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ABSTRACT

The essential motivations, towards an object-based approach to video coding, include possible object-based interactivity
and functionality, and the elimination of blocking or mosquito artifacts that typically occur in a block-based coding scheme. In
this work we present a region-based video coder which uses a segmentation map obtained from the previous reconstructed
frame, thereby eliminating the need to transmit expensive shape information to the decoder. While the inspiration for this work
is derived from previous work by Yokoyama et al1,2, there are major differences between our work and the earlier effort, in the
segmentation scheme employed, the motion model, and the handling of overlapped and uncovered regions. We use an edge
flow based segmentation scheme3, which appears to produce consistent segmentation results over a variety of natural images.
Since it combines luminance, chrominance and texture information for image segmentation, it is well suited to segment real
world images. For motion compensation, we choose an affine model, and use hierarchical region-matching for accurate affine
parameter estimation. Heuristic techniques are used to eliminate overlapped and uncovered regions after motion compensa-
tion. Extensive coding results of our implementation are presented.

Keywords: object-based video coding, edge flow, spatial segmentation, spatio-temporal segmentation, hierarchical region
matching, affine motion model, overlapped regions, uncovered regions, residual error coding.

1.  INTRODUCTION

The progressive convergence of telecommunications, computer, and TV/film industries, in the recent years has resulted
in widespread research activity in the area ofobject-based or region-based video coding5,6,7,8,9. Unlike traditional block-based
coding algorithms that operate on units of regular square blocks calledmacroblocks, region-based coders operate on units of
arbitrary shaped regions that represent semantically consistent objects. The motivation in adopting such an approach is two-
fold. First, the use of arbitrarily shaped segments based on similarity in luminance, chrominance, texture, and motion can
eliminate blocking or mosquito artifacts that frequently occur in block-based coders, by making the coding discontinuities
coincide with the natural boundaries in images. Although the encoder now needs to code and transmit additional segmentation
information to the decoder, apart from the motion and motion compensated residual information, it is hoped that the gain in
coding efficiency, in particular the subjective performance, will outweigh the decrease in efficiency due to the additional bits
transmitted. Second and more important in today’s context, the use of an object-based methodology in coding, opens up possi-
bilities in object based interactivity and functionality. It was this compelling drive that made the Motion Pictures Experts
Group (MPEG) initiate the MPEG-4 standardization phase in 1994, with the release of the standard targeted for late 1998.

The MPEG-4 Video Standard Verification Model10,11 envisages a layered representation for a video sequence. A scene is
composed by several video object layers overlaid on one another. The attempt is to encode a video sequence in a way that
allows separate decoding and reconstruction of the objects and manipulation of the original scene by simple operations on the
bit stream. The bit stream will be object layered, and the shape and transparency of each object, as well as its spatial coordi-
nates and parameters describing object scaling, rotation, and other related attributes, are described in the bit stream of each



object layer. It is important, however, to realize that the MPEG-4 Video Verification Model is not an independent object-based
coder in the strict sense. It only provides a framework to code and transmit efficiently the information in each object layer,
when the segmentation information  is already available in a 3D mask known as thealpha plane. It does not actually address
the issue of segmenting an image sequence into layers. Since automatic segmentation of image sequences is still an unsolved
problem, the use of the Verification Model to encode and manipulate real world scenes is limited in scope.

True object based coders generate segmentations for each frame of a sequence automatically, and transmit the shape
information for each region to the decoder along with information on its motion, and motion compensated residual error. Even
for the best of object-based coders, the fraction of the bitrate spent in transmitting shape information to the decoder is about
20-30%. An alternative approach to object-based coding is to have the decoder derive the segmentation of the scene from the
previous reconstructed frame1,2, thereby eliminating the need to transmit expensive shape information. In this work, we
develop algorithms to assemble a coder of the latter category. One of the probable reasons why there has been little research on
this class of coders is the drawback of excessive decoder complexity, owing to the fact that the reconstructed frame needs to be
segmented in order to decode the next frame. However, with the current pace of advancement in the semiconductor industry,
this concern will soon be insignificant.

The rest of this paper is organized as follows. Section 2 presents a schematic of the coder. We use an edge flow based
scheme3,4 that combines color and texture information for spatial segmentation. Section 3 briefly discusses the segmentation
scheme. For accurate and robust affine parameter estimation, a hierarchical region matching algorithm, that is better suited to
estimate large motion than traditional gradient-based schemes, is used. We describe the scheme in Section 4. In Section 5, the
step-by-step heuristics used to handle the overlapped and uncovered regions, are discussed. Section 6 presents a brief note on
the residual error coding schemes used after motion compensation and cleaning. Section 7 discusses the issue of segmentation
propagation from one frame to the next. In Section 8 we present the coding results obtained with our coder on QCIF video
sequences. Section 9 concludes the paper with a note on future directions.

2.  SCHEMATIC OF THE CODER

Figure 1 presents a schematic of the proposed encoder. In the figure,Ik represents an input frame to be encoded. The pre-
vious reconstructed frameRk-1is already available to the encoder. The Segmentation module performs a spatial segmentation
of Rk-1, and generates aspatial segmentation map. The Motion Estimation and Region Merging module estimates forward
affine parameters for all the regions the frame is segmented into, and merges adjacent segments if their motion parameters are
sufficiently close. The motion parameters are then re-estimated for the merged segments. The estimated motion parameters
along with the merging information is transmitted to the decoder. The motion-merged segmentation map is referred to as the
spatio-temporal segmentation map. Note that the motion parameters are estimated using the raw current and previous frames,
because we do not want our motion estimation to be affected by the distortions in the previous reconstructed frame. The
Motion Compensation module uses the spatio-temporal segmentation map of the previous reconstructed frame, and the motion
parameters associated with each region to produce a crude predictionQk of the current frame.Qk is not a usable prediction
because it has a number of regions where we have more than one prediction, calledoverlapped regions, and a number of
regions where we have no predictions at all, calleduncovered regions. The Overlapped and Uncovered Region Cleaning mod-
ule performs heuristic operations to clean up these regions so as to obtain a valid prediction for each pixel of the current frame.
The predicted framePk obtained after these operations constitute the final predicted frame. The rest of the operations are stan-
dard. The current frame is subtracted from the predicted frame to obtain an error frameEk, which is then transform coded to

. The predicted frame is then added to it to obtain the new reconstructed frameRk.

In the next few sections we will visit each of the modules in detail. There is one issue, however, that the block diagram in
Figure 1 does not address. It is possible to reduce the computational complexity at the cost of loss in coding efficiency by per-
forming the segmentation only occasionally, rather than once for every frame coded. It will then be necessary to propagate the
segmentation information from one frame to the next as accurately and economically as possible. The problem is by no means
simple, especially because of the heuristics used to clean up the uncovered and overlapped regions in the motion compensated
frame. Moreover, the propagation problem is linked with the choice of the residual error coding scheme used. We will address
the issues pertaining to this problem in detail in Section 7.

Êk



Figure 1. Block-diagram of the proposed coder.

3.  EDGE FLOW BASED SEGMENTATION

An important aspect of the proposed codec is the edge flow based segmentation algorithm3 that combines luminance,
chrominance, and texture information to detect boundaries between regions. The decoder duplicates the segmentation proce-
dure for decoding. The segmentation is performed on the previous reconstructed frame that is available both to the encoder
and the decoder. Since the reconstructed frame is very noisy, it is necessary to smooth the image with a Gaussian window
before segmentation. Also, for QCIF images, the subsampled chrominance components are interpolated to full size, and con-
verted to RGB components before presenting to the segmentation algorithm. A brief outline of the segmentation scheme is
presented below.

Since natural images contain discontinuities in color, texture or both, a good segmentation algorithm should consider
these different attributes together in computing a partition of the image. Ma and Manjunath3 presented a general framework
for boundary detection based on a predictive coding model. The basic idea is to identify and integrate the direction of change
in color, texture, and filtered phase discontinuities at each image location. From this, an edge flow vector which points to the
closest boundary is constructed. The edge flow is iteratively propagated to its neighbor if the edge flow of the corresponding
neighbor points in a similar direction. The edge flow stops propagating if the corresponding neighbor has an opposite direction
of edge flow. In such a case, the two image locations have their edge flows pointing at each other indicating the presence of a
boundary between the pixels. Once the flow propagation reaches a stable state, all the local edge energies will be accumulated
at the nearest image boundaries. The boundary energy is then defined as the sum of the flow energies from either side of the
boundary. After boundary detection, disjoint boundaries are connected to form closed contours, thus partitioning the image
into a number of regions. This is followed by a region merging algorithm. Region merging utilizes similarity in color, texture
of neighboring regions, as well as the length of the boundary between those regions to decide whether to merge regions or not.
Regions smaller than a certain minimum size threshold are forcefully merged with their most similar neighbor. The segmenta-
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tion module ouputs a segmentation map for use with the motion estimation module. If there areN regions in all, the spatial
segmentation map can be regarded as a collection of sets , where each set  is a collec-
tion of pixels (x,y) comprising theith region in the (k-1)th frame.

4.  HIERARCHICAL AFFINE REGION MATCHING FOR MOTION COMPENSATION

The success of any video coding algorithm, block-based or object-based, depends, to a large extent, on the efficiency of
the motion compensation scheme used for exploitation of the temporal redundancies in a video sequence. While block-based
coders typically use a simple displacement model for block motion, object-based video encoders typically use 6-parameter
(affine), 8-parameter (perspective), and sometimes even more complicated motion models. However, the advantage of an
accurate motion representation by the use of a complicated motion model is often far outweighed by the difficulty in estimat-
ing the parameters. Gradient based or optical-flow based methods are typically used to estimate the parameters. Such methods
run the risk of converging at a local minima, are very sensitive to noise, and in general fail if the motion is large. Furthermore,
for most sequences, the advantage of using a complicated model is small, and the additional bits spent in transmitting more
parameters may not be justified even in a rate-distortion sense. We adopt a very simple affine motion model with only zoom,
rotation and translation parameters, and use a hierarchical region matching algorithm for parameter estimation. Hierarchical
region matching is analogous to hierarchical block-matching13 which has been used with considerable success over the years
by many researchers. We formalize the scheme below.

Under the affine motion model, it is assumed that the regions obtained by segmentation of the previous reconstructed
frame can be affine transformed to obtain the luminance and chrominance components of the pixels in the current frame with
reasonable accuracy. Given a region map  of the previous (k-1)th frame derived by segmentation of the previous recon-
structed frame, our objective is to find, for each region , a linear transformation matrixAi, and a displacement vectordi,
such that the luminance and chrominance values of the region when projected on the current frame, denoted by , match
those of , as closely as possible.  If (m,n) is an integer pixel in theith region  of the previous frame, the corre-
sponding non-integer pixel position  in the corresponding region  in the current frame, is obtained as follows:

, (1)

where  represents the non-integral centroid of the parent region  in the previous frame. The subscripti has been
dropped from the variables in (Eq. 1) for simplicity.

We now consider the issue of region matching.  The basic idea of the scheme is to try a series of admissible motion
parameter sets, and to pick the one that produces the best match between the original region and the motion compensated
warped region. Since this involves performing the actual motion compensation for each set of test parameters, and choosing
the set that minimizes a distortion measure, it is appropriate to consider the issue of motion compensation first. The problem is
tricky because integer pixel locations in the current frame do not correspond to integer locations in the previous frame and
vice-versa. Figure 2 illustrates the motion compensation methodology used. The figure shows a parent region  in the
previous frame, warped by a parameter setA andd, into a region  in the current frame. If we describe the smallest rectan-
gle PRectk-1,i enclosing the region in the previous frame, the rectangle will be warped by the affine transform into a parallelo-
gram WPlgmk,i in the current frame. The nature of the affine transform ensures that the warped parallelogram encloses the
warped region entirely. Since the coordinates of the four corners of the rectangle in the previous frame are known, the corner
coordinates for the warped parallelogram in the current frame are readily obtained from (Eq. 1). Next, all the integer pixels
(p,q) within the parallelogram in the current frame are scanned, and back projected into non-integer pixel positions  in
the previous frame using the parametersA andd, following:

(2)

Now, if  is included in the parent region  in the previous frame, we consider (p,q) to be
included in the warped region  in the current frame. The predicted value at (p,q) in the current frame is then obtained by
bilinear interpolation from the fractional location  in the previous reconstructed frame.
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Figure 2. Illustration of Motion Compensation

Under the motion compensation framework discussed above, the motion estimation problem for theith region  is
formally defined as minimization of the following distortion metricDA,d over allA andd:

, (3)

Here the relation between and  are given by (Eq. 2), the  and  represent the luminance components of the
current and previous input images, and the value at non-integer location  in the previous frame is obtained by interpo-
lation. Although we use only the luminance component for region matching, it is a simple extension to use the chrominance
components as well.

Since the parameter space searched in region matching is fairly large, one concern with the algorithm is excessive search
complexity. For example, with the 6-parameter affine model, we need to search a large number of different admissible 6-tuples

 in a 6-dimensional parameter space for the best match. However, by choosing the test parameters in a
hierarchical fashion, gradually narrowing the search space over a series of increasing resolution images, the complexity of the
algorithm can be made more tractable. Both the current and the previous frames are successively lowpass filtered and deci-
mated by a factor of two, in a pyramidal fashion. The segmentation map is correspondingly downsampled in a pyramidal fash-
ion. For each region, we start our search at a level of resolution where the number of pixels included is neither so large that the
complexity is excessive, nor so small that the confidence in region matching becomes too low. All admissible parameter sets at
the starting resolution level are searched for the best match. Once the search is completed at a certain level of resolution, the
best parameter set obtained is used to generate the initial guess for the search in the next higher resolution level. The best dis-
placements in the lower level are doubled, while the parameter set  are used unmodified to obtain the initial
guess in the next higher level of resolution. The search is conducted only in a restricted zone around the initial guess in the
next higher level. In this manner, a good estimate of the motion parameter set is obtained by only a small search range at full
resolution.

To further reduce the search complexity, we used 5-parameter and 4-parameter simplified affine models for our simula-
tions, by restricting the parameter matrix to be a composite of rotation and zoom only. For the 5-parameter affine model,A can
be represented as:

, (4)

while for the 4-parameter model, we further assume , so that

. (5)

For both these models, note that the warped parallelogramWPlgmk,i is simplified to a rectangle in the current frame.
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Spatially distinct adjacent segments in an image may have similar motion if they belong to the same object. For example,
the head and the face of a person, usually has the same motion parameters, even though they may form distinct spatial seg-
ments. In such cases, it is reasonable to merge them into one. After the motion parameters have been estimated for each spa-
tially segmented region, we attempt merging adjacent segments if their motion parameters are reasonably close, and they share
a reasonably long common boundary. The motion parameters are re-estimated for every pair of such candidates, but the merge
is rejected if the increase in distortion with joint motion parameters over separate motion parameters is substantial. Adjacent
regions that pass the above criterion are merged, and the merging information is transmitted to the decoder with a few bits. The
updated segmentation map, now called the spatio-temporal segmentation map, is denoted by a collection of sets

 where each set  is a collection of pixels belonging to regioni, and , the num-
ber of spatially segmented regions. This region map is used for the rest of the coding process. The motion parameters for each
of the final regions are also transmitted to the decoder.

5.   OVERLAPPED AND UNCOVERED REGIONS

Following the motion compensation method outlined in the previous section, the spatio-temporal segmentation map of
the previous frame and the motion parameters are used to obtain a crude predictionQk of the current frame. This frame has a
number of regions where there exist more than one predictions, and a number of regions where there are no predictions at all.
The former are referred to asoverlapped regions, while the latter are referred to asuncovered regions. While the overlapped
regions are fairly easy to deal with, the uncovered regions pose a more acute problem. In order to obtain a consistent predicted
frame that approximates the input frame closely enough, it is necessary to clean up the overlapped and uncovered regions as
best as possible with minimal transmission of overhead information to the decoder. Yokoyama et al1 used a simple interpola-
tion scheme to obtain a prediction at each pixel location, however, such a scheme is clearly not suitable for large overlapped
and uncovered regions. Below we outline a step-by-step procedure for cleaning the overlapped and uncovered regions.

Step 1: All isolated overlapped pixels are cleaned by assigning their luminance and chrominance components to the
average of the candidate predictions.

Step 2: This step removes all overlapped regions by ordering all the regions into layers and transmitting the layering
information to the decoder. We define an Overlapping Distortion matrix calledOD, of size , for this purpose. The matrix
is initialized to 0, and the elements are filled up as follows. All the overlapped pixels in the crude predicted image are scanned.
If there areK candidate predictions for a pixel from regions  respectively, we compute a measure of the combined
distortion in luminance and chrominance for each of them by computing the sum of the absolute difference between the true
values and the predicted values. Let the distortions be denoted respectively by . Then, for eachi in , we
update the matrixOD as follows:

(6)

At the end of the scan, the (r,s)th elementODr,s of the matrixOD, defines in some sense, the total distortion introduced if
regionr is placed over regions. Therefore, if , regionr should be designated as a lower layer below regions, and
vice versa. The absolute difference  determines the penalty if the layers are reversed in order. Given the filled up
OD matrix, we transmit the layering order information to the decoder for every pair of regions that overlap, in order of the dis-
tortion penalty associated with the pair. Given the layering order for a pair of regions, the decoder can remove the lower layer
from contention wherever the two regions contend for predicting the same pixel. By the time the decoder receives all the lay-
ering information, all the overlapped regions would be removed. Alternatively, it is possible to stop transmission of the layer-
ing information after the reversal penalty goes below a certain threshold. In that case, the prediction for the remaining
overlapped regions is obtained by a simple averaging of the candidate predictions. Since the reversal penalty is low, it is rea-
sonable in a rate-distortion sense to save bits by not sending the layering order. At the end of this step, all overlapped regions
would be eliminated.

Step 3: All isolated uncovered pixels are cleaned by assigning their luminance and chrominance components to the aver-
age of the pixels surrounding them.

Step 4: The rest of the uncovered regions are in general very difficult to handle. We adopt the following procedure to
obtain a prediction for all the uncovered regions larger than a certain size threshold. These regions are filled up by backward
motion compensation from the previous reconstructed frame by a region matching scheme similar to the one described in
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Section 4. The motion parameters for these regions are then transmitted to the decoder. Note that since the region map for the
uncovered regions are already available to the decoder, it is not necessary to transmit any shape information.

Step 5: Finally, the remaining small uncovered regions are filled up by extrapolation from the neighboring predictions.

The five steps above generate the final predicted framePk in Figure 1.

6.  RESIDUAL ERROR CODING

Once the final predicted frame is obtained, the residual error frame is transform coded. We investigated two options for
residual error coding. In the first method, DCT-based coding same as that used in H.26314 is used. Every  macroblock
is divided into six  blocks (four luminance and 2 chrominance), and discrete-cosine-transformed. The coefficients are
quantized by a uniform quantizer with a dead zone around zero, and stepsize proportional to a Quantization Parameter QP in
the range 1-31. The quantized coefficients are zigzag scanned, and jointly runlength-entropy coded using the three dimen-
sional Huffman tables in H.263. The second method used a color extension of the wavelet-based Set Partitioning in Hierarchi-
cal Trees algorithm proposed by Said and Pearlman. The luminance and the two chrominance components were individually
coded by set-partitioning in the wavelet domain. The motivation for using the second scheme was to reduce the blockiness of
the reconstructed frame so that it does not affect adversely the spatial segmentation for coding the next frame.

7.  SEGMENTATION PROPAGATION

While propagation of the segmentation from frame to frame is not essential to the coding gain in this algorithm, it is nec-
essary for reducing the computational complexity of the encoder and the decoder. In fact, repeating the segmentation for every
frame coded is more likely to benefit the rate-distortion performance of the coder than hamper it. However, full spatial seg-
mentation of a frame is expensive, and in order to strike a compromise between efficiency and complexity, it is appropriate to
do the spatial segmentation only once in several frames coded. For the rest of the frames, the segmentation is propagated from
one frame to the next under certain assumptions. There are two distinct design choices to be considered, and that involves the
nature of the residual coding algorithm. In our implementation we have chosen only one, but we include a discussion of the
latter for completeness.

It is to be noted, that when the residual error frame is coded, the segmentation map of the current frame is not known.
The first scenario assumes a residual error coding method that does not depend on the segmentation of the current frame, that
is non region-based. Both the schemes in Section 6 fall in this category. In such cases, the current frame can be reconstructed
before the segmentation map for coding the next frame is needed. Two assumptions are in order before the segmentation from
the previous frame can be propagated to the current. First, apart from the uncovered and overlapped pixels, the segmentation
map of the crude predicted frame obtained by motion compensation of the previous reconstructed frame, matches closely the
true segmentation map. Second, the sequence does not change significantly between two fully segmented frames, so that the
number of regions in each frame in between, can be considered to remain the same as that in the last fully segmented frame.
Under these assumptions, the problem reduces to reassigning the uncovered and overlapped pixels to one of the regions adja-
cent to them after residual error coding and current frame reconstruction. The task can be performed fairly easily by region
growing on the uncovered and overlapped pixels and assigning the grown regions to one of the surrounding compensated
regions based on closeness in luminance and color.

The second scenario utilizes an object-based residual error coding algorithm, which assumes knowledge of the current
frame’s segmentation map before coding. It is now necessary for the decoder to estimate the current frame’s segmentation map
without knowing the reconstructed frame. Under the assumptions above, all the uncovered and overlapped pixels in the crude
predicted frame must then be assigned to one of the regions. Most overlapped pixels are assigned to regions by the layering
information already transmitted. For the large uncovered regions that are filled by backward motion compensation, each pixel
is assigned to the region from which it is predicted in the previous frame. If there are overlapped pixels whose candidate pre-
dictions have been averaged to obtain a single prediction, they are assigned to the neighboring region to which the average is
closest in luminance and color. The isolated uncovered pixels are assigned to the region with the maximum number of pixels
surrounding it. Pixels from the uncovered regions that are filled by extrapolation are assigned to one of the surrounding
regions to which it is closest in distance. The estimated segmentation map can then be used for object based coding of the
residual error. The reconstructed frame obtained after residual error coding is then used to reassign the uncovered and over-
lapped pixels as in the previous case.
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8.  RESULTS

In this section, we present the results of our implementation of the proposed coder on some QCIF video sequences.
Figure 3 illustrates the coding algorithm by showing the successive stages involved in coding frame 36 of the
Mother_Daughter sequence from the previous reconstructed frame 32, when the sequence is coded at a frame rate of 7.5

Figure 3. Illustration of the coding algorithm. Frame 36 of the mother-daughter sequence is coded from
reconstructed Frame 32 at the frame rate of 7.5 frames/s.

(a) Previous Reconstructed Frame 32 (b) Current Input Frame 36

(c) Edge Flow Spatialy Segmented Frame 32 (d) Spatio-temporally Segmented Frame 32

(e) Crude Predicted Frame 36
      (White: Overlapped Regions, Black: Uncovered Regions)

(f) Crude Predicted Frame 36 with Overlapped Regions cleaned
(Black: Uncovered Regions)

(g) Final Predicted Frame 36 (g) Reconstructed Frame 36 after DCT-based residual coding



frames/s, and an average bitrate of 24 kb/s. We have purposely chosen these two frames between which the motion is fairly
large, to emphasize the various stages in the coding process.

For all the results presented in this section, including the above, motion is estimated at 0.5 pixel accuracy in the range -14
to 14 for displacement, 2 deg accuracy in the range -10 to 10 deg for rotation, and 0.05 accuracy in the range 0.7 to 1.3 for the
zoom factor in the 4-parameter affine model in (Eq. 5). A maximum of three levels of decimation are done for hierarchical
region matching. DCT-based residual error coding is used. All PSNR results are for the luminance component alone. The
PSNR for the chrominance components are between 3-7 dB higher. All the bit rate results exclude the bits spent in INTRA
coding the first frame.

Figure 4 shows the evolution of the Luminance PSNR and the bits per frame for the first 100 frames of the
Miss_America QCIF sequence coded at 7.5 frames/s (frameskip = 3), for three different bitrates: 21.9 Kb/s, 13.4 Kb/s and 9
Kb/s. Different bit rates are obtained by changing the quantizer parameter in the DCT based residual error coding. The first
frame of the sequence in each case is DCT-based INTRA coded using the coding and quantization scheme of H.263. Figure 5
presents the original and the reconstructed frame 92 of the Miss_America sequence when coded at the above bit rates. This
frame was chosen because the sequence shows a lot of motion around this frame.
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Figure 4. Evolution of Luminance SNR and Bits/Frame for the first 100 frames of the Miss_America sequence
coded at 7.5 frames/s for three bit rates: 21.9 Kb/s, 13.4 Kb/s and 9.0 Kb/s.
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Finally we present some results for the Foreman QCIF sequence where the motion is relatively large. Figure 6 shows the
average Luminance PSNR against the average bit rate curves for the first 60 frames coded at three different frame rates: 7.5
frames/s, 6 frames/s and 5 frames/s. It is interesting to note that at low bit rates, contrary to normal expectation, the rate-distor-
tion performance at 5 frames/s is almost equivalent to that at 6 frames/s. This is attributed to the failure of motion compensa-
tion at low frame rates. Figure 6 presents the original and the reconstructed frame 35 of the Foreman sequence when coded at
6 frames/s for three different bit rates.

This discussion would not be complete without some notes on the rate-distortion performance of our coder when com-
pared against other coders. From the results published for the Foreman sequence by Salembier et al9, we find that at 5 frames/
s and 42Kb/s they achieve a mean PSNR of approximately 30.25 dB for the first 60 frames. They do not explicitly mention
how they computed their PSNR results. Our method achieves around 30.0 dB for the luminance alone. If we assume their
results to be based on luminance alone, then our method is roughly equivalent to theirs, while if we assume these to incorpo-

(a) Original Frame 92

(b) Reconstructed Frame 92 (21.9 Kb/s) (c) Reconstructed Frame 92 (13.4 Kb/s) (d) Reconstructed Frame 92 (9.0 Kb/s)

Figure 5. Original and Reconstructed Frame 92 of the Miss_America sequence coded at 7.5 frames/s, for
three different bit rates: 21.9 Kb/s, 13.4 Kb/s and 9.0 Kb/s.
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Figure 6. Comparison of Luminance PSNR vs. bit rate for the Foreman sequence coded at three different
frame rates: 7.5 frames/s, 6 frames/s and 5 frames/s.



rate chrominance information as well, ours is superior. Likewise, for the Miss_America sequence, the results published by
Yokoyama et al1, do not explicitly specify how the PSNR is calculated. If we assume that these include both luminance and
chrominance components, then our results are superior.

It is to be noted however, that while the rate-distortion efficiency of our coder is superior or equivalent to that reported by
Yokoyama et al1, and that by Salembier et al9, it still cannot compete with the highly optimized TMN-2.0 implementation of
H.263. The H.263 coder is currently about 2 dB better than our region-based coder at the same bitrates. However, we do hope
to bridge the gap very soon.  Our investigations show that the performance loss when compared against H.263 is in fact a
result of inefficiency of the prediction module. More specifically, forward prediction is not a very good option for some of the
segmented regions in the previous reconstructed frame. A certain amount of adaptivity in selecting where to use forward pre-
diction and where to use backward prediction will greatly improve the coding performance. On the other hand, the region-
based coder, unlike H.263, has the necessary flexibility to incorporate possible object-based functionalities.

Finally, let us mention that some of the techniques in this work have also been applied for developing an object-based
video representation system NeTra-V15.

9.  CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have presented a region-based video coder that eliminates the need to transmit expensive shape-informa-
tion to the decoder by using a reliable segmentation scheme on the previous reconstructed frame. Forward motion estimation
is performed by hierarchical region matching analogous to hierarchical block-matching13. As a result of forward prediction,
overlapped and uncovered regions arise in the motion compensated frame. The conflicts in the large overlapped regions are
resolved by using an Overlapping Distortion matrix. The large uncovered regions are filled by backward motion compensa-
tion. For residual error coding, we have used DCT-based coding similar to that used in H.263.

Needless to say, the encoder has ample scope for improvements. First, while a hierarchical approach to region matching
greatly reduces the encoding complexity, it is still not suitable for many applications. A better approach is to perform the hier-
archical region matching only upto a certain low level of resolution, and then to use the results as the initial guess in a gradient
based optimization at full resolution. Second, the way the adjacent regions are currently merged, based on a measure of the
similarity in motion, is very arbitrary. While a merge eliminates the possibility of overlapped and uncovered regions between
two segments, it also increases the prediction error. The motion parameters for the regions should be so chosen as to minimize

Figure 7. Original and Reconstructed Frame 35 of the Foreman sequence coded at 6 frames/s, for three
different bit rates: 75.0 Kb/s, 53.9 Kb/s and 43.0 Kb/s.

(a) Original Frame 35

(b) Reconstructed Frame 35 (75.0 Kb/s) (c) Reconstructed Frame 35 (53.9 Kb/s) (d) Reconstructed Frame 35 (43.0 Kb/s)



jointly the prediction error, and the motion difference with the neighboring segments (which in turn reduces the overlapped
and uncovered regions). Third, a region-based residual error coding method will have several advantages. Although this may
necessitate use of somewhat arbitrary techniques to estimate the current frame’s segmentation map (see Section 7), there will
be additional flexibility in allocation of bits to various segments depending on their individual prediction errors and their sub-
jective importance. Moreover, this will pave the way for possible multimode coding of the segments9. Individual segments can
then be coded in one of several modes, and the coder should make a joint optimization to maximize the rate-distortion perfor-
mance.
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