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Variational Image Segmentation
Using Boundary Functions

Gary A. Hewer, Charles Kenney, and B. S. Manjunaffember, IEEE

Abstract—A general variational framework for image approx- of the form
imation and segmentation is introduced. By using a continu-

ous “line-process” to represent edge boundaries, it is possible = _ N2
to formulate a variational theory of image segmentation and E(u, K) =w, Q\K(A“ 9)" + w2 O\K Vu

approximation in which the boundary function has a simple .
explicit form in terms of the approximation function. At the -Vu—i—wg/ do (2)
same time, this variational framework is general enough to K

include the most commonly used objective functions. Application

is made to Mumford-Shah type functionals as well as those where the last integral term corresponds to the length of the
SO”Sidered by GeTﬁ” and Otgers- EmP'OVti_”g afﬁi"aryﬁ]ﬁ norms _boundary. The scalarsy, w,, andws are weighting factors

0 measure smoothness and approximation allows the user to . : .

alternate between a least squares approach and one based on totalthalt determine, respectively, how closely, approxmate_sg,
variation, depending on the needs of a particular image. Since the smoothness af and the extent of the boundary. Without

the optimal boundary function that minimizes the associated l0ss of generality we may assume that = 1. Functionals of
objective functional for a given approximation function can be this type are often referred to adumford—Shah functionals
found explicitly, the objective functional can be expressed in a gge [12, p. 24]-[15] for details.

reduced form that depends only on the approximating function. . S
From this a partial difrf)erential e)auation (PFI)DpE) descer?t method, Unfortunately num_erlcal procedures for mln_lmlzmg the
aimed at minimizing the objective functional, is derived. The Mumford—Shah functional encounter bookkeeping problems
method is fast and produces excellent results as illustrated by associated with tracking regions and their boundaries. These
a number of real and synthetic image problems. problems can be traced to the binary nature of the boundary
Index Terms—Boundary functions, variational segmentation. ~ description as embodied in the boundary characteristic
function y, which takes on the value 1 on the boundary
K and zero elsewhere. Binary descriptions of boundaries may
. INTRODUCTION be appropriate in some special cases but for most problems
N THIS paper, a general variational framework is presentélde transitions between regions can occur over several pixels
for image segmentation and approximation. In addition t@ther than abruptly. Moreover the mathematical view of the
several new results, one of the main contributions is in simploundary as the differential of a region (hence the notation
fying and systematizing approaches that had previously begh for the boundary of a regio®) underscores the inherent
considered separately, especially those with Mumford—Shagnsitivity of the boundary description process; this is entirely
objective functionals [13]-[15] and those considered by Ganalogous to the sensitivity of derivatives with respect to noise.
man and others [6]-[8]. The common framework for these For these reasons, it often is appropriate to specify bound-
approaches also makes it much easier to do comparatirées with a functionB taking continuous values between

studies of competing systems. zero and one. Such a function might be viewed as a prob-
To set the stage, suppose that we are given a blurred imaddity boundary description but we do not explore that issue.
g over a domainQ: Instead our main concerns are utility and ease of numerical
computation.
g = Auo+7 (1) To accommodate a continuous boundary functi®nthe

where A is the blurring operatory is the unblurred image, Mumford—Shah functional could be recast as

and is the noise. One approach to segmenting and approxi- 5 5
mating such an image consists of finding an approximation (u, B) =un /Q(A” —9)°(1 = B)" +w2 /Q Vu
and a boundary sk that minimizes an objective functional
-Vu(l — B)? +/ B? (3)
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The rest of this paper focuses on minimizing a widerossings of the Laplacian) in scale space. See [10], [11],
class of objective functionals that includes (3) as well d22], [24], and [26].
functionals of the type considered by Geman and others. Asidddentifying spatial discontinuities is helpful in many appli-
from the simplifications that result from using a commogations such as segmentation, optical flow, stereo, and image
theoretical framework to compare competing methods, theconstruction. The concept of a “line process” is useful in
main contributions of this paper can be summarized as  studying these problems as one of regularization. The binary

1) A closed-form solution is derived for the optimal boundline process was introduced by Geman and Geman [6] where
ary function B associated with a given approximatiorfhe authors considered simulated annealing based algorithms
function u. For the objective functions considered irfor achieving the global optimization. Since then, several
this paper,B = r/(1+), wherer is the residual of the modifications of the original scheme have been suggested.
objective function. For example, for the Mumford—ShaBlake and Zisserman [4] formulated the same problem as
functional (3),7 = wy(Au — g)? + wyVu - Vu. The minimizing an objective functional which enforces smoothness
explicit form of the boundary function can then be usehile eliminating the binary line process. See also Geiger and
to reduce the objective function to a form in which théersosi [5], Geman and Reynolds [8], and Rangarajan and
minimization problem can be recast as an equivalefhellappa [19]. Some of these recent works involve analog
PDE. or continuous line processes. The connections between the

2) The general framework used in this paper allows ofi@e process approach to regularization and outlier processes
to compare different objective functions of the Mumin robust statistics is explored by Black and Rangarajan [3].
ford—Shah or Geman type for least squargs fiorm) Common to all these algorithms is an objective functional
approximation or the total variatiorL{ norm) approach that
of Osher and Rudin [16], [17]. This is discussed in detail 1) enforces closeness to the original data by including terms
in Section Il1. such as(u — g)? or (Au — g)?%

3) A numerical algorithm to minimize the objective func- 2) promotes local smoothness away from edges by includ-
tion is outlined in Section V. This PDE descent method ing terms depending ofiVu||;
is significantly faster than the stochastic search algo-3) limits the extent of the boundary.
rithms previously used, and as the experimental resuitsr example, Richardson [20] and Richardson and Mitter [21]
indicate, the results compare favorably with existingonsider minimizing functionals of the form
methods.

4) The extent of the boundary is influenced by the terms E.(u,v) = / Blu— g)* + ®(v)|| V|
(1 — B)? and B? in the objective functional. One could Q ( .
also work with(1 — B)Y and B” for any valuey > 1. 2 1—vw
However, the c(ase _)2 is sufficiently general because + a<cqj(v)”w}” + 4c ) @)
there is an equivalence between the case of arbltl’% ere

4 > 1 and the case; = 2 with a modified residual , B, andc are weighting factors andis a continuous

nction describing the boundary. Ambrosio and Tortorelli [1],
function. This is discussed in Lemma 2 (Section V) anP;] have shown that, fort1>( ) — o and U(v) = 1, this

the remarks following. ;
functional ‘I"-converges” as: — 0 to the following form of
In the next section, we briefly review the related work ”?Qe Mumford—Shah functional

the literature, followed by a discussion of Mumford—Shah an
Gemar_l type objective functional_s in Section Ill. In S_ection v, E(u, v) = / Blu — g) +/ V| +alK|  (5)
we derive the formula for the optimal boundary functiBrand Q O\K
the reduced form of the objective functional. This is foIIowed
by a short description of the Euler—Lagrange variational pro-
cedure for determining the functional descent direction for tq
objective functional. The variational equations are most eaS|
derived using the divergence theorem; this approach makes it p
clear that we should use Neumann boundary conditions for the u(v) = /Q (1= v)*|[Vul| + 5 IVoll* + 20 6)
descent PDE. This theoretical section is followed by a section o ) )
devoted to numerical implementation and examples taken frdfj€re @ and p are weighting parameters. Given find u
synthetic and real images including satellite images and thr&8iNiMizing
dimensional (3-D) medical computerized tomography (CT) / IVl u— g)?
u

where | K| is the length of the boundark.
In a similar vein, Shah [23] proposed minimizing a pair of
nctionals dependent am andv: given« find v minimizing

images. (7)
where s is a weighting parameter.
The idea of the second functional is that the boundary
There is a significant amount of related work in imag&inctionv is approximately zero inside regions where we want
processing and vision. Early work in this area dealt with — g to be small. Hence, the division df: — g)* by v?
scale space decompositions induced by Gaussian smoothéag be interpreted as a local weighting that enforces close
operators and the motion of edges (as identified with zerapproximation ofy inside regions. Applying a steepest decent

Il. RELATION TO RELATED WORK
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minimization procedure to these functionals yields a pair of In [8], Geman and Reynolds looked at objective functionals
coupled diffusion PDE’s fo#: andw. This is also the case for depending only on the approximation functiaerof the form
the functionals studied by Richardson and Mitter. )
However, as noted by Proesmaesal. [18], Shah's ap- H(u) = Z A(Au - g)" + Z ¢(Dc(u)/A) (12)
proach leads to blurring of the edges; this can be partially offset S ¢
by working with a modified objective functional, in which thewhere andA are weights$ is the set of pixels indices; is
term (u — g)?/v?0? replaced by((u — g)?/o?)(1 — v)?, but the set of “cliques” (or neighboring pixelsh¢ is a difference
some blurring still remains. function akin to a directional gradient, anflis a specified
This blurring effect appears to be induced in part by thginction. For example, in [8], Geman and Reynolds used
inclusion of the boundary gradient tefifiv|| in the objective 1
functional, since this results in a diffusion PDE forinclusion Plr) = ——
of the boundary gradient term also has the effect of “masking” 1+ [a]
the boundary. That is, for a given approximation function since this function was empirically noted to have “yielded
the optimal boundary function is the solution of a nonlinear consistently good results.”
elliptic PDE and cannot be given explicitly. The functional (12) was shown by Geman and Reynolds to
In contrast, the objective functionals of the Mumford—Shalbe associated with a dual functional of the form
type (3) as well as objective functionals of the type considered ) )
by Geman and Reynolds [8], which extend the work of Gemad? " (¥, b)= D MAu—g)*+ > b(De(u)/A)*+4(b) (14)
et al. [7], do not include a boundary gradient term. s ¢

(13)

provided that the functionsy and ¢ satisfy ¢(x) =
I1l. A GENERAL FRAMEWORK FOR illfogb(bl’Q + ’(/)(b)) The association of the two functionals
REDUCIBLE OBJECTIVE FUNCTIONALS arises from the fact that, for a given approximati@rr,]
Consider the following generalized form of the Mum-the _0_pt|mal bOL_Jnd_ary fl_mct|orb - b.(“) C"in b_e _found
ford—Shah functional (3): explicitly. Substituting this value of into H* eliminates

' the b dependence and yields the functiodél

E(u, B) = / r(1— B)* + / B? (8) H* (u, b(u)) = H(u). (15)
2 2

where the residual term depends omu — g as well asVu. We can recast the Geman type functionals in the form

For our purposes we have found the following formrofo
be most useful G(u, B) = /le(Au—g)QJr/QwQHVuH(l —- B)?

r = w (Au — g)* + wal| V|| 9) + /Q B2 (16)

but more general forms of are also considered below.as in the case of the Mumford—Shah functionals, the optimal

Functionals of this type have the big advantage that thundary functio = B(u) (for a givenu) for this functional
optimal boundary functiom3 can be found explicitly for any can pe found explicitly:

nonnegative residual functiort independent of the form of
r we show that, for a given function u, the functidh that B=
minimizes E(u, B) is given by

17)

with r = ws||Vu||.
(10) The connection between this functional and those consid-
ered in [8] can be seen by substitutiiy= B(«) into G to
We denote this optimal boundary function By = B(u). get
This allows us to eliminateB from the objective functional wo| V|
and (after some simple algebra) we are led to the equivalenG(u, B(u)) = / wi (Au — g)* —|—/ 2
Q Q

B=_—__,
147

problem of minimizing the functionakl(v) = E(u, B(u)) 1+ w2||vi‘||
. = [ wi(Au—g)? +/ 1
2= [ @ A S r
Q + 7 — / w1(AU/ g)? + / _71 + C
It is interesting that this reduced functional is equal to fhe Q o 1+ wa|[Vu|
norm of the optimal l_aound_ary functial; that is minimization _ / wi(Au — g)? +/ b (ws||Vul|) + C
of the reduced functional is really the same as minimizing the Q Q

Ly norm of B subject toB = 7/(1 + 7). where the constarit is equal tof,, 1 and¢(z) = —1/(1+]z|).

. Thus, this functional differs only by a constant from the

A. Geman Type Functionals integral form of the Geman and Reynolds functional (12) for
A similar reduction procedure is possible with functionalthe choice¢(x) = —1/(1 + |z|). (Note the slight difference

of the type considered by Geman and others [6]-[8]. however in that our reformulation of the Geman functional
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usesVu to measure approximation smoothness rather thanGiveng,, g», - - -, g» we can define the multichanng), .,
separate terms fapu/9x and du/dy. While it is possible to residual function
retain these separate terms in a reformulation, we have avoided
doing so since they introduce a directional bias, as seen by the Z wi ((Au; — gi)2 + 5)1)1/2 + wo( Vg - Ve + 5)1)2/2.
numerical examples.) Pl

Explicit formulas for the optimal boundary term make (19)
it easier to gain insight into the expected behavior of the
segmentation algorithm. For example, the optimal boundary IV. THE OPTIMAL BOUNDARY FUNCTION
functions for the Mumford—Shah functional (8) and the Geman

functional (12) are both given b = r/(1 + ) where Given an imagegy and an approximation function, the

following lemma shows that there is a unique boundary
s =wy (Au — 9)2 + wy||Vu||  Mumford—Shah function that minimizest(u, B).

Lemma 1: Let » = »(u, g, Vu) be nonnegative. For fixed
g and u, the objective functional defined by

From this we see that the Geman optimal boundary function
does not include the approximation error teffw — g)2. That E(u, B) = / r(1—-B)* + / B? (20)
is, it derives all of its boundary information from the gradient & it
of the approximation function.. Since the term(Au — g)* is minimized by settingB = /(1 + ). Moreover, for anyB
measures the “residual noise” in the approximation we expect

ra =wz|| V|| Geman.

the that Geman boundary function should be smoother than E(u, B) > / " (21)
the Mumford—Shah boundary function. We also see that, for ol+r
the same functiom_ and th_e same gradient weight,, the with equality only for B = /(1 + 7).
Mumford—Shah residuatys is larger than the Geman residual Proof: For any B
rqg. Consequently Bys > Bg.
However, the increased smoothnessif over Bys and r(1—B?+B*=(1+7)B>-~2B+r
the inequalityBys > Bg assumes that the same approxima- 2 ,
tion u is used in determiningys andrq. In general, it is not =(1+r) <B 1T T) + T+
the case that the optimal approximation functiois the same ,
for the Mumford—Shah and Geman functionals. 2 11r
B. Other Residual Functions with equality for B = r /(1 + ) which completes the proof.

The next lemma shows that the freedom to choose the form

In the sgctlon on numerical results we return to the quest|_8|f| the residual function means that there is an equivalence
of comparing Mumford—Shah and Geman type segmentatlfggtween the choice of = 2, as the exponent df. — B) and

schemes for more general residual functions based on arbitr%n{n the objective functional, and the case of arbitrary 1
L, norms, especiallyL; and L, norms. For example, for Lemma 2: Assume thaty is greater than one. Let —

the Mumford—Shah functionals we consider the foIIowing(u g, Vi) be nonnegative. For fixegl andw, the objective
residual: functional

r=wi((Au — g)> + &P/ + wa(Vu - Vu+8)P2/*  (18) E(u, B, ’7):/7>|1—Bl”+/ B[ (22)
Q Q

where we assumé is some small positive number. (We need ] 1)

§ > 0 to ensure that is differentiable atdw — g = 0 for IS Minimized by the settings = p/(1+p) wherep = r/t7=%).
pL =1 o0r Vu =0 for p» = 1.) In the numerical experiments MOreover, for anyB

we look at results for thé., » residual 1 = p» = 2) and the y—1

mixed L, ; residual p; = 2 andp, = 1). The L, , residual E(u, B, v) > / <%) (23)
corresponds to the usual least squares residual and tends to £ P

give ove'rly smooth results and ringing near the boundary. Thﬁth equality only forB = p/(1 + p).

L,y residual has the form of (9) and is better at preserving  proof: Thus E(u, B, ~) is minimized by selecting? as

sharp edges. This choice of residual is closely related to 4 minimizer of f(r, B) = r(1 — B)Y + BY. Forv > 1,
total variation methods of Osher and Rudin [16], [17] Wh@ne functionf is convex inB € (0’ 1) since de/d‘B2 —

obtained excellent results for image restoration using totaly _ 1)((1 — B)Y=2 4+ B7=2) > 0. Moreover,df/dB =
variation methods (without the use of boundary functions) g — (1 — B)v~1) is negative or zero a3 = 0 and

based on objective functions with; norms. positive atB = 1. Thus f(r, -) has a unique minimizeB.,
The possibility of multichannel image information leads Ughat lies in the intervad < B, < 1. Settingdf/dB = 0 and
to another type of residual function. For example, we may|ying for B gives

have multiple images:, g2, - -+, gx Of the same object. Such
a sequence could also be obtained from multispectral imaging _ .
or from a multiresolution decomposition of one original image. 14771

7,"/—1

(24)
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Substituting this value intd(u, B, v) gives, with B(u) = Proof: The proof is exactly the same as for Lemma 1.
/(1 + p) As per Lemma 2, the choice of 2 as an exponention B)
y—1 and B in the Geman functional is sufficiently general to
E(u, v) :/ <1L> (25) capture the behavior of arbitrary > 1 by modifying the
T residual function. For brevity we omit the details.
which completes the proof sinc& = B(w) minimizes
E(u, B, 7).
Remark: It is interesting to note that this reduced functional V. NUMERICAL IMPLEMENTATION

is equal to||B(u)[|1Z1; that is minimization of the reduced The previous sections discussed various functionals for ap-
gamma-functional is really the same as minimizing the 1  proximating and segmenting images. These functionals contain
norm of B subject toB = p/(1 + p) wherep = »1/0=1), terms related to the approximation error and the smoothness
We also are in a position to address the question of equi\g¥-the approximation as well as the extent of the boundary.

lence between the case= 2 and arbitraryy > 1. Thatis, can Once the form of the functional has been selected, the non-
we obtain equality in the reduced objective functionals by thfivial problem of finding the minimizing approximationhas
proper choice of residual functions? Letandr., denote the to be addressed. Typically, the desired approximation is an
residual functions fory = 2 and arbitraryy > 1. By Lemma  equilibrium solution of a nonlinear diffusion PDE with certain

1, the objective functional boundary conditions. A general procedure for finding these
5 9 PDE'’s is outlined in the Appendix but we indicate the main
E(u, B) o (1-B) B (26) ideas and results in this section.

To illustrate, suppose that we wanted to minimize a func-

has the reduced functional (after substltutlng in the optlmf'ﬂonal of the form

boundary functionB)

-
E(u) = /Q Ty (27) E(g,u) = /Q(u — g)2 + /Q Vu - Vu (34)

By Lemma 2, the objective functional

whereg is the given image and is an approximation of.
E(u, B, v) = / rv(1— B)" +/ BY (28) The minimizing approximatiom for this functional satisfies
2 Q the ellpitic equilibrium PDE
has the reduced functional

B p \7! - Au=u—g
(w, ,Y)_/“<1+p> (29) Ju/On =0  ondN
wherep = /7Y,

Thus, we see thak(x) is equal toE(w, 7) if whereAuw is the Laplacian of. anddw/dn denotes the normal

derivative.
re Il v 30 Numerically, we can either solve for the equilibrium solu-
14+7, \l4p (30) tion directly or follow » as a function oft from an initial
B ) ) approximation, such agsy, = g, by integrating the diffusion
wherep = 2’0~V Solving for r, we find PDE
vy—1
< - ) VAN (35)
1+ U =g —u+ AL0u
ry = Pl (31)
- <1—f’)_p> subject to the Neumann boundary condition
From this we conclude that by exploiting our freedom to Su
choose the form of as a function ofy, » and Vu, we may 9, =0 on . (36)

work entirely with the case, = 2.
We conclude this section with the analog of Lemma 1 fdgtarting from the initial condition, the imageu evolves as

Geman functionals. t — oo toward the equilibrium solution.

Lemma 3: Let r; = r;(u, g, Vu) be nonnegative fof = The following theorem gives a similar treatment for the

1, 2. For fixedg andw, the objective functional defined by reduced form of the Mumford—Shah functiond(g, u) =

) Jr/(1+ ), where the residual function has the form
E(u, B) /71+/721— /B (32)
r — g — 2 .

is minimized by setting® = r2/(1+72). Moreover, for anyB r=r((Au—g)%, Vu - Vu). (37)
(u, B) / 1 +/ (33) As a matter of notation, we refer to the first and second

1+72 arguments ofr as z; = (Au — g)? and z» = Vu - Vu,

with equality only forB = ro/(1 + 72). respectively.
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Theorem 1:Let E(g, u) = [,7/(1+r). Given an initial
approximationu, defined overz € © with dug/dn = 0 on
o, let u = u(z, t) satisfy

= (G ) 7 (e an) 60
subject to
u(x, 0) =uyg, for z € Q
du/on =0, for z € 9.

Then E(g, u(-, t)) is a decreasing function af unlessu; is
identically zero in which casé/(g, u(-, t)) is constant.
Proof: See the Appendix.
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VI. EXPERIMENTAL RESULTS

A. Synthetic Images

The following examples are designed to show the effects
of varying the parameters and residual forms of the objective
functions discussed in the previous sections.

Example 1: The Gaussian hump shown in Fig. 1(a)
presents a smooth image with no discontinuities. Fig. 1(b) and
(f) display the approximation functiom and the associated
boundary functionB for the original Geman type functional
with the smoothness of the approximation measureddyx
and du/dy separately. As seen in these two figures, this
introduces arx,  bias in an image that is originally circularly

For the reduced form of the Geman functional we have the

following result.

Theorem 2:Let G(g, u) = [, 71 + [, r2/(1 + r2) where
71 is a nonnegative function of, = (Au — g)? andr, is a
nonnegative function of; = Vu - V.

Given an initial approximation,, defined over: € Q2 with
Aup/On = 0 on 912, let u = u(x, t) satisfy

uy = AT<(g — Au) gli) +V- <(1Z7“7‘2)2 g%) (39)
subject to
w(zx, 0) =up, for x € Q
Ou/dn =0, for z € 9.

Then G(g, u(-, t)) is a decreasing function df unlessu; is
identically 0 in which cas&7(g, u(-, t)) is constant.
Proof: See the Appendix.

symmetric. This bias is eliminated, as seen in Fig. 1(c) and (g)
by modifying the Geman functional to the form (16) so that
the smoothness of the approximation functiwims measured
by the norm of the gradient af, since this is independent of
the coordinate orientation. In these images, we have used the
total variation normsi; = 2, po = 1) for the functional in
(57) and this results in a slight flattening effect at the center of
the Gaussian hump. This flattening effect is not present if we
use the least squares norms & 2, p, = 2) in the Geman
functional as seen in Fig. 1(d) and (h). We also note, however,
that the total variation norms can avoid the flattening effect
by increasing the approximation weigtat . This is shown in
Fig. 1(e) and (i) forw; = 10, we = 1. For all the other results
for this example we used; = 1, wy = 1.

Example 2: Fig. 2(a) presents a piecewise constant image
similar to an example considered by Richardson in [20].
Fig. 2(b) and (c) shows, respectively, the approximation func-

Once we have defined a residual function and obtaingdn « and the boundary functioh for the Mumford—Shah
the corresponding PDE for, we then use Eulers methodfunctional (50) withw; = w, = 10 andp; = 2, p, = 1. This
to integrate the descent PDE and halt the integration whtstal variation result compares well with the smoothing effect
the decrease in the value of the objective functional becon@fsthe least squares resuit; (= p2 = 2) seen in Fig. 2(d) and
less than a user supplied tolerance. Typically, we obtain&). For this example the Geman functional results are nearly
good results by stopping when the decrease in the objectidentical.
functional from one Euler step to the next was less than 1%Example 3: This is the same as Example 2 but with Gauss-

of the current value of the objective functional.

ian noise added as seen in Fig. 3(a). Fig. 3(b) and (c) shows,

The step size for Euler's method was determined in tiiespectively, the approximation functianand the boundary
following way. Let v, denote the value of the objectivefunction b for the Mumford—Shah functional withw; =

functional at the initial image approximationy. (For our

wy = 10 andp; = 2, ps = 1. It is interesting that the

experiments we set, = g.) Starting with a nominal stepsizeassociated Geman approximation functianfor the same

dt = 1, the valuev; of the objective functional for the updatedparameter choices is nearly identical as seen in Fig. 3(d), but
imagew; = uo + dt x u, was computed. We then checked téhe Geman boundary functioB in Fig. 3(e) is not as noisy
see if the value of the objective functional was smallerdor as the Mumford—Shah boundary function. See the remarks at
than forug. If not, the stepsize was cut in half. To be sure théhe end of Section IlI-A for a discussion of this effect.
stepsize was really acceptable, we continued to cut the stepsiz&€here is also another approach, involving iteration, that can
in half until the conditionv, > v; had been satisfied severabe used to remove noise in both the approximation and the

times in a row (usually three or four times).

boundary function. In this approach, we start with an initial

This PDE descent procedure may only lead to a locthageg and use a segmentation scheme to generate an approx-
minimum for the objective functional. Other methods, such @®ationw. In turn this approximation is used as an initial image
simulated annealing, can be used to find a global minimui® generate another approximatian, and we may repeat as
for the objective functional with high probability, but theoften as desired with each successive approximation becoming
intensive computational costs may result in unacceptably loagnoother. This is illustrated in Fig. 3(f), which shows the first
processing times. For the examples we tested, the choiceitefate ; for the noisy piecewise constant example image.
uo = g produced excellent results for the PDE descent methbip. 3(g) shows the associated boundary function which is

with only short processing times.

almost entirely noise-free.
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Fig. 1. (a) Gaussian hump. (b) and (c) Approximations for the Geman and modified Geman type functionals using the total variation norms. Note the
flattening of the centers. Using a least-squares norm or increasing the approximation weight removes this flattening effect as shown in (d) and (e),
respectively. The corresponding boundary functions are shown in (f)—(i).

B. Real Images examples were obtained using the boundary funcfiofor
Experimental results on three different classes of real imageée Mumford—Shah functional (50) with, = 2, p» = 1 for
are provided by the following examples. The results for thesarious weights as listed on next page.
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Fig. 2. (a) Piecewise constant image. (b)—(c) Approximation and boundary functions, respectively, for the Mumford—Shah functional. (d)x{a)afippro
and boundary functions for the Geman-type functional.

Example 4: Fig. 4 presents results on two face images witbegment [Fig. 6(b)] of which are shown in Fig. 6(d). Fig. 6(c)
wy = wo = 10. The approximation functions in the figures shows the approximation image fer;, = w, = 10. For
appear much like an artists’ sketch. This simplification meagemparison, Fig. 6(e) shows the boundaries detected using an
that the approximations are more suitable for face featuagorithm based on Laplacian of the Gaussian filtering. The
extraction than the original images. We are currently usidgage is first convolved with the LoG filter and is followed
the approximation and boundary information in our work oRY thresholding with hysteresis to detect strong contours. The
face image tracking. details are described in [9], wherein it was used in multisensor

Example 5: An example of segmenting out kidney X-ray'Mmage registration. Comparing Fig. 6(d) and (e), it is clear that

CT images is shown in Fig. 5. Here we used the weigh@e proposed objective functional minimization approach does
wi = 100, w2 — 10. The proposed segmentation approac'P\rOduce boundaries consistent with the p_hyS|caI regions. In
ntrast, pure edge-detection-based algorithms tend to result

is used in identifying regions containing kidneys in these CT° . : . o .
fying reg 9 y in less reliable regions boundaries. Preliminary experiments

studies and to localize problems such as a cyst. Combln(relgicate that the proposed approach produces more robust

with simple domain specific heuristics, this approach prowd'%%ntours for image registration

a robust classification algorithm which is currently being The results clearly demonstrate the suitability of the pro-

iglcorpora:ed into the development of a medical image daﬁ%sed method in diverse image processing applications.
ase system.

Example 6: Finally, an application to satellite image seg- VII. CONCLUSION
mentation for use in image registration is shown in Fig. 6. We have presented a general framework for segmenting
Fig. 6(a) shows a LANDSAT image, boundary regions of Bnages and obtaining region boundaries based on minimiz-
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Fig. 3. (a)-(e) Same as Fig. 2 but with additive Gaussian noise. (f)—(g) Result of an iterative approach which uses (b) as the initial image. Note that
the boundary function (g) is almost entirely noise free.

ing an objective functional for which the optimal boundary APPENDIX

function has a particularly simple form. The explicit form of Given g and« we want to know how to change so as to
the boundary function in terms of the approximating funCt'oﬂecrease the value of the reduced Mumford—Shah functional
permits the reduction of the original objective function tqg(, u = [r/(1 +r) or the reduced Geman function
a form that depends only on the approximation funcumE(g w) = [r 4+ [ra/(1 + r2). The basic idea of the
From this, a PDE descent procedure can be used to mlnlle@Ier—Lagrange variational procedure is to replad®y v+ ¢h

the objective function. Many commonly used segmentatiagheree > 0 is a small positive number anfdis an arbitrary
approaches such as the Mumford—Shah method and Gerfiaittion. We then expan&(g, « + ¢h) and seek conditions
type schemes can be represented in this framework, whigh /4 that ensure tha#(g, v + ¢h) < E(g, u). However,

is also general enough to include least squares and tated expansion of(g, u + ¢h) involves a term withvi. We
variation forms. The explicit form of the boundary functiomeed to rework this term into an expression involving ohly
also allows some analytic comparison between competirafher tharVh. This is done by using the divergence theorem,
methods. Although excellent numerical results have bewthich is the higher dimensional analog of the integration by
obtained on a wide variety of real and synthetic images, furthearts formula.

research is needed on the problem of selecting the best weight§0 illustrate the procedure, suppose that we wanted to
for a given image or class of images, as well the problefiinimize a functional of the form

of gutomatica_lly selecting the best choice of norms for the E(g, v) = /(u_g)Q + Vi V. (40)
residual function. Q
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(@) (b) (©

Fig. 5. X-ray kidney CT image segmentation. (a) Original image. (b) Approximation. (c) Boundary function. Note that the cyst in the kidney (grey
region inside the kidney) is clearly segmented.

Such a functional would arise if we were only interested in the + 26/ (u— g)h+ Vu - VA + O(2)
problem of approximating by a smooth function:, without
regard to the boundary function. Now replacdy u + ch: =E(g, u) + 26/ (u— g)h+Vu-Vh
Q
+ O(%).

_ 2 .
E(g, utch) = /Q(“ +eh—g)" + V(utch) V(uteh) By the divergence theorem (see below)

:/(u—g)2+Vu~Vu /Vu~Vh:—/hAu+/ hdu/dn (41)
Q Q Q a0
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Fig. 6. (a) LANDSAT image, (b) segment around the lake, (c) approximation, (d) boundary function, and (e) edges detected using a contour detection
algorithm used for registration applications are shown for comparison.

where Aw is the Laplacian ofu and du/dn is the normal Substituting this into the expansion éf(g, « + ¢h) gives
derivative ofu on the boundary of). If we assume that:

satisfies the Neumann boundary conditiéw/dn = 0, then  E(g, uw + ¢h) = E(g, u) + 26/((1}, —g) — Au)h + O(2).
Q

/Vu~Vh:—/hAu. (42) . )
Q Q Thus, we can force the objective functional to decrease by
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setting
h=—((u—g) - Lu) (43)

and takinge > 0 sufficiently small. Identifyingh with .,
gives the descent PDE

U =g —u+ Ay (44)
subject to the Neumann boundary condition
3]
T _0,  onoq. (45)
an

Starting from the initial condition(z, y, 0) = g(z, y) the
imagew evolves toward the equilibrium solution to

Au=u—g

du/dn =0, on 952.

Numerically, we can either solve for the equilibrium solu-

tion directly or follow » as a function oft from its initial
condition» = ¢ by using the Euler update formuta,.; =
uy, + dtu, wheredt is the Euler stepsize.

Of course for our purposes we want to include the boundaTr
function B in the objective function. This results in a different :
descent PDE, but the basic procedure for determining {HS

descent PDE is the same as above.

A. The Divergence Theorem

For a smooth vector valued functidn= (Fi, F», ---, F,,)
the divergence off" is defined by
oF, OF, or,
F=T—4 == . 4
v dr1  Oxo + dxp, (46)

Assuming thatt" is smooth ovef? and the boundargs?, the

divergence off’ inside 2 is related to the flow off” across

the boundaryof:
(47)

/V~F:/ F-n
Q N

where n = n(z) is the outward unit normal at € 94.

See Warner [25, p. 151]. For the purposes of instruction, this
formula is often referred to as the “conservation of dots and

dels.”
We need to transform integral expressions involving. -
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B. Descent PDE’s for the Mumford—Shah
and Geman Functionals

In order to find the functional descent PDE fB{g, u) =
J /(1 + ) we will limit our discussion to residual functions
of the form

r=7r((Au— g)%, Vu - Vu). (49)

However, the same basic technique works for more general
residual functions.

As a matter of notation, we refer to the first and second
arguments ofr as z; = (Au — g)? and z; = Vu - Vu,
respectively. For example, setting

r(z1, 22) = w1z + 67 + wy(zg + 62/ (50)

gives the residual function
r((Au — ¢)%, Vu - Vu)
= wy ((Au — g)2 + 6)7’1/2 +wa(Vu - Vu+ 6)7’2/2. (51)
Proof of Theorem 1:In the statement of Theorem 1, the
transposed?’ of the smoothing operatot is defined implicitly

by the requirement thaf, f1Af> = [, foA" f1 for arbitrary
nctions f; and f.. Application of the divergence theorem

ves
OE(g, u+ €h) / < T<2(Au —g) Or )
oL BT ) - AT 222 )
e=0 Q (1 + 7))2 821
Vu  Or

Oe
=% (e o) ) @

Thus settingr = u; as above ensures thaE (g, u(-, t))/ot <
0 with equality only if u, is identically zero oveK?, which
completes the proof.

As an illustration, if

r((Au— g)%, Vu - Vu)
= w1 ((Au — g)? 4 6)P*/2 4+ wy(Vu - Vu + §)P2/% (53)

then the descent PDE is given by

_gr(prwilg = Au) o s
= a7 (PO (g2 4 st

Vu
+ pawaV - <m (

As a second illustration, in the multichannel case we might

Vu - Vi + 6)”2/21). (54)

Vu, whereq, h, andw are functions, into integral expressiongise the residual function

involving h and derivatives of; and w.
Lemma 4:If Vu -n = 0 on the boundary of2 then

/ qVh-Vu= —/ hV - (qVu). (48)
Q Q

Proof: To prove (48) use the divergence theorem wit

F = ghVu. SinceVu - n = 0 on 92 we have

0:/ qhVu -n

a0
= | V- (qghVu)
Q

:/th~Vu+/hV~(un).
Q Q

k
R = Z r((Au; — gi)Q, Vu,; - V)
=1
wherer is the L, — L,, residual given above in which case
Je have a system df first-order descent PDE'’s:

(i) IAT<IW ((Au; — ;) + 6)1’1/2—1)

p2waz (11 R)?

(55)

(Vg - Vi + 5)1)2/21)
(56)

The same approach yields the descent PDE for the Geman
functional.
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Proof of Theorem 2:The proof is basically the same as that  in Computer VisionB. M. ter Harr Romeny, Ed. Boston, MA: Kluwer,

1994, pp. 1991-228.
for Theor.em L . . [19] A. Rangarajan and R. Chellappa, “A continuation method for image
As an illustration, if estimation using the adiabatic approximation,” Markov Random

Fields: Theory and ApplicationsR. Chellappa and A. K. Jain, Eds.
— . . . New York: Academic, 1993.
G(g, u) B /971 - /Q 72/(1 - 72) (57) [20] T. J. Richardson, “Scale independent piecewise smooth segmentation
of images via variational methods,” Ph.D. thesis, Mass. Inst. Technol.,

where Cambridge, Feb. 1990.
[21] T. Richardson and S. Mitter, “Approximation, computation and distor-
. _ 2 = _ )2 p1/2 tion in the variational formulation,” inGeometry-Driven Diffusion in
71((Au g) ) wl((Au g) + 6) Computer VisionB. M. ter Harr Romeny, Ed. Boston, MA: Kluwer,
ro(Vu - Vi) = wa (Ve - V4 6)P2/2 1994, pp. 169-190.

[22] A. Rosenfeld and M. Thurston, “Edge and curve detection for visual
scene analysis,|EEE Trans. Computyol. C-20, pp. 562-569, 1971.

then the Geman descent PDE is given by [23] J. Shah, “Segmentation by nonlinear diffusion,’Aroc. Conf. Computer
T 9 J2-1 Vision and Pattern Recognitiodune 1991, pp. 202-207.
uy = A" (prwi (g — Aw)((Au — g)° + 6* ) [24] A. Yuille and T. Poggio, “Scaling theorems for zero-crossingEEE
V. Trans. Pattern Anal. Machine Intellvol. PAMI-8, pp. 15-25, 1986.
+pounV- | —— (Vu -Vu + 5)1)2/2—1 . (58) [25] F. Warner, Foundations of Differentiable Manifolds and Lie Groups.
(1+79)? Glenview, IL: Scott, Foresman, 1971.

[26] A. Witkin, “Scale-space filtering,” inProc. Int. Joint Conf. Atrtificial

Intelligence,Karlsruhe, Germany, 1983, pp. 1019-1021.
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