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ABSTRACT 
A vector enhancement of Said and Pearlman’s Set Partitioning

in Hierarchical Trees (SPIHT) methodology, named VSPIHT, has
recently been proposed for embedded wavelet image compression.
While the VSPIHT algorithm works better than scalar SPIHT for
most images, a common vector dimension to use for coding an
entire image may not be optimal. Since statistics vary widely within
an image, a greater efficiency can be achieved if different vector
dimensions are used for coding the wavelet coefficients from differ-
ent portions of the image. We present a generalized methodology
for developing a variable dimensional set partitioning coder, where
different parts of an image may be coded in different vectoring
modes, with different scale factors, and upto different number of
passes. A Lagrangian rate-distortion criterion is used to make the
optimum coding choices. Coding passes are made jointly for the
vectoring modes to produce an embedded bitstream.

1.  INTRODUCTION

The wavelet transform, over the last few years, has grown to
be a very effective means for transform coding of images [1]-[11].
Using the conceptual foundations of zerotree prediction laid by
Shapiro’s EZW [2] algorithm, Said and Pearlman [3] recently
developed a very efficient wavelet image compression scheme,
called Set Partitioning in Hierarchical Trees (SPIHT). In both
schemes efficient scans are used to partially order the scalar wave-
let coefficients by magnitude, followed by progressive refinement
on a bit-plane by bit-plane basis. The bitstream generated is per-
fectly embedded. Xiong et al [4] developed a complex space-fre-
quency quantization scheme based on [2] that uses a rate-distortion
criterion to jointly optimize zerotree quantization and scalar fre-
quency quantization. Several modifications (e.g. [5]) has been
attempted on both [2] and [3] for improved efficiency. Inspired by
the success of these scalar schemes, several researchers proposed
vector extensions of these algorithms. While the lattice VQ based
schemes of Da Silva et. al. [6], Knipe et. al. [7], and Mukherjee and
Mitra [8], are considerably generic, and have fast algorithms, the
trained VQ schemes [10], [11] are usually superior in rate-distortion
performance. 

Although a trained VQ based VSPIHT coder is more efficient
than a scalar SPIHT coder for most images, the performance for an
arbitrary image depends heavily on the distribution of the wavelet
coefficients in it. For example, if the distribution of coefficients in a
particular portion of an image is such that only a few high magni-
tude coefficients exist, a large number of vectors will have only one
or two high magnitude coefficients. VQ will therefore be unneces-
sarily wasting too many bits on insignificant coefficients, and as
such, the coding performance for the same portion with VSPIHT is
likely to be worse than that with scalar SPIHT. In this work we pro-

pose a generalized image adaptive variable dimensional ve
SPIHT coding paradigm where different parts of an image can
coded as vectors of different sizes and different scales, with dif
ent number of set-partitioning passes, based on performance. 
ensures that the algorithm works better than both scalar and ve
algorithms taken separately. The coding choices for each portio
transmitted to the decoder as side information. 

In the next section we present a brief overview of vector 
partitioning, with particular emphasis on the aspects relevant to 
work. In Section 3 we introduce the coding paradigm of the curr
work. Section 4 presents the methodology used for making the 
ious coding choices, such as dimension, scale and numbe
passes. In section 5, the implementation details and coding re
for a scalar-vector coder are presented. Finally Section 6 conclu
the paper.

2.  OVERVIEW OF VECTOR SPIHT

We present a brief review of the aspects of VSPIHT relevan
this work, in particular, variable vector scaling and adaptive ari
metic coding.

2.1  Review of VSPIHT
In VSPIHT, first a dyadic wavelet decomposition of an imag

is performed. Then, the wavelet transform coefficients in ea
 window in each subband are grouped to form a single vec

of dimension , which forms the elemental quantization unit. 
the course of multiple set partitioning passes that follow, these v
tors are classified into several classes using ordered lists Q
QLIS and QLSP, based on their vector magnitude in relation to c
tain decreasing thresholds R0, R1, R2, etc. All vectors with magni-
tude higher than Ri, but less than Rj, j = 0,1,...,Ri-1, constitute Class
i. Each successive vector set-partitioning pass is associated 
one of these vector magnitude thresholds and yields a new se
vectors which have magnitudes higher than the threshold assoc
with the pass. The thresholds decrease from one pass to the 
usually by a factor of 2. Vectors thus classified are gradually refin
using class-specific successive refinement VQ systems. Multist
VQ or tree-structured VQ, or a combination of both, may be us
for designing the progressive refinement VQ systems. In this imp
mentation we use VQ systems whose first stage is tree-structu
and is followed by stages of multistage VQ.

2.2  Variable Vector Scaling
In order to bring about a certain amount of uniformity in th

way images with varying dynamic range of wavelet coefficients a
coded with a common set of VQ systems, the wavelet vect
formed by grouping are each scaled by a factor γ, before the set par-
titioning passes start. The factor γ is given by:

(1)

where  is a coding parameter greater than R0, and 
denotes the maximum vector magnitude in an image [11]. The *      This work was supported by ONR grant N00014-95-1-1214.
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tor γ is transmitted to the decoder with high precision for recon-
struction. After scaling, all vectors are guaranteed to lie within a

-dimensional shell of radius . We find that the factor 
has a significant impact on the rate distortion performance for a par-
ticular image, and therefore, must be optimized for best perfor-
mance.

In the light of the above scaling mechanism, it is appropriate to
consider the procedure used for generating the training vectors for
designing the successive refinement VQs. A large set of training
images are wavelet transformed, and the coefficients are grouped
appropriately to form vectors. For each image, the wavelet vectors
are scaled by a factor , given by:

, (2)

where  is a parameter. The scaled vectors for all images are
partitioned into classes based on thresholds R0, R1, R2, etc., and the
candidates in each class are then used to design the corresponding
VQ system. Note that the factor  used during coding, and the
factor  used for training set generation are not necessarily
the same, although the thresholds R0, R1, R2, etc. used for classifi-
cation remain the same. Usually,  is chosen as less than

, but greater than R0 during coding. Figure 1 shows a typi-
cal classification scenario in -dimensional space. Note that the
threshold  is variable during coding.

2.3  Adaptive Arithmetic Coding
To enhance the rate distortion performance of the VSPIHT

coder, two different kinds of adaptive arithmetic coding can be per-
formed [11]. The first is aimed at exploiting repetitive patterns in
images. When patterns repeat in an image, similar wavelet vectors
recur within the same subband. Similar vectors, when vector quan-
tized coarsely using the first stage VQ, are likely to yield the same
encoding index. Adaptive arithmetic coding of the first stage VQ
index for each class and each subband is used to exploit this redun-
dancy. The adaptive arithmetic coder progressively assigns smaller
and smaller codelengths to repeating indices. In order to allow the
models to adapt fast enough to the underlying statistics, it is neces-
sary that the first stage VQ, which is also tree-structured, be
designed with relatively few codevectors. 

The second kind of adaptive arithmetic coding is aimed at
reducing the significance information bits associated with set parti-
tioning, in a manner similar to scalar SPIHT [3]. The vectors in the
lists are maintained in groups of , and the significance infor-

mation for the group is transmitted jointly using multiple adaptive
context models. 

3.  VARIABLE DIMENSIONAL SET PARTITIONING

The variable dimensional set partitioning methodology is con-
veniently explained by means of the diagrams in Figure 2. After a
dyadic wavelet decomposition of an image, the low-low subband,
where all the roots of the spatial orientation trees reside, is further
divided into L superblocks of size . Each such superblock
has a subimage in its region of support, consisting of itself, the

 superblocks in the same position in the lowest subbands of
the LH, HL and HH orientations, along with all their descendants
(see Figure 2). Each of these superblock subimages can be further
divided in K ways into blocks of size , ,
as shown in Figure 2. A decision mechanism is used to decide for
each subimage, how, among the available K ways, the coefficients
in it will be grouped into vectors, for subsequent VSPIHT coding.
The encoder makes a decision based on rate distortion performance,
and transmits the decision map to the decoder as side information.
Additionally, for each of the subimages, a different scaling parame-
ter γi, i = 0,1,..., , is transmitted to the decoder for best results.
Furthermore, the set partitioning passes on each subimage may be
executed upto different stages, as we see later in this section. Note
that different successive refinement systems are required to code
the subimages mapping to different vectoring modes.

Each subimage rooted at the low-low superblock is essentially
encoded or decoded by set-partitioning independent of others. To
this end, a parent-child relationship is defined for each subimage
with the elemental coding units in each being the vectors obtained
by grouping the coefficients therein in one of the K ways. Depend-
ing on whether adaptive arithmetic coding for reducing the signifi-
cance information is used or not, two types of variable dimensional
SPIHT must be considered. If adaptive arithmetic coding for signif-
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Figure 1. Decreasing magnitude thresholds to determine 
significance of vectors, and the corresponding classes.
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icance information is not used, there is little restriction on the possi-
ble ways in which the  superblocks may be divided into
smaller vector blocks. In this case, the parent child relationship
between vector blocks in the superblock subimage may be defined
as in Figure 3(a) similar to that in [2]. On the other hand, if adaptive
arithmetic coding is used to reduce significance information, groups
of  vectors must be maintained together. As such, in the
superblock, there must be an even number of vector blocks in both
horizontal and vertical directions, for each of the K possible vector-
ing modes. In this case, the parent child relationship is defined as in
Figure 3(b) similar to that in [3]. Note that because of this con-
straint, with adaptive arithmetic coding, the superblocks cannot be
too small. If arithmetic coding is not used, smaller superblocks can
be used, thus allowing finer vectoring mode decisions.

Given the decision map and the associated set of scaling
parameters γi for each of the L superblocks, the encoder and
decoder operates as follows. First, each subimage is scaled appro-
priately depending on the particular value of γi associated with it. A
set of ordered lists - QLIP, QLIS and QLSP - is then created for
each of the K vectoring modes. The QLIP and QLIS lists for each
vectoring mode is initialized as in [3] with vectors of the appropri-
ate size taken from those subimages that are to be coded in that
mode. After initialization, the set partitioning passes commence to
produce an embedded bitstream. Each full pass is actually an aggre-
gate of K smaller passes, one for each coding mode. In practice, the
K QLIPs are first processed one after another. Then the K QLISs are
processed. Finally, the refinement passes are conducted using the K
QLSPs. Therefore, each full pass can be viewed as consisting of 3
subpasses, the QLIP-subpass, the QLIS-subpass, and the QLSP-
subpass. It is sometimes convenient to denote the progression of the
algorithm in finer units of subpasses, rather than passes. For exam-
ple, coding with 16 subpasses would mean coding with 5 full passes
and only the QLIP-subpass of the 6th pass. Note that each subimage
is essentially coded independently of the others in this approach,
although the bit stream generated is mixed. 

Additional encoding flexibility can be incorporated if the num-
ber of subpasses upto which each subimage is coded is varied based
on performance, rather than executing all the subpasses for all sub-
images. The optimum number of subpasses for each subimage, pi, i
= 0,1,..., , is also transmitted to the decoder as side-informa-
tion. 

4.  DECISION MAKING

While the paradigm described above is considerably flexible

and generic, and holds potential for substantial coding improvement
when the vectoring modes, scaling parameters, and number of sub-
passes are appropriately chosen, the task of making the optimum
decisions in the most general case, is by no means compuationally
inexpensive. We present an approach to making these coding
choices based on a Lagrangian rate-distortion optimization. 

In this approach, the best coding choice can only be based on
rate-distortion performance upto the end of a specific number of
subpasses. This is because, at the end of a subpass, all the choices
reach a common state of completion, thereby providing a uniform
platform for selecting the best. Let the L subimages, corresponding
to the L superblocks the low-low band is divided into, be denoted as

, . The full image X, therefore, is an aggregate
of the subimages: . Let the distortion and
rate achieved when a subimage  is coded using vectoring mode

, , and scaling parameter , with pi sub-
passes, be given as: , and ,
respectively. Since all the subimages are coded independently,
neglecting the rate savings due to adaptive arithmetic coding for
repetitive patterns, the overall distortion and rate obtained for the
entire image X, given the set of modes ,
the set of scaling parameters , and the
number of subpasses used , are given by:

, (3a)

(3b)

Our task then is to optimize the parameters M, Γ, and P for the
lowest possible distortion  under a rate constraint
Rd, i.e. . The constrained optimization problem
can be readily transformed to an unconstrained problem using a
Lagrangian parameter λ. The problem then becomes one of mini-
mizing the lagrangian cost function , given by:

(4)
If the Lagrangian cost function for each subimage be denoted:

, (5)
the overall cost function can be written as the summation:

(6)

Since the individual subimage cost functions are, for all practi-
cal purposes, independent of each other, minimizing the overall cost
function in the LHS of Eq. (6) is equivalent to minimizing each of
the subimage cost functions on the RHS. In other words, the optimi-
zation procedure chooses:

   (7)

In practice, the scale factor is constrained to take on only cer-
tain discrete values from a small codebook. Each subimage is test
coded in all the available coding modes, with all the available scale
factors, upto all the possible number of subpasses. The rate and the
distortion obtained for each combination is computed. The combi-
nation that yields the lowest Lagrangian among the candidates is
eventually chosen as the optimum for that subimage. The decisions
thus made for each subimage is subsequently used in the actual cod-
ing process to generate the bit stream. The value of λ determines
the relative importance given to rate and distortion during the opti-
mization procedure. The higher the value of λ, the lower the final
bit rate obtained, and vice versa. By adjusting the value of λ, using
techniques like binary search, bit rates close to the desired, Rd, can
be obtained. Once the rate and distortions for each candidate {mi, γi,
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Figure 3. Parent-child relationships for two possible implementations
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pi} combination for each subimage  is computed and stored, the
value of λ can be adjusted for the desired rate with little additional
complexity.

5.  IMPLEMENTATION AND RESULTS

We implemented a scalar-vector set partitioning coder based
on the above principles. After a dyadic wavelet decomposition of
an image, the low-low band is divided into superblocks of size

. The corresponding subimages can be coded either as scalars
or as vectors of dimension 4 in  blocks, yielding two possible
vectoring modes. Since adaptive arithmetic coding for significance
information is used, the scalars or vectors are maintained in groups
of  in each subimage, with the parent child relation in each
being given as in Figure 3(b). Additionally, adaptive arithmetic
coding for repetitive patterns in the vector case is also used. The
class codebooks used for 4-dimensional vector quantization are
tree-structured at the first stage, followed by multistage VQ at the
successive stages. The scalar mode is coded exactly as in [3], apart
from variable scaling. The scale factor γi for each subimage is
decomposed as follows: , where γ is given as in Eq. (1),
and ηi is chosen from a small codebook. The codebook for the ηi’s
may look something like {σ-4, σ-3, σ-2, σ-1, 1, σ1, σ2, σ3}, with σ =
1.25. A factor α, defined as the ratio of the largest scalar magnitude
in the image, to the largest vector magnitude, is also computed.
Note that if all ηi = 1, the maximum possible vector magnitude in
the scaled subimage would be R-1, while the maximum possible
scalar magnitude would be αR-1. γ is transmitted to the decoder
with high precision, while α is transmitted after coarse quantization
to . Thereafter, for each subimage, the codebook scale ηi, the
mode mi, and the number of subpasses pi are transmitted to the
decoder. The coder scales all the subimages by γηi before coding.
All vector mode subimages after scaling are coded using decreasing
vector magnitude thresholds R0, R1, R2,..., while all scalar mode
subimages after scaling are coded using octavely decreasing thresh-
olds R-1/2, R-1/22, R-1/23,.... The decoder decodes the set
partitioning bit stream, and performs the reverse scaling with the
information provided to it, to reconstruct the true wavelet coeffi-
cients. 

Figure 4 compares for the Lena and the Barbara image, the
peak-SNR vs. bits per pixel results obtained by a scalar SPIHT
coder and a VSPIHT coder of dimension 4, against that obtained by
the optimized multimode scalar-vector coder presented here. The
data for the latter for various bit rates is generated by adjusting the
λ values. Only full passes, and the η-codebook given in the above
paragraph are used in the optimization. The 7/9 bi-orthogonal filters
in [1] are used in each case. For Barbara, VSPIHT is better than
SPIHT, while for Lena, SPIHT is slightly better than VSPIHT. For
both images the PSNR obtained by variable dimensional SPIHT at
each bitrate is found to be better than both the scalar and the vector
SPIHT coders. 

6.  CONCLUSIONS

A generalized framework for variable dimensional set-parti-
tioning quantization of wavelet coefficients for image coding is pre-
sented. The coding decisions are based on minimizing a Lagrangian
rate-distortion cost function. Improvement in coding efficiency is
achieved, albeit at the expense of computational complexity.
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Figure 4. Coding results for SPIHT, VSPIHT and Variable 
Dimensional SPIHT for Lena and Barbara Images
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