the central sample is corrupted or not. This step is called detection or state-determination. The two-state algorithm
chooses between an uncorrupted state and a corrupted state. If the central sample is corrupted, a new value is
estimated for the central sample using the surrounding window. If the central sample is uncorrupted, the sample is
not changed.

Although the surrounding window can be of arbitrary size and shape, in practice a three by three window is used
in most image applications. The center pixel within the window is designated x(n). The surrounding eight values
are labeled x1(n) . . . x8(n) where x1(n) is the upper left value in the window and x8(n) is the lower right value. The
remaining values are labeled by scanning across rows in the window, skipping the center value. The algorithm can
then be summarized as follows:

1. Order pixel values in surrounding window from smallest to biggest:

x1(n), x2(n), . . . , x8(n)→ r1(n) ≤ r2(n) ≤ . . . ≤ r8(n) (1)

2. Compute rank-order differences, i = 1, . . . , 8:

di(n) =
{

ri(n)− x(n), i = 1, . . . , 4
x(n)− ri(n), i = 5, . . . , 8, (2)

3. Threshold and replace, if necessary:

y(n) ≡
{

m(n), di(n) > Ti or d9−i(n) > Ti, i = 1, . . . , 4,
x(n), otherwise. (3)

The ordered window values are labeled r1(n) . . . r8(n). The rank ordered differences are labeled d1(n) . . . d8(n).
m(n) is the rank order mean and is the average of r4(n) and r5(n). This value replaces the center pixel if any of
the thresholds T1 . . . T4 are exceeded. Because the difference calculation results in a signed difference and not an
absolute difference, the thresholds are restricted to values greater than or equal to zero.

Fig. 2 graphically illustrates the basic steps in the SD-ROM algorithm and provides a simple example.

2.3. Noise Model

Although both the median and SD-ROM filters can effectively remove many types of corruption from images, in this
paper we only consider a particular kind of impulse noise. Impulse noise is defined as

x(n) =
{

v(n), with probability 1− p
η(n), with probability p,

(4)

where v(n) is the original image value, η(n) is a sample of an identically distributed, independent random process
with a uniform probability density function, and p is the probability of corruption.

(a)

(b)

(c)

(d)

Figure 3. SD-ROM root examples. A median filter would replace the center in each of these examples. However,
as no threshold is exceeded, the SD-ROM filter does not alter the signal.

3. SD-ROM ROOT SIGNALS

As discussed in Section 2.1, the median filter passes certain signals without change. These signals are called root
signals. A root signal analysis is one method of characterizing a filter. Both the median filter and the SD-ROM
filter are nonlinear algorithms. Unlike linear filters, they cannot be represented in the frequency domain in terms
of passbands or stopbands. The best approximation one can make to a passband characterization is to flesh out as
fully as possible the set of signals that are unchanged by a filter.

Similar to the median filter, the two-state SD-ROM filter has a set of root signals. In fact, any signal that is a
root signal for a median filter is also a root signal for any SD-ROM filter. In a median filter, each sample is replaced
with the median of the sample window. Therefore, every sample in a root signal is already the median of the sample
window values. In a two-state SD-ROM filter, the center value is subtracted from the ordered surrounding values
in accordance with Eq. (2) and compared to the thresholds. If the center value is the median, all of the computed
differences will be less than or equal to zero. By design, the SD-ROM thresholds are non-negative. Therefore the
center sample will never be detected as an impulse and will never be replaced. Thus any median root signal is also
a root signal for the two-state SD-ROM.

However, the SD-ROM algorithm also has other root signals. These signals depend on the thresholds selected for
the filter. Fig. 3 provides examples of cases where the SD-ROM filter will pass impulses, the ends of lines, one pixel
wide lines, and corners. All of these structures are removed by a median filter. In the SD-ROM filter, each structure
is keyed to one of the four thresholds. An impulse will be passed if the absolute difference between the impulse and
the background is no bigger than T1. Similarly, the end of a line will be passed if the difference from background is
not bigger than T2, a line will be passed if the difference from background is not bigger than T3, and a corner will
be passed if the difference from background is not bigger than T4.

Because T4 ≥ T3 ≥ T2 ≥ T1, the SD-ROM filter will pass more corners than lines, more lines than ends, and more
ends than impulses. This trait makes the filter a good candidate for removing impulses while still preserving image
details. The higher the thresholds, the more detail that will be preserved.

However, the SD-ROM algorithm is order-based. It does not consider any kind of structural information. There-
fore, as far as the filter is concerned, the end of a line is identical to a center impulse and an impulse in the same
direction in the surrounding window. As the probability of corruption increases, the probability of multiple impulses
within a window increases. To remove these impulses, the thresholds must be decreased.

Thus, as usual, the selection of the SD-ROM thresholds involves a balance between the number of impulses that
are detected and the number of image details that are removed. To properly design the filter, a quality criterion
must be selected. In the original work,4 the thresholds were chosen on the basis of minimizing the mean square
error (MSE) and maximizing subjective quality for simulated results. In the following section, an approach will be
outlined for maximizing the probability that impulses will be correctly detected.

4. PROBABILISTIC MODEL

Another way to characterize the performance of a filter is through a statistical model. In this methodology, probability
distributions are assumed for the input signal and noise sources and a distribution for the output signal is derived.
For a median filter, the output distribution depends only on the size of the window chosen and the distributions of
the input and noise signals. For the SD-ROM filter, the output distribution also depends on the thresholds chosen
for a particular application. In that way, a probabilistic model may help illustrate the influence of the thresholds on
the performance of the SD-ROM algorithm.

The output distribution for a median filter can be found in the existing literature.11 It is simply the probability
that a given value will be at the center of an ordered set of values. More generally, the probability that the nth order
statistic for a set of numbers will be less than or equal to x is

Ψ(n)(x) =
N−n∑
i=0

(
N
i

)
(1− Φ(x))iΦ(x)N−i , (5)

where N is the number of samples of input distribution function Φ(t) and n is the desired order statistic.12 For a
three by three median filter, N equals nine and n equals five.

The probability distribution function in Eq. (5) assumes that the input distribution is continuous. In our
application, the input function is discrete. Only valid grayscale values are allowed. Therefore, the distribution
function must specifically account for the probability two samples may be equal. In addition, we will eventually be
interested in the distribution of the difference between each order statistic and the central sample. To that end, the
probability that a given order statistic equals a value x will be useful. The expression for that probability is

f(n)(x) =
N∑

i=1

min(n−1,N−i)∑
k=max(0,n−i)

(
N
i

)(
N − i

k

)
Pi

eP
k
l P

N−i−k
g , (6)

where Pe is the probability of the value x, Pl is the probability of values less than x, and Pg is the probability of
values greater than x. In the summations, the index i is the number of samples equal to x and the index k is the
number of samples less than x.

Eq. (6) calculates the probability density function for a single input distribution. However, the input to the
SD-ROM filter actually consists of two distribution functions, one for the original image and one for the impulse
noise. Given the number of impulses, Ni, a new density function can be derived

f(n)(x|Ni) =
N∑

i=1

A∑
j=α

B∑
k=β

Γ∑
l=γ

(
Ni

j , l

)(
Nb

(i − j) , (k − l)

)
Pj

ieP
(i−j)
be Pl

ilP
(k−l)
bl P(Ni−j−l)

ig P(Nb−(i−j)−(k−l))
bg , (7)

where
α = max(0, i − Nb), A = min(i,Ni),
β = max(0, n − i), B = min(n − 1, N − i),
γ = max(0, k − Nb + i − j), Γ = min(k,Ni − j), and

Nb = N − Ni.

As in Eq. (6), the probabilities that an impulse or background pixel value will be equal to, less than, or greater than
the value of x are required. For the impulse noise distribution, these probabilities are Pie, Pil, and Pig, respectively.
For the original image or background, these probabilities are Pbe, Pbl, and Pbg. The indices i and k have the same
meanings as in Eq. (6). The index j is the number of impulses that equal x and the index l is the number of impulses
less than x.

The SD-ROM algorithm thresholds the difference between the sorted values from the surrounding window and
the center pixel. The center pixel is either an impulse or part of the image. Thus, we need the probability that
the difference between two random distributions will exceed a certain value. Using the probability density function
(pdf) in Eq. (7) and the probability mass function (PMF) of the center pixel, we can derive the probability that the
difference will be less than or equal to a certain threshold value. Two such distributions are useful,

Fc,(n)(z|Ni) =
255∑
x=0

Fi(x+ z)f(n)(x|Ni), (8)

and

Fu,(n)(z|Ni) =
255∑
x=0

Fb(x+ z)f(n)(x|Ni). (9)

where Fi(x− z) is the PMF of the impulse noise and Fb(x− z) is the PMF of the background image. Fc,(n)(z|Ni) is
the PMF of the difference for order statistic n given that the center pixel is an impulse and the surrounding window
contains Ni impulses. Fu,(n)(z|Ni) is similar, but the center pixel is uncorrupted. The range of the summation is
equal to the assumed range of the values, in this case 8-bit grayscale values. The range is only included here for
convenience.

For the basic three by three window version of the SD-ROM filter, there are four thresholds. Each threshold
applies to two differences. For example, the first threshold, T1, is applied to the difference r1 − x and also to the
difference x − r8. If either difference exceeds T1, the center pixel is considered corrupted. Therefore, we need to
calculate two probabilities for each threshold, as follows

Prob(ri − x > Ti) = Fc,(i)((−Ti − 1)|Ni), (10)

and

Prob(x − r9−i > Ti) = 1− Fc,(9−i)(Ti|Ni). (11)

Because the thresholds are restricted to being non-negative, the probability of exceeding both thresholds at the
same time is zero. Therefore, the results of Eqs. (10) and (11) can simply be added. In addition, the probability
that a certain number of impulses exists in each window, Pc(j), can be easily calculated using the probability of
corruption, p. By summing over the number of impulses in the window, we get the total probability that a single
threshold is exceeded given that the center pixel is corrupted

Probdetect(Ti|corrupted) =
8∑

j=0

Pc(j)[Fc,(i)((−Ti − 1)|j) + 1− Fc,(9−i)(Ti|j)] (12)

Determining the probability that a corrupted pixel will be detected is not enough to optimize the thresholds. As
discussed in Section 3, one can maximize detection by simply setting all the thresholds to zero. However, many of
the features of the image will also be removed. Therefore we also need the probability that a threshold will not be
exceeded when the center value is uncorrupted. Using the PMF from Eq. (9), an expression similar to Eq. (12) is
derived,

Probpass(Ti|uncorrupted) =
8∑

j=0

Pc(j)[Fu,(9−i)(Ti|j)− Fu,i((−Ti − 1)|j)]. (13)

Finally, by combining the probability of detecting corrupted pixels with the probability of passing uncorrupted
pixels, the total probability of correct operation is found,

Probcorrect(Ti) = p ∗ Probdetect(Ti|corrupt) + (1− p) ∗ Probpass(Ti|uncorrupt). (14)

Using Eq. (14), the uniform impulse noise model, and an assumed image model, we can calculate the probability
of correct performance for each threshold, T1 . . . T4, for all possible values, 0 . . . 255. Figure 4 shows an example input
distribution function. The example consists of two equally weighted Gaussian functions, one with a mean of 80 and

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Background pdf

P
ro

b(
x)

x

Figure 4. Background probability density function. The curve was created by combining two Gaussian pdfs
(µ = 80,σ = 20) and (µ = 160,σ = 12).

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold −−>

P
ro

b
−

−
>

Threshold 1

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold −−>

P
ro

b
−

−
>

Threshold 2

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold −−>

P
ro

b
−

−
>

Threshold 3

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold −−>

P
ro

b
−

−
>

Threshold 4

Figure 5. Probability of ‘correct’ detection versus threshold value for each of the four SD-ROM thresholds.

a standard deviation of 20 and the other with a mean of 160 and a standard deviation of 12. This probability density
function was chosen to illustrate certain features in the threshold performance curves.

Figure 5 shows the threshold curves for the input distribution and a corruption probability of twenty percent.
The curves have several interesting features. For all four thresholds, the performance converges to 80% correct as the
thresholds increase. This trend is expected, as increasing thresholds decrease impulse detections until the corrupted
image is unchanged. The curves also show that choosing low thresholds severely reduces the probability of correct
detection, especially for the higher order thresholds. Setting T1 to zero simply replaces the center value if it is outside
the most extreme values in the surrounding window. Setting T4 to zero forces the filter to replace the center pixel
unless it is between the innermost window values.

Figure 5 also demonstrates the tendency for the optimal thresholds to be grouped higher for the inner thresholds,
like T4, than for the external thresholds, like T1. This facts reflects the low probability of large numbers of impulses
in the surrounding window. The width of the peaks is also greater for the internal thresholds. This effect becomes
more pronounced as the level of corruption is increased. For very high error rates, the external threshold curves
become very peaked and the internal thresholds start to show some peaking. However, at corruption rates less than
40%, the performance of the filter is not very sensitive to the inner thresholds, as long as they are large.

Fig. 5 also indicates that the filter does not provide much improvement over the corrupted image. Even with the
optimum thresholds, the probability of correct detection only increases slightly over 80%. However, as we shall see
in the next section, the actual performance of the SD-ROM algorithm is much better.

The maximum probability of correct detection for this input distribution occurs when T1 = 26, T2 = 42, T3 = 85,
and T4 = 105. Choosing these values will ensure that each individual threshold performs optimally. Unfortunately,
optimum performance of each individual threshold does not guarantee optimum performance of the overall filter.
Because the center value is rejected if any threshold is exceeded, the thresholds are not independent. To some extent,
the effect of lowering a threshold can be offset by raising the other thresholds. However, these interaction effects
are not considered in this approach. To evaluate the overall filter performance requires the individual threshold
probabilities to be combined into a single function of all four thresholds. This work has not yet been completed.

In addition, this approach only results in an estimate for the probability that the filter correctly estimates the
state of the center pixel. Although it may seem like the best performance will result from the best estimation of the
state, this is not in fact true. A filter which is maximally correct but preserves imperceptible details while passing
large impulses will not have good perceptual quality. Ideally, the results of this analysis should be used to find the
actual output distribution. With the output distribution, we can estimate the performance of the algorithm with
respect to a distance metric, such as the mean square error.

The probabilistic approach to modeling a filter inherently depends on the model of the input signal. This is one
of its strengths, as it applies to all specific inputs that match the assumed model. This is also one of its weaknesses,
as most input models are of necessity simplified by making a large number of assumptions. Note that the model
for the SD-ROM filter assumed that each individual sample is independent of its neighbors. While this is true of
our noise source, by our definition, it is not true for images. Therefore, even with an overall model combining all
thresholds and incorporating an error criterion, the final results may not match actual performance.

5. SIMULATION RESULTS

In contrast to the probabilistic approach, a simulation approach will find the optimum thresholds relative to a specific
criterion, for a specific input image, and with a specific corruption pattern. By optimizing the thresholds for multiple
images with varying levels of corruption, it may be possible to generalize the results and guide threshold design in
new applications.

The SD-ROM algorithm operates on the sorted set of surrounding pixel values for each pixel in an image. The
sorting operation is the most time consuming portion of the algorithm. A straightforward optimization approach
would be to search through the sets of possible thresholds to find the set with the best performance. However, even
for a three by three window and 8-bit grayscale image, the number of possible thresholds is very large. Although
a single image with a single set of thresholds can be processed with little delay, simply processing the entire set of
thresholds would take years.

To reduce the optimization time, two simplifications were made. First, the non-recursive implementation of the
two-state SD-ROM algorithm was chosen. The SD-ROM algorithm thresholds eight differences calculated per Eq.
(2). In the non-recursive implementation, these differences only depend on the input image and do not depend on
previous filter results. Therefore, it is possible to pre-scan the image and calculate the differences at every location
in the image. By storing the differences at each location as well as the penalties associated with both possible states,
the performance for any set of thresholds can be calculated directly from the list.

This approach was taken in our optimization program. In addition, because the thresholds are restricted to being
non-negative, all negative differences were set to zero. Then the list of differences was sorted and identical entries
were combined. The end result was a greatly reduced list of differences. Frequently, lists with over 200,000 initial
entries were reduced in size by one to two orders of magnitude, depending on the original image and the level of
corruption. By using the difference lists, it was possible to evaluate the algorithm performance for thousands of
threshold sets in less than an hour.

However, the number of possible threshold sets still made an exhaustive search prohibitive. The second simplifi-
cation was an assumption that the optimum set of thresholds could be found in close proximity to other thresholds
with near optimum performance. The assumed optimum thresholds were then found in two steps. First, initial
thresholds were found by setting all four thresholds to their maximum values. Then T1 was decreased until the best
performance was achieved. Next, T2 was reduced with T1 held constant at its best value. Then, T3 was scanned with

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

% Corruption

T
hr

es
ho

ld
 1

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

% Corruption

T
hr

es
ho

ld
 3

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

% Corruption

T
hr

es
ho

ld
 2

5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

160

% Corruption

T
hr

es
ho

ld
 4

Figure 6. Simulation threshold results. The average of the optimum thresholds found at corruption percentages of
5, 10, 15, 20, 25, 30, 40, and 50 are plotted.

the others held constant and finally T4 was scanned with all three other thresholds at their best values. The second
step was to comprehensively search a range of thresholds around the starting thresholds. The range was allowed to
change if better performance was found near the edge of the range of values searched.

This approach seemed to work well. Although the initial thresholds obtained by setting each threshold indepen-
dently were rarely the optimal thresholds, the performance of the optimal thresholds was insignificantly better than
the performance of the original thresholds. A list of the twenty best sets of thresholds was kept for each image and
specific instance of corruption. Examination of the lists did not reveal multiple pockets of optimum performance.
Instead, a single best set of thresholds was found. The other sets of thresholds were minor variations of the best set.
In general, the upper thresholds T3 and T4 varied over a wide range while T1 and T2 stayed relatively constant.

Figure 6 shows the simulation results for six images. All of the images were 512 by 512 pixel, 8-bit grayscale
images. The images were Goldhill, Lena, Barbara, Crowd, Pyramid, and Mill. They were corrupted with 5, 10, 15,
20, 25, 30, 40, and 50 percent error rates. Five specific noise realizations were simulated for each image at each
corruption percentage. The thresholds plotted in Fig. 6 are the averages of all the thresholds found (100 sets per
image and corruption level). A much larger set of images has been tested. These images were selected because most
of them are commonly available and they illustrate certain traits that are common for all of the images studied.

Figure 7 provides another interesting measure of the SD-ROM performance relative to the percentage corruption.
The figure plots the percentage of correct detections versus the level of corruption for four of the images. The median
filter results for the same corruption levels are also shown.

For most images, the thresholds decrease as the percentage of corruption increases. As the thresholds decrease,
the filter becomes more median-like and removes outliers to a greater extent. However, even at 50% corruption, the
thresholds are non-zero. When the error rate approaches fifty percent, the performance of the SD-ROM filter and
the median filter are comparable. At low levels of corruption, the thresholds are highly image dependent. However,
as corruption increases the thresholds begin to converge and become noise-driven as opposed to image-driven.

The plots in Fig. 6 show two groupings of image thresholds. The upper two curves in each plot correspond to
the Barbara and Mill images. These images have strong edge and texture features. Preserving these features at low
corruption levels drive the thresholds up higher than in the other images. The thresholds are applied to differences.
In a typical grayscale image, there are very few areas where adjacent pixels vary by 100 levels or more. As a
consequence, setting thresholds T3 and T4 to values above 100 effectively disable them. For low levels of corruption,
the optimization program appears to push the inner thresholds up until they reach the point where they exceed the
maximum local contrast in the original image. For some images with high contrast, like Barbara and Mill, this is
much higher than other images.

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100
Barbara

% Corruption

%
 C

or
re

ct

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100
Crowd

% Corruption

%
 C

or
re

ct

(a) (b)

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100
Goldhill

% Corruption

%
 C

or
re

ct

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100
Lena

% Corruption

%
 C

or
re

ct

(c) (d)

Figure 7. Simulation performance results. The percentage of the time that the state was correctly estimated for
four images are shown. The solid lines are the SD-ROM results. The dashed lines are the median filter results. The
images are (a) Barbara, (b) Crowd, (c) Goldhill, and (d) Lena.

Although it can not be seen from the plots, the importance of the thresholds also changes as the corruption level
changes. For corruption levels less than approximately twenty percent, the third and fourth thresholds are not very
tightly restricted. From the simulation results, it is apparent that the range of thresholds giving nearly optimal
performance is very wide. The optimum values for these thresholds also vary significantly between noisy images
with the same error rate but with different noise realizations. Because the initial thresholds give near optimum
performance for low levels of corruption (within one percent of the best detection performance), the optimization is
sensitive to the specific noise patterns, and the optimum ranges are very broad, it is probably best to simply use the
values for the inner thresholds given by the initial search procedure.

Similar to the detection probability approach, this optimization procedure only optimizes the detection rate. It
may let significant impulses pass while preserving perceptually insignificant image details. However, it is easy to
generalize the search algorithm to use any criterion that depends only on the difference between the filter output and
the original image. Another implementation of the optimization algorithm has been used to find the best thresholds
in an MSE sense. These thresholds tend to agree with subjective evaluations much better than the pure detection
thresholds. In fact, the MSE thresholds tend to overcorrect slightly. The best subjective results were obtained with
thresholds between those predicted by the detection approach and those predicted by the MSE approach.

6. CONCLUSIONS

In this paper, three different approaches were taken to characterize the two-state SD-ROM filter in terms of its
thresholds. None of the approaches provided a simple method for choosing thresholds given a test image or two.
However, all three did provide some insights into the selection process. These include:

1. Thresholds should start high and decrease as corruption levels increase. Large thresholds preserve original
image features. Low thresholds reject multiple impulses.

2. The likely number of impulses within each window is a good measure of the importance of each threshold. For
low levels of corruption, thresholds T3 and T4 are not likely to see impulses. As long as they are set to a safely
large value, they will not affect performance significantly. However, the values of thresholds T1 and T2 are fairly
critical and should be set carefully. But because these thresholds are depend more on the noise characteristics,
the optimal values are fairly constant between images.

3. Images with high contrast lines or textures require higher thresholds than other images.

If example images and a noise model are available, the approach taken in the simulation section is a good way to
find initial thresholds. In fact, the initial thresholds themselves can be computed quickly and provide performance
negligibly less than the optimum thresholds.

Although the probabilistic model is not yet practically useful, it can be improved by combining thresholds,
calculating the output distribution, and optimizing the thresholds with respect to an error criterion. Future work
will involve these modifications. With an output distribution, it should be possible to directly find the influence of
the thresholds on the filter output. In addition, a comparison of the predicted thresholds with the simulation results
for the same error criterion may results in a practical method for designing thresholds without a comprehensive
search.

ACKNOWLEDGMENTS

This work was supported in part by a University of California MICRO grant with matching support from Optronix
Engineering, Lucent Technologies, Raytheon Missile Systems, Xerox Corporation, and Tektronix Corporation. Part
of this research was done as a visiting researcher in the Digital Media Institute at the Technical University of Tampere,
in Tampere, Finland.

REFERENCES
1. A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1989.
2. J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering, CRC Press, New York, 1997.
3. T. Sun and Y. Neuvo, “Detail-preserving median based filter in image processing,” Pattern Recognition Letters

15, pp. 341–347, April 1994.
4. E. Abreu, M. Lightstone, S. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise
from highly corrupted images,” IEEE Trans. on Image Processing 5, pp. 1012–1025, June 1996.

5. J. Tukey, “Nonlinear (nonsuperimposable) methods for smoothing data,” in Congr. Res. EASCON, p. 673, 1974.
6. J. Tukey, Exploratory Data Analysis, Addison-Wesley, Menlo Park, CA, 1977.
7. J. Fitch, E. Coyle, and J. N.C. Gallagher, “Root properties and convergence rates of median filters,” IEEE
Transactions on Acoustics, Speech, and Signal Processing 33, pp. 230–240, April 1985.

8. J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proceedings of the IEEE 78, pp. 678–689, April
1990.

9. E. Abreu and S. Mitra, “A simple algorithm for restoration of image corrupted by streaks,” in Proceedings of
the IEEE Symposium on Circuits and Systems, vol. 2, pp. 730–733, 1996.

10. C. Chandra, M. Moore, and S. Mitra, “An efficient method for the removal of impulses from speech and audio
signals,” in Proceedings of the IEEE Symposium on Circuits and Systems, vol. 4, pp. 206–208, 1998.

11. T. Nodes and J. N.C. Gallagher, “The output distribution of median-type filters,” IEEE Transactions on
Communications 32, pp. 532–541, May 1984.

12. J. Astola and Y. Neuvo, “An efficient tool for analyzing weighted median filters,” IEEE Transactions on Circuits
and Systems 41, pp. 487–489, July 1994.

