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Variational Image Segmentation
Using Boundary Functions

Gary A. Hewer, Charles Kenney, and B. S. Manjunath,Member, IEEE

Abstract—A general variational framework for image approx-
imation and segmentation is introduced. By using a continu-
ous “line-process” to represent edge boundaries, it is possible
to formulate a variational theory of image segmentation and
approximation in which the boundary function has a simple
explicit form in terms of the approximation function. At the
same time, this variational framework is general enough to
include the most commonly used objective functions. Application
is made to Mumford–Shah type functionals as well as those
considered by Geman and others. Employing arbitraryLLLppp norms
to measure smoothness and approximation allows the user to
alternate between a least squares approach and one based on total
variation, depending on the needs of a particular image. Since
the optimal boundary function that minimizes the associated
objective functional for a given approximation function can be
found explicitly, the objective functional can be expressed in a
reduced form that depends only on the approximating function.
From this a partial differential equation (PDE) descent method,
aimed at minimizing the objective functional, is derived. The
method is fast and produces excellent results as illustrated by
a number of real and synthetic image problems.

Index Terms—Boundary functions, variational segmentation.

I. INTRODUCTION

I N THIS paper, a general variational framework is presented
for image segmentation and approximation. In addition to

several new results, one of the main contributions is in simpli-
fying and systematizing approaches that had previously been
considered separately, especially those with Mumford–Shah
objective functionals [13]–[15] and those considered by Ge-
man and others [6]–[8]. The common framework for these
approaches also makes it much easier to do comparative
studies of competing systems.

To set the stage, suppose that we are given a blurred image
over a domain :

(1)

where is the blurring operator, is the unblurred image,
and is the noise. One approach to segmenting and approxi-
mating such an image consists of finding an approximation
and a boundary set that minimizes an objective functional
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of the form

(2)

where the last integral term corresponds to the length of the
boundary. The scalars , and are weighting factors
that determine, respectively, how closely approximates ,
the smoothness of and the extent of the boundary. Without
loss of generality we may assume that . Functionals of
this type are often referred to asMumford–Shah functionals.
See [12, p. 24]–[15] for details.

Unfortunately numerical procedures for minimizing the
Mumford–Shah functional encounter bookkeeping problems
associated with tracking regions and their boundaries. These
problems can be traced to the binary nature of the boundary
description as embodied in the boundary characteristic
function , which takes on the value 1 on the boundary

and zero elsewhere. Binary descriptions of boundaries may
be appropriate in some special cases but for most problems
the transitions between regions can occur over several pixels
rather than abruptly. Moreover the mathematical view of the
boundary as the differential of a region (hence the notation

for the boundary of a region ) underscores the inherent
sensitivity of the boundary description process; this is entirely
analogous to the sensitivity of derivatives with respect to noise.

For these reasons, it often is appropriate to specify bound-
aries with a function taking continuous values between
zero and one. Such a function might be viewed as a prob-
ability boundary description but we do not explore that issue.
Instead our main concerns are utility and ease of numerical
computation.

To accommodate a continuous boundary function, the
Mumford–Shah functional could be recast as

(3)

where and are scalar weights. Here we have replaced
the integrals over by integrals over with integrands
multiplied by , the idea being that since is
near , the integration of terms times over is
nearly zero. Similarly the boundary length integral has been
replaced by the integral of .
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The rest of this paper focuses on minimizing a wide
class of objective functionals that includes (3) as well as
functionals of the type considered by Geman and others. Aside
from the simplifications that result from using a common
theoretical framework to compare competing methods, the
main contributions of this paper can be summarized as

1) A closed-form solution is derived for the optimal bound-
ary function associated with a given approximation
function . For the objective functions considered in
this paper, , where is the residual of the
objective function. For example, for the Mumford–Shah
functional (3), . The
explicit form of the boundary function can then be used
to reduce the objective function to a form in which the
minimization problem can be recast as an equivalent
PDE.

2) The general framework used in this paper allows one
to compare different objective functions of the Mum-
ford–Shah or Geman type for least squares (norm)
approximation or the total variation ( norm) approach
of Osher and Rudin [16], [17]. This is discussed in detail
in Section III.

3) A numerical algorithm to minimize the objective func-
tion is outlined in Section V. This PDE descent method
is significantly faster than the stochastic search algo-
rithms previously used, and as the experimental results
indicate, the results compare favorably with existing
methods.

4) The extent of the boundary is influenced by the terms
and in the objective functional. One could

also work with and for any value .
However, the case is sufficiently general because
there is an equivalence between the case of arbitrary

and the case with a modified residual
function. This is discussed in Lemma 2 (Section IV) and
the remarks following.

In the next section, we briefly review the related work in
the literature, followed by a discussion of Mumford–Shah and
Geman type objective functionals in Section III. In Section IV,
we derive the formula for the optimal boundary functionand
the reduced form of the objective functional. This is followed
by a short description of the Euler–Lagrange variational pro-
cedure for determining the functional descent direction for the
objective functional. The variational equations are most easily
derived using the divergence theorem; this approach makes it
clear that we should use Neumann boundary conditions for the
descent PDE. This theoretical section is followed by a section
devoted to numerical implementation and examples taken from
synthetic and real images including satellite images and three-
dimensional (3-D) medical computerized tomography (CT)
images.

II. RELATION TO RELATED WORK

There is a significant amount of related work in image
processing and vision. Early work in this area dealt with
scale space decompositions induced by Gaussian smoothing
operators and the motion of edges (as identified with zero-

crossings of the Laplacian) in scale space. See [10], [11],
[22], [24], and [26].

Identifying spatial discontinuities is helpful in many appli-
cations such as segmentation, optical flow, stereo, and image
reconstruction. The concept of a “line process” is useful in
studying these problems as one of regularization. The binary
line process was introduced by Geman and Geman [6] where
the authors considered simulated annealing based algorithms
for achieving the global optimization. Since then, several
modifications of the original scheme have been suggested.
Blake and Zisserman [4] formulated the same problem as
minimizing an objective functional which enforces smoothness
while eliminating the binary line process. See also Geiger and
Gersosi [5], Geman and Reynolds [8], and Rangarajan and
Chellappa [19]. Some of these recent works involve analog
or continuous line processes. The connections between the
line process approach to regularization and outlier processes
in robust statistics is explored by Black and Rangarajan [3].

Common to all these algorithms is an objective functional
that

1) enforces closeness to the original data by including terms
such as or ;

2) promotes local smoothness away from edges by includ-
ing terms depending on ;

3) limits the extent of the boundary.

For example, Richardson [20] and Richardson and Mitter [21]
consider minimizing functionals of the form

(4)

where , and are weighting factors and is a continuous
function describing the boundary. Ambrosio and Tortorelli [1],
[2] have shown that, for and , this
functional “ -converges” as to the following form of
the Mumford–Shah functional

(5)

where is the length of the boundary .
In a similar vein, Shah [23] proposed minimizing a pair of

functionals dependent on and : given find minimizing

(6)

where and are weighting parameters. Given find
minimizing

(7)

where is a weighting parameter.
The idea of the second functional is that the boundary

function is approximately zero inside regions where we want
to be small. Hence, the division of by

can be interpreted as a local weighting that enforces close
approximation of inside regions. Applying a steepest decent
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minimization procedure to these functionals yields a pair of
coupled diffusion PDE’s for and . This is also the case for
the functionals studied by Richardson and Mitter.

However, as noted by Proesmanset al. [18], Shah’s ap-
proach leads to blurring of the edges; this can be partially offset
by working with a modified objective functional, in which the
term replaced by , but
some blurring still remains.

This blurring effect appears to be induced in part by the
inclusion of the boundary gradient term in the objective
functional, since this results in a diffusion PDE for. Inclusion
of the boundary gradient term also has the effect of “masking”
the boundary. That is, for a given approximation function
the optimal boundary function is the solution of a nonlinear
elliptic PDE and cannot be given explicitly.

In contrast, the objective functionals of the Mumford–Shah
type (3) as well as objective functionals of the type considered
by Geman and Reynolds [8], which extend the work of Geman
et al. [7], do not include a boundary gradient term.

III. A G ENERAL FRAMEWORK FOR

REDUCIBLE OBJECTIVE FUNCTIONALS

Consider the following generalized form of the Mum-
ford–Shah functional (3):

(8)

where the residual term depends on as well as .
For our purposes we have found the following form ofto
be most useful

(9)

but more general forms of are also considered below.
Functionals of this type have the big advantage that the
optimal boundary function can be found explicitly for any
nonnegative residual function: independent of the form of

we show that, for a given function u, the function that
minimizes is given by

(10)

We denote this optimal boundary function by .
This allows us to eliminate from the objective functional
and (after some simple algebra) we are led to the equivalent
problem of minimizing the functional

(11)

It is interesting that this reduced functional is equal to the
norm of the optimal boundary function; that is minimization
of the reduced functional is really the same as minimizing the

norm of subject to .

A. Geman Type Functionals

A similar reduction procedure is possible with functionals
of the type considered by Geman and others [6]–[8].

In [8], Geman and Reynolds looked at objective functionals
depending only on the approximation functionof the form

(12)

where and are weights, is the set of pixels indices, is
the set of “cliques” (or neighboring pixels), is a difference
function akin to a directional gradient, and is a specified
function. For example, in [8], Geman and Reynolds used

(13)

since this function was empirically noted to have “yielded
consistently good results.”

The functional (12) was shown by Geman and Reynolds to
be associated with a dual functional of the form

(14)

provided that the functions and satisfy
. The association of the two functionals

arises from the fact that, for a given approximation,
the optimal boundary function can be found
explicitly. Substituting this value of into eliminates
the dependence and yields the functional:

(15)

We can recast the Geman type functionals in the form

(16)

As in the case of the Mumford–Shah functionals, the optimal
boundary function (for a given ) for this functional
can be found explicitly:

(17)

with .
The connection between this functional and those consid-

ered in [8] can be seen by substituting into to
get

where the constant is equal to and .
Thus, this functional differs only by a constant from the
integral form of the Geman and Reynolds functional (12) for
the choice . (Note the slight difference
however in that our reformulation of the Geman functional
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uses to measure approximation smoothness rather than
separate terms for and . While it is possible to
retain these separate terms in a reformulation, we have avoided
doing so since they introduce a directional bias, as seen by the
numerical examples.)

Explicit formulas for the optimal boundary term make
it easier to gain insight into the expected behavior of the
segmentation algorithm. For example, the optimal boundary
functions for the Mumford–Shah functional (8) and the Geman
functional (12) are both given by where

Mumford–Shah

Geman.

From this we see that the Geman optimal boundary function
does not include the approximation error term . That
is, it derives all of its boundary information from the gradient
of the approximation function . Since the term
measures the “residual noise” in the approximation we expect
the that Geman boundary function should be smoother than
the Mumford–Shah boundary function. We also see that, for
the same function and the same gradient weight , the
Mumford–Shah residual is larger than the Geman residual

. Consequently, .
However, the increased smoothness of over and

the inequality assumes that the same approxima-
tion is used in determining and . In general, it is not
the case that the optimal approximation functionis the same
for the Mumford–Shah and Geman functionals.

B. Other Residual Functions

In the section on numerical results we return to the question
of comparing Mumford–Shah and Geman type segmentation
schemes for more general residual functions based on arbitrary

norms, especially and norms. For example, for
the Mumford–Shah functionals we consider the following
residual:

(18)

where we assume is some small positive number. (We need
to ensure that is differentiable at for
or for .) In the numerical experiments

we look at results for the residual ( ) and the
mixed residual ( and ). The residual
corresponds to the usual least squares residual and tends to
give overly smooth results and ringing near the boundary. The

residual has the form of (9) and is better at preserving
sharp edges. This choice of residual is closely related to the
total variation methods of Osher and Rudin [16], [17] who
obtained excellent results for image restoration using total
variation methods (without the use of boundary functions)
based on objective functions with norms.

The possibility of multichannel image information leads us
to another type of residual function. For example, we may
have multiple images of the same object. Such
a sequence could also be obtained from multispectral imaging
or from a multiresolution decomposition of one original image.

Given we can define the multichannel
residual function

(19)

IV. THE OPTIMAL BOUNDARY FUNCTION

Given an image and an approximation function, the
following lemma shows that there is a unique boundary
function that minimizes .

Lemma 1: Let be nonnegative. For fixed
and , the objective functional defined by

(20)

is minimized by setting . Moreover, for any

(21)

with equality only for .
Proof: For any

with equality for which completes the proof.
The next lemma shows that the freedom to choose the form

of the residual function means that there is an equivalence
between the choice of , as the exponent of and

in the objective functional, and the case of arbitrary .
Lemma 2: Assume that is greater than one. Let

be nonnegative. For fixed and , the objective
functional

(22)

is minimized by the setting where .
Moreover, for any

(23)

with equality only for .
Proof: Thus is minimized by selecting as

the minimizer of . For ,
the function is convex in since

. Moreover,
is negative or zero at and

positive at . Thus has a unique minimizer
that lies in the interval . Setting and
solving for gives

(24)
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Substituting this value into gives, with

(25)

which completes the proof since minimizes
.

Remark: It is interesting to note that this reduced functional
is equal to ; that is minimization of the reduced
gamma-functional is really the same as minimizing the
norm of subject to where .

We also are in a position to address the question of equiva-
lence between the case and arbitrary . That is, can
we obtain equality in the reduced objective functionals by the
proper choice of residual functions? Let and denote the
residual functions for and arbitrary . By Lemma
1, the objective functional

(26)

has the reduced functional (after substituting in the optimal
boundary function )

(27)

By Lemma 2, the objective functional

(28)

has the reduced functional

(29)

where .
Thus, we see that is equal to if

(30)

where . Solving for we find

(31)

From this we conclude that by exploiting our freedom to
choose the form of as a function of and , we may
work entirely with the case .

We conclude this section with the analog of Lemma 1 for
Geman functionals.

Lemma 3: Let be nonnegative for
. For fixed and , the objective functional defined by

(32)

is minimized by setting . Moreover, for any

(33)

with equality only for .

Proof: The proof is exactly the same as for Lemma 1.
As per Lemma 2, the choice of 2 as an exponent on

and in the Geman functional is sufficiently general to
capture the behavior of arbitrary by modifying the
residual function. For brevity we omit the details.

V. NUMERICAL IMPLEMENTATION

The previous sections discussed various functionals for ap-
proximating and segmenting images. These functionals contain
terms related to the approximation error and the smoothness
of the approximation as well as the extent of the boundary.
Once the form of the functional has been selected, the non-
trivial problem of finding the minimizing approximationhas
to be addressed. Typically, the desired approximation is an
equilibrium solution of a nonlinear diffusion PDE with certain
boundary conditions. A general procedure for finding these
PDE’s is outlined in the Appendix but we indicate the main
ideas and results in this section.

To illustrate, suppose that we wanted to minimize a func-
tional of the form

(34)

where is the given image and is an approximation of .
The minimizing approximation for this functional satisfies

the ellpitic equilibrium PDE

on

where is the Laplacian of and denotes the normal
derivative.

Numerically, we can either solve for the equilibrium solu-
tion directly or follow as a function of from an initial
approximation, such as , by integrating the diffusion
PDE

(35)

subject to the Neumann boundary condition

on (36)

Starting from the initial condition the image evolves as
toward the equilibrium solution.

The following theorem gives a similar treatment for the
reduced form of the Mumford–Shah functional,

, where the residual function has the form

(37)

As a matter of notation, we refer to the first and second
arguments of as and ,
respectively.
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Theorem 1: Let . Given an initial
approximation defined over with on

, let satisfy

(38)

subject to

for

for

Then is a decreasing function of unless is
identically zero in which case is constant.

Proof: See the Appendix.
For the reduced form of the Geman functional we have the

following result.
Theorem 2: Let where
is a nonnegative function of and is a

nonnegative function of .
Given an initial approximation defined over with

on , let satisfy

(39)

subject to

for

for

Then is a decreasing function of unless is
identically 0 in which case is constant.

Proof: See the Appendix.
Once we have defined a residual function and obtained

the corresponding PDE for, we then use Euler’s method
to integrate the descent PDE and halt the integration when
the decrease in the value of the objective functional becomes
less than a user supplied tolerance. Typically, we obtained
good results by stopping when the decrease in the objective
functional from one Euler step to the next was less than 1%
of the current value of the objective functional.

The step size for Euler’s method was determined in the
following way. Let denote the value of the objective
functional at the initial image approximation . (For our
experiments we set .) Starting with a nominal stepsize

, the value of the objective functional for the updated
image was computed. We then checked to
see if the value of the objective functional was smaller for
than for . If not, the stepsize was cut in half. To be sure the
stepsize was really acceptable, we continued to cut the stepsize
in half until the condition had been satisfied several
times in a row (usually three or four times).

This PDE descent procedure may only lead to a local
minimum for the objective functional. Other methods, such as
simulated annealing, can be used to find a global minimum
for the objective functional with high probability, but the
intensive computational costs may result in unacceptably long
processing times. For the examples we tested, the choice of

produced excellent results for the PDE descent method
with only short processing times.

VI. EXPERIMENTAL RESULTS

A. Synthetic Images

The following examples are designed to show the effects
of varying the parameters and residual forms of the objective
functions discussed in the previous sections.

Example 1: The Gaussian hump shown in Fig. 1(a)
presents a smooth image with no discontinuities. Fig. 1(b) and
(f) display the approximation function and the associated
boundary function for the original Geman type functional
with the smoothness of the approximation measured by
and separately. As seen in these two figures, this
introduces an bias in an image that is originally circularly
symmetric. This bias is eliminated, as seen in Fig. 1(c) and (g)
by modifying the Geman functional to the form (16) so that
the smoothness of the approximation functionis measured
by the norm of the gradient of, since this is independent of
the coordinate orientation. In these images, we have used the
total variation norms ( ) for the functional in
(57) and this results in a slight flattening effect at the center of
the Gaussian hump. This flattening effect is not present if we
use the least squares norms ( ) in the Geman
functional as seen in Fig. 1(d) and (h). We also note, however,
that the total variation norms can avoid the flattening effect
by increasing the approximation weight . This is shown in
Fig. 1(e) and (i) for . For all the other results
for this example we used .

Example 2: Fig. 2(a) presents a piecewise constant image
similar to an example considered by Richardson in [20].
Fig. 2(b) and (c) shows, respectively, the approximation func-
tion and the boundary function for the Mumford–Shah
functional (50) with and . This
total variation result compares well with the smoothing effect
of the least squares result ( ) seen in Fig. 2(d) and
(e). For this example the Geman functional results are nearly
identical.

Example 3: This is the same as Example 2 but with Gauss-
ian noise added as seen in Fig. 3(a). Fig. 3(b) and (c) shows,
respectively, the approximation functionand the boundary
function for the Mumford–Shah functional with

and . It is interesting that the
associated Geman approximation functionfor the same
parameter choices is nearly identical as seen in Fig. 3(d), but
the Geman boundary function in Fig. 3(e) is not as noisy
as the Mumford–Shah boundary function. See the remarks at
the end of Section III-A for a discussion of this effect.

There is also another approach, involving iteration, that can
be used to remove noise in both the approximation and the
boundary function. In this approach, we start with an initial
image and use a segmentation scheme to generate an approx-
imation . In turn this approximation is used as an initial image
to generate another approximation, and we may repeat as
often as desired with each successive approximation becoming
smoother. This is illustrated in Fig. 3(f), which shows the first
iterate for the noisy piecewise constant example image.
Fig. 3(g) shows the associated boundary function which is
almost entirely noise-free.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 1. (a) Gaussian hump. (b) and (c) Approximations for the Geman and modified Geman type functionals using the total variation norms. Note the
flattening of the centers. Using a least-squares norm or increasing the approximation weight removes this flattening effect as shown in (d) and (e),
respectively. The corresponding boundary functions are shown in (f)–(i).

B. Real Images
Experimental results on three different classes of real images

are provided by the following examples. The results for these

examples were obtained using the boundary functionfor
the Mumford–Shah functional (50) with for
various weights as listed on next page.
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(a)

(b) (c)

(d) (e)

Fig. 2. (a) Piecewise constant image. (b)–(c) Approximation and boundary functions, respectively, for the Mumford–Shah functional. (d)–(e) Approximation
and boundary functions for the Geman-type functional.

Example 4: Fig. 4 presents results on two face images with
. The approximation functions in the figures

appear much like an artists’ sketch. This simplification means
that the approximations are more suitable for face feature
extraction than the original images. We are currently using
the approximation and boundary information in our work on
face image tracking.

Example 5: An example of segmenting out kidney X-ray
CT images is shown in Fig. 5. Here we used the weights

. The proposed segmentation approach
is used in identifying regions containing kidneys in these CT
studies and to localize problems such as a cyst. Combined
with simple domain specific heuristics, this approach provides
a robust classification algorithm which is currently being
incorporated into the development of a medical image data
base system.

Example 6: Finally, an application to satellite image seg-
mentation for use in image registration is shown in Fig. 6.
Fig. 6(a) shows a LANDSAT image, boundary regions of a

segment [Fig. 6(b)] of which are shown in Fig. 6(d). Fig. 6(c)
shows the approximation image for . For
comparison, Fig. 6(e) shows the boundaries detected using an
algorithm based on Laplacian of the Gaussian filtering. The
image is first convolved with the LoG filter and is followed
by thresholding with hysteresis to detect strong contours. The
details are described in [9], wherein it was used in multisensor
image registration. Comparing Fig. 6(d) and (e), it is clear that
the proposed objective functional minimization approach does
produce boundaries consistent with the physical regions. In
contrast, pure edge-detection-based algorithms tend to result
in less reliable regions boundaries. Preliminary experiments
indicate that the proposed approach produces more robust
contours for image registration.

The results clearly demonstrate the suitability of the pro-
posed method in diverse image processing applications.

VII. CONCLUSION

We have presented a general framework for segmenting
images and obtaining region boundaries based on minimiz-
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 3. (a)–(e) Same as Fig. 2 but with additive Gaussian noise. (f)–(g) Result of an iterative approach which uses (b) as the initial image. Note that
the boundary function (g) is almost entirely noise free.

ing an objective functional for which the optimal boundary
function has a particularly simple form. The explicit form of
the boundary function in terms of the approximating function
permits the reduction of the original objective function to
a form that depends only on the approximation function.
From this, a PDE descent procedure can be used to minimize
the objective function. Many commonly used segmentation
approaches such as the Mumford–Shah method and Geman
type schemes can be represented in this framework, which
is also general enough to include least squares and total
variation forms. The explicit form of the boundary function
also allows some analytic comparison between competing
methods. Although excellent numerical results have been
obtained on a wide variety of real and synthetic images, further
research is needed on the problem of selecting the best weights
for a given image or class of images, as well the problem
of automatically selecting the best choice of norms for the
residual function.

APPENDIX

Given and we want to know how to change so as to
decrease the value of the reduced Mumford–Shah functional

or the reduced Geman function
. The basic idea of the

Euler–Lagrange variational procedure is to replaceby
where is a small positive number and is an arbitrary
function. We then expand and seek conditions
on that ensure that . However,
the expansion of involves a term with . We
need to rework this term into an expression involving only
rather than . This is done by using the divergence theorem,
which is the higher dimensional analog of the integration by
parts formula.

To illustrate the procedure, suppose that we wanted to
minimize a functional of the form

(40)
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Fig. 4. Smoothing face images. Original images are on the left, the approximations are in the middle, and the boundary functions are shown on the right.

(a) (b) (c)

Fig. 5. X-ray kidney CT image segmentation. (a) Original image. (b) Approximation. (c) Boundary function. Note that the cyst in the kidney (grey
region inside the kidney) is clearly segmented.

Such a functional would arise if we were only interested in the
problem of approximating by a smooth function , without

regard to the boundary function. Now replaceby :

By the divergence theorem (see below)

(41)
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Fig. 6. (a) LANDSAT image, (b) segment around the lake, (c) approximation, (d) boundary function, and (e) edges detected using a contour detection
algorithm used for registration applications are shown for comparison.

where is the Laplacian of and is the normal
derivative of on the boundary of . If we assume that
satisfies the Neumann boundary condition , then

(42)

Substituting this into the expansion of gives

Thus, we can force the objective functional to decrease by
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setting

(43)

and taking sufficiently small. Identifying with
gives the descent PDE

(44)

subject to the Neumann boundary condition

on (45)

Starting from the initial condition the
image evolves toward the equilibrium solution to

on

Numerically, we can either solve for the equilibrium solu-
tion directly or follow as a function of from its initial
condition by using the Euler update formula

where is the Euler stepsize.
Of course for our purposes we want to include the boundary

function in the objective function. This results in a different
descent PDE, but the basic procedure for determining the
descent PDE is the same as above.

A. The Divergence Theorem

For a smooth vector valued function
the divergence of is defined by

(46)

Assuming that is smooth over and the boundary , the
divergence of inside is related to the flow of across
the boundary :

(47)

where is the outward unit normal at .
See Warner [25, p. 151]. For the purposes of instruction, this
formula is often referred to as the “conservation of dots and
dels.”

We need to transform integral expressions involving
, where , and are functions, into integral expressions

involving and derivatives of and .
Lemma 4: If on the boundary of then

(48)

Proof: To prove (48) use the divergence theorem with
. Since on we have

B. Descent PDE’s for the Mumford–Shah
and Geman Functionals

In order to find the functional descent PDE for
we will limit our discussion to residual functions

of the form

(49)

However, the same basic technique works for more general
residual functions.

As a matter of notation, we refer to the first and second
arguments of as and ,
respectively. For example, setting

(50)

gives the residual function

(51)

Proof of Theorem 1:In the statement of Theorem 1, the
transpose of the smoothing operator is defined implicitly
by the requirement that for arbitrary
functions and . Application of the divergence theorem
gives

(52)

Thus setting as above ensures that
with equality only if is identically zero over , which

completes the proof.
As an illustration, if

(53)

then the descent PDE is given by

(54)

As a second illustration, in the multichannel case we might
use the residual function

(55)

where is the residual given above in which case
we have a system of first-order descent PDE’s:

(56)

The same approach yields the descent PDE for the Geman
functional.
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Proof of Theorem 2:The proof is basically the same as that
for Theorem 1.

As an illustration, if

(57)

where

then the Geman descent PDE is given by

(58)
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