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ABSTRACT pose a generalized image adaptive variable dimensional vector

A vector enhancement of Said and Pearlman’s Set Partitioning" /1T coding paradigm wher(_e different parts of an imag? can be
in Hierarchical Trees (SPIHT) methodology, named VSPIHT, ha: oded as vectors of different sizes and different scales, with differ-

recently been proposed for embedded wavelet image compressiGhlt "umber of set-partitioning passes, based on performance. This
While the VSPIHT algorithm works better than scalar SPIHT forEnsures that the algorithm works better than both scalar and vector

most images, a common vector dimension to use for coding gorithms taken separately. The coding choices for each portion is
entire image may not be optimal. Since statistics vary widely withiff@nsmitted to the decoder as side information.
an image, a greater efficiency can be achieved if different vector In the next section we present a brief overview of vector set
dimensions are used for coding the wavelet coefficients from diffepartitioning, with particular emphasis on the aspects relevant to this
ent portions of the image. We present a generalized methodologyork. In Section 3 we introduce the coding paradigm of the current
for developing a variable dimensional set partitioning coder, wherework. Section 4 presents the methodology used for making the var-
different parts of an image may be coded in different vectoringous coding choices, such as dimension, scale and number of
modes, with different scale factors, and upto different number gasses. In section 5, the implementation details and coding results
passes. A Lagrangian rate-distortion criterion is used to make théor a scalar-vector coder are presented. Finally Section 6 concludes
optimum coding choices. Coding passes are made jointly for thée paper.
vectoring modes to produce an embedded bitstream.

2. OVERVIEW OF VECTOR SPIHT

1. INTRODUCTION We present a brief review of the aspects of VSPIHT relevant to

The wavelet transform, over the last few years, has grown to this work, in particular, variable vector scaling and adaptive arith-
be a very effective means for transform coding of images [1]-[11]. metic coding.
Using the conceptual foundations of zerotree prediction laid by :
Shapiro’s EZW [2] algorithm, Said and Pearlman [3] recentlyz'l Review of VS_PI HT . . .
developed a very efficient wavelet image compression scheme, !N VSPIHT, first a dyadic wavelet decomposition of an image
called Set Partitioning in Hierarchical Trees (SPIHT). In both IS perfor_med. _Then, the wavelet transform coef‘ﬂuen_ts in each
schemes efficient scans are used to partially order the scalar wavd-< V window in each subband are grouped to form a single vector
let coefficients by magnitude, followed by progressive refinemen®! dimensionHV , which forms the elemental quantization unit. In
on a bit-plane by bit-plane basis. The bitstream generated is pép_e course of r_n_ultlp_le set partitioning passes that follow, t_hese vec-
fectly embedded. Xiongt al [4] developed a complex space-fre- tors are classified into several classes using ordered lists QLIP,
quency quantization scheme based on [2] that uses a rate-distortigh!S @nd QLSP, based on their vector magnitude in relation to cer-
criterion to jointly optimize zerotree quantization and scalar fre-{2in decreasing threshol&p, Ry, Ry, ete. All vectors with magni-
quency quantization. Several modifications (e.g. [5]) has beefde higher thai, but less thaR, j = 0,1,..R;.y, constitute Class
attempted on both [2] and [3] for improved efficiency. inspired by!" Each successive vector set-partitioning pass is associated with
the success of these scalar schemes, several researchers prop89&J°f these vector magnitude thresholds and yields a new set of
vector extensions of these algorithms. While the lattice VQ base¥ectors which have magnitudes higher than the threshold associated
schemes of Da Silva et. al. [6], Knipe et. al. [7], and Mukherjee an@ith the pass. The thresholds decrease from one pass to the next,
Mitra [8], are considerably generic, and have fast algorithms, thysually by a factor of 2. Vectors thus classified are gradually refined

trained VQ schemes [10], [11] are usually superior in rate-distortioiSing class-specific successive refinement VQ systems. Multistage
performance. VQ or tree-structured VQ, or a combination of both, may be used

for designing the progressive refinement VQ systems. In this imple-

Although a trained VQ based VSPIHT coder is more efficienty,qnation we use VQ systems whose first stage is tree-structured,
than a scalar SPIHT coder for most images, the performance for ap 4 is followed by stages of multistage VQ.

arbitrary image depends heavily on the distribution of the wavelet
coefficients in it. For example, if the distribution of coefficients in a2.2 Variable Vector Scaling

particular portion of an image is such that only a few high magni-  In order to bring about a certain amount of uniformity in the
tude coefficients exist, a large number of vectors will have only ongiay images with varying dynamic range of wavelet coefficients are
or two high magnitude coefficients. VQ will therefore be unnecescoded with a common set of VQ systems, the wavelet vectors
sarily wasting too many bits on insignificant coefficients, and asormed by grouping are each scaled by a fagtbefore the set par-
such, the coding performance for the same portion with VSPIHT isitioning passes start. The facipis given by:

likely to be worse than that with scalar SPIHT. In this work we pro- R
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whereR_; is a coding parameter greater tRgnand max(||v|)
*  Thiswork was supported by ONR grant N0O014-95-1-1214. denotes the maximum vector magnitude in an image [11]. The fac-
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Figure 1. Decreasing magn}tl]de thresholds to determine
significance of vectors, and the corresponding classes.

tor y is transmitted to the decoder with high precision for recon-
struction. After scaling, all vectors are guaranteed to lie within a
HV -dimensional shell of radius R_;. We find that the factor R_;
has a significant impact on the rate distortion performance for a par-
ticular image, and therefore, must be optimized for best perfor-
mance.

In the light of the above scaling mechanism, it is appropriate to
consider the procedure used for generating the training vectors for
designing the successive refinement VQs. A large set of training
images are wavelet transformed, and the coefficients are grouped
appropriately to form vectors. For each image, the wavelet vectors
are scaled by afactor Y(cb): given by:

_ R
Yicb)y = max(IV) @)

where R_; ., isaparameter. The scaled vectorsfor all images are
partitioned into classes based on thresholds Ry, Ry, Ry, €tc., and the
candidates in each class are then used to design the corresponding
VQ system. Note that the factor R_; used during coding, and the
factor R_; ., Used for training set generation are not necessarily
the same, athough the thresholds Ry, Ry, Ry, etc. used for classifi-
cation remain the same. Usually, R ; is chosen as less than
R ; ch)r t_)ut greater tha!n Ro durlng_codln_g. Figure 1 shows a typi-
cal c(lassflcatlon scenario in HV -dimensiona space. Note that the
threshold R_; isvariable during coding.

2.3 Adaptive Arithmetic Coding

To enhance the rate distortion performance of the VSPIHT
coder, two different kinds of adaptive arithmetic coding can be per-
formed [11]. The first is aimed at exploiting repetitive patterns in
images. When patterns repeat in an image, similar wavelet vectors
recur within the same subband. Similar vectors, when vector quan-
tized coarsely using the first stage VQ, are likely to yield the same
encoding index. Adaptive arithmetic coding of the first stage VQ
index for each class and each subband is used to exploit this redun-
dancy. The adaptive arithmetic coder progressively assigns smaller
and smaller codelengths to repeating indices. In order to allow the
models to adapt fast enough to the underlying statistics, it is neces-
sary that the first stage VQ, which is also tree-structured, be
designed with relatively few codevectors.

The second kind of adaptive arithmetic coding is aimed at
reducing the significance information bits associated with set parti-
tioning, in amanner similar to scalar SPIHT [3]. The vectorsin the
lists are maintained in groups of 2 x 2, and the significance infor-

mation for the group is transmitted jointly using multiple adaptive
context models.

3. VARIABLE DIMENSIONAL SET PARTITIONING

The variable dimensional set partitioning methodology is con-
veniently explained by means of the diagrams in Figure 2. After a
dyadic wavelet decomposition of an image, the low-low subband,
where al the roots of the spatial orientation trees reside, is further
divided into L superblocks of size M x N. Each such superblock
has a subimage in its region of support, consisting of itself, the
M x N superblocks in the same position in the lowest subbands of
the LH, HL and HH orientations, along with all their descendants
(see Figure 2). Each of these superblock subimages can be further
divided in K ways into blocks of size H; xV;, i = 0,1, ..., K-1,
as shown in Figure 2. A decision mechanism is used to decide for
each subimage, how, among the available K ways, the coefficients
in it will be grouped into vectors, for subsequent VSPIHT coding.
The encoder makes a decision based on rate distortion performance,
and transmits the decision map to the decoder as side information.
Additionally, for each of the subimages, a different scaling parame-
tery;, i =0,1,...,L -1 istransmitted to the decoder for best results.
Furthermore, the set partitioning passes on each subimage may be
executed upto different stages, as we see later in this section. Note
that different successive refinement systems are required to code
the subimages mapping to different vectoring modes.

Each subimage rooted at the low-low superblock is essentially
encoded or decoded by set-partitioning independent of others. To
this end, a parent-child relationship is defined for each subimage
with the elemental coding units in each being the vectors obtained
by grouping the coefficients therein in one of the K ways. Depend-
ing on whether adaptive arithmetic coding for reducing the signifi-
cance information is used or not, two types of variable dimensional
SPIHT must be considered. If adaptive arithmetic coding for signif-
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icance information is not used, thereislittle restriction on the possi-
ble ways in which the M x N superblocks may be divided into
smaller vector blocks. In this case, the parent child relationship
between vector blocks in the superblock subimage may be defined
asin Figure 3(a) similar to that in [2]. On the other hand, if adaptive
arithmetic coding is used to reduce significance information, groups
of 2x2 vectors must be maintained together. As such, in the
superblock, there must be an even number of vector blocks in both
horizontal and vertical directions, for each of the K possible vector-
ing modes. In this case, the parent child relationship is defined asin
Figure 3(b) similar to that in [3]. Note that because of this con-
straint, with adaptive arithmetic coding, the superblocks cannot be
too small. If arithmetic coding is not used, smaller superblocks can
be used, thus allowing finer vectoring mode decisions.

Given the decision map and the associated set of scaling
parameters y; for each of the L superblocks, the encoder and
decoder operates as follows. First, each subimage is scaled appro-
priately depending on the particular value of y; associated with it. A
set of ordered lists - QLIP, QLIS and QLSP - is then created for
each of the K vectoring modes. The QLIP and QLIS lists for each
vectoring mode is initialized as in [3] with vectors of the appropri-
ate size taken from those subimages that are to be coded in that
mode. After initialization, the set partitioning passes commence to
produce an embedded bitstream. Each full passis actually an aggre-
gate of K smaller passes, one for each coding mode. In practice, the
K QLIPsarefirst processed one after another. Thenthe K QLISsare
processed. Finally, the refinement passes are conducted using the K
QL SPs. Therefore, each full pass can be viewed as consisting of 3
subpasses, the QLIP-subpass, the QLIS-subpass, and the QLSP-
subpass. It is sometimes convenient to denote the progression of the
agorithm in finer units of subpasses, rather than passes. For exam-
ple, coding with 16 subpasses would mean coding with 5 full passes
and only the QL1P-subpass of the 6th pass. Note that each subimage
is essentialy coded independently of the others in this approach,
athough the bit stream generated is mixed.

Additional encoding flexibility can be incorporated if the num-
ber of subpasses upto which each subimage is coded is varied based
on performance, rather than executing all the subpasses for all sub-
images. The optimum number of subpasses for each subimage, p;, i
=0,1,.,L-1 is aso transmitted to the decoder as side-informa-
tion.

4. DECISION MAKING

While the paradigm described above is considerably flexible
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Figure 3. Parent-child relationships for two possible implementations

and generic, and holds potential for substantial coding improvement
when the vectoring modes, scaling parameters, and number of sub-
passes are appropriately chosen, the task of making the optimum
decisions in the most general case, is by no means compuationally
inexpensive. We present an approach to making these coding
choices based on a L agrangian rate-distortion optimization.

In this approach, the best coding choice can only be based on
rate-distortion performance upto the end of a specific number of
subpasses. This is because, at the end of a subpass, all the choices
reach a common state of completion, thereby providing a uniform
platform for selecting the best. Let the L subimages, corresponding
to the L superblocks the low-low band is divided into, be denoted as
X, i =0,1,...,L—1 Thefull image X, therefore, is an aggregate
of the subimages: X = {Xy, Xq, ..., X, _4}. Let the distortion and
rate achieved when a subimage x; is coded using vectoring mode
m,, m; 0{0, 1, ..., K-1}, and scaling parameter y; , with p; sub-
passes, be given as. D(x, m,y,p;), and R(x;, M,V p),
respectively. Since al the subimages are coded independently,
neglecting the rate savings due to adaptive arithmetic coding for
repetitive patterns, the overall distortion and rate obtained for the
entire image X, given the set of modes M = {my, m;, ..., m__,},
the set of scaling parameters ' = {yy, vy, ..., Y _1}, and the
number of subpassesused P = {pg, Py, ..., P, _1}, aregiven by:

L—1

D(X,M,T,P) = z D(x;, M, Vi, ), (33
L=Q
R(X,M,T",P) = z R(x;, m,, Vi, py) (3b)

Our task then isto optimiz'e_tﬁe parameters M, I, and P for the
lowest possible distortion D(X, M, I, p) under a rate constraint
Ry i.e. R(X, M, T, p) <R; . The constrained optimization problem
can be readily transformed to an unconstrained problem using a
Lagrangian parameter A. The problem then becomes one of mini-
mizing the lagrangian cost function J(X, M, I, P), given by:

JOGM, T, P) = DX, M, T, P) + AR(X, M, T, P) 4
If the Lagrangian cost function for each subimage be denoted:

IO My v ) = DOG My, v ) + ARG, My v py) . (9)

the overall cost function can be written as the summation:

IXM,TLP) = 5 306, m, v;, ) ®)

Since the individual subimbjécost functions are, for all practi-
cal purposes, independent of each other, minimizing the overall cost
function in the LHS of Eq. (6) is equivalent to minimizing each of
the subimage cost functions on the RHS. In other words, the optimi-
zation procedure chooses:

{m,v,p} = (arg\r/nln)[\](xi, myp)l,i=01..L-1 (7)

In practice, the scale factor is constrained to take on only cer-
tain discrete values from a small codebook. Each subimage is test
coded in al the available coding modes, with all the available scale
factors, upto all the possible number of subpasses. The rate and the
distortion obtained for each combination is computed. The combi-
nation that yields the lowest Lagrangian among the candidates is
eventually chosen as the optimum for that subimage. The decisions
thus made for each subimage is subsequently used in the actual cod-
ing process to generate the bit stream. The value of A determines
the relative importance given to rate and distortion during the opti-
mization procedure. The higher the value of A, the lower the final
bit rate obtained, and vice versa. By adjusting the value of A, using
techniques like binary search, bit rates close to the desired, Ry, can
be obtained. Once the rate and distortions for each candidate { m;, y;,



pi} combination for each subimage x; is computed and stored, the
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5. IMPLEMENTATION AND RESULTS ssp :
We implemented a scalar-vector set partitioning coder based gast <
on the above principles. After a dyadic wavelet decomposition of H L
an image, the low-low band is divided into superblocks of size =3 7
4 x 4 . The corresponding subimages can be coded either as scalars sl
or as vectors of dimension 4 in 2 x 2 blocks, yielding two possible
vectoring modes. Since adaptive arithmetic coding for significance a2
information is used, the scalars or vectors are maintained in groups Wl s
of 2x 2 in each subimage, with the parent child relation in each 01 015 02 025 03 035 04 045 05 0S5 06
being given as in Figure 3(b). Additionaly, adaptive arithmetic Barbara Results
coding for repetitive patterns in the vector case is also used. The I [ w v e s TS R B P =
class codebooks used for 4-dimensiona vector quantization are wfj T vewser o
tree-structured at the first stage, followed by multistage VQ at the - -
successive stages. The scalar mode is coded exactly asin [3], apart /
from variable scaling. The scale factor vy, for each subimage is =0 >
decomposed as follows: y; = yn;, wherey is given as in Eq. (1), 2o}
and n; is chosen from a small codebook. The codebook for the n;’s e z
may look something liked, 63, 67,0}, 1,07, 62, 6%}, with 0 = 2
1.25. A factora, defined as the ratio of the largest scalar magnitude 27
in the image, to the largest vector magnitude, is also computed. wl
Note that if alln; = 1, the maximum possible vector magnitude in ,
the scaled subimage would B, while the maximum possible Bi o o0z o 0.‘35“Sge‘3rsplxe‘o‘.4 o045 05 o055 06
S(_:alar_ magnltl_Jde WOU!d mR'l' VIS transmitted to the def:od_er Figure 4. Coding results for SPIHT, VSPIHT and Variable
with high precision, whiler is transmitted after coarse quantization Dimensional SPIHT for Lena and Barbara Images
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