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Abstract: While lattice vector quantization (LVQ) can solve
the complexity problem of LBG based vector quantizers, and also
yield very general codebooks, a single stage lattice VQ, when
applied to high variance vectors result in very large and unwieldy
indices, making it unsuitable for applications requiring successive
refinement. The goal of this work is to develop a unified framework
for progressive uniform quantization of vectors, without having to
sacrifice the mean-squared-error advantage of lattice quantization.
A successive refinement uniform vector quantization paradigm is
developed, where the codebooks in successive stages are all lattice
codebooks, each in the shape of the Voronoi region of the lattice at
the previous stage. The Voronoi shaped lattice codebook at each
stage is called Voronoi lattice VQ (VLVQ). Measures of efficiency
of successive refinement are developed. The developed methodol-
ogy is applied to successively refine vectors of wavelet coefficients
in the vector set-partitioning (VSPIHT) framework to obtain an
embedded bitstream. The results are compared against the previous
Successive Approximation Wavelet Vector Quantization (SA-W-VQ)
results of Da Silva, Sampson and Ghanbari for image coding. 

1.  Introduction

Considerable interest has been generated in lattice vector
quantization (LVQ) over the last couple of decades. Unlike Linde-
Buzo-Gray (LBG) based vector quantizers [1] designed from train-
ing sequences, structured vector quantizer codebooks obtained as
subsets of multidimensional lattices [2]-[5], commonly known as
lattice VQ (LVQ), are more appropriate for high resolution quanti-
zation because of their generality and the existence of fast encoding
and decoding algorithms. Moreover, for uniformly distributed
sources, it can be shown that the normalized mean-squared-error
per dimension per codepoint [2],[5], for an appropriately chosen
multidimensional lattice VQ is significantly lower than that
obtained if the individual components of the vector are scalar quan-
tized. 

The wavelet transform has recently been shown to be very
effective for image compression [6]-[13]. Although plain lattice
vector quantization of wavelet coefficient vectors has been success-
fully employed by several researchers for image compression [7],
improved results can be obtained if the benefits of LVQ are com-
bined with the powerful across scale zerotree prediction methodol-
ogy, as in EZW [10] by Shapiro, and SPIHT [11] by Said and
Pearlman. While both EZW and SPIHT rely on partial magnitude
ordering of wavelet coefficients followed by progressive scalar
refinement, and produce embedded bitstreams, SPIHT is more effi-
cient in transmission of significance information to the decoder.

Da Silva et al. [8] developed a vector extension of the EZW
algorithm, where a gain-shape type multistage vector quantization
method, called Successive Approximation Wavelet Vector Quanti-
zation (SA-W-VQ), is used. Points on the first one or two shells of
certain multidimensional lattices [2]-[5] are used to describe the

shape codebook. Recently Knipe et al. [9] extended the scheme to
SPIHT, using modified shape codebooks based on the Λ16 lattice,
named ModLVQ, to yield superior performance. In our earlier work
[12],[13], we developed independent of [9], the vector extension of
the scalar algorithm of Said and Pearlman, named Vector SPIHT
(VSPIHT). Several neighboring coefficients are coded at once
using trained, classified, successive refinement VQ [1]. Besides
producing good compression results, VSPIHT is more noise resil-
ient, because the balance of bits is shifted to include more quantiza-
tion bits and less significance bits. While a trained VQ approach to
VSPIHT yields good results for a wide range of images and video,
it can never be claimed to be truly generic. In this work, we attempt
developing a more structured and unified framework for successive
refinement uniform vector quantization, where lattice codebooks in
the shape of Voronoi regions [2] of multidimensional lattices are
used. This scheme is more generic than the gain shape type vector
quantization used in [8], [9], where the scale factor can only reduce
by a factor between 0.5 and 1. Use of relatively small Voronoi lat-
tice codebooks rather than a single large codebook makes embed-
ding possible, and also eliminates the problem of large indices. The
developed scheme is considerably generic, and can be adopted for
all applications requiring gradual uniform quantization of vectors.
Further, with the recent trend towards multiwavelets, vector based
compression is likely to assume greater significance than just in
application to quantization of uniwavelet coefficients.

In Section 2, the successive refinement lattice VQ approach is
explained in detail. In Section 3, the application of successive
refinement lattice VQ to VSPIHT coding of monochrome images
using the four dimensional D4 lattice, is presented. Section 4 con-
cludes the paper.

2.  Successive Refinement Lattice VQ

The objective of successive refinement Voronoi lattice VQ is
to develop a generic framework for progressive refinement uniform
VQ, that can be used for a variety of gradual refinement applica-
tions such as embedded coding or progressive transmission. 

2.1  Definitions

We first introduce some definitions and notations. A lattice L
in n-dimensional space , is defined as the set of all integer com-
binations of a linearly independent set of vectors. That is,

, (1)

where  are a set of n linearly independent vectors,
and  are all integers. A lattice coset or translate Λ, is
obtained from a lattice L by adding a fixed translation vector to the
points of the lattice. In the rest of the paper, all references to lattice
will actually denote the general family of lattice cosets, unless oth-
erwise noted.

Around each point y in a lattice coset Λ, is its Voronoi region
Vor(Λ,y), consisting of all points in the underlying space which are
closer to y than to any other lattice point. Formally, it is the closed
set given as:
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. (2)

The zero-centered Voronoi region V0(Λ) of a lattice coset Λ, is
defined as:

, (3)

where y is any lattice point in Λ. Note that the zero-centered
Voronoi region of all translates of the same lattice is the same.

2.2  Voronoi Lattice VQ (VLVQ)

We now define a new family of lattice VQs, hereafter referred
to as Voronoi Lattice VQ (VLVQ). A Voronoi lattice VQ, or VLVQ,
is a lattice or lattice coset codebook, in the shape of the zero-cen-
tered Voronoi region of a different lattice, usually having a higher
scale than the former. The lattice coset from which the codebook is
actually constructed is referred to as the base lattice of the VLVQ,
while the higher scale lattice that determines the shape of the code-
book, is referred to as its shape lattice. In other words, if Λ0 be the
shape lattice, and Λ1 be the base lattice of a VLVQ denoted Γ1 in n-
dimensional space, then the intersection of the base lattice Λ1 with
the zero-centered Voronoi region V0(Λ0) defined by the shape lat-
tice Λ0, constitutes the VLVQ. The relevance of the shape lattice to
a VLVQ is only through the shape of its zero-centered Voronoi
region, and is therefore independent of its translations. The base lat-
tice, however, directly influences the VLVQ codebook, and differ-
ent cosets of the same lattice yield different codebooks.

A desirable property for a VLVQ to possess is to have the
zero-centered Voronoi region of the shape lattice completely con-
tained by the base lattice Voronoi regions around the codepoints of
the VLVQ. That is:

. (4)

Note that this property is not automatically satisfied by the VLVQ
definition above.

To count the number of points in a VLVQ, it is necessary to
count the number of points of the base lattice on surfaces of succes-
sive scales of the zero-centered Voronoi region of the shape lattice.
In general, for every shape-base pair of lattices, a phi-function

 can be generated to give the number of base lattice points
lying on the surface of the zero-centered Voronoi region of the
shape lattice scaled by r. Any standard definition of the shape lattice
can be considered as being unity scale. In general, these -func-
tions may have to take non-integer arguments r even with suitable
definitions of the unity scale shape lattice. A special situation of
interest, and often the most useful, is one where the base lattice is a
scaled down and possibly translated version of the shape lattice, i.e. 

, (5)

t being an arbitrary translation vector. Since this assumes that the
unity scale shape lattice with a possible translation, is exactly the
base lattice, the function  for a lattice coset now counts the
number of points on successive scales of its own zero-centered
Voronoi region. This function is so important for a lattice coset, that
we call it the ohm-function . In Table 1 we present as an
example, the -function for the 4-dimensional D4 lattice. The Dn
lattice is defined as the set of all integer n-tuples such that their sum
add up to even. In Table 2, we present an alternate -function for a
D4-coset with the translation vector being (1,0,0,0). 

2.3  Successive Refinement with VLVQs

The essence of successive refinement lattice VQ is to generate
a series of decreasing scale VLVQs, each covering the Voronoi
region of the base lattice at the previous higher scale. Given the
VLVQ  Γ1 defined in the previous subsection with shape lattice Λ0
and base lattice Λ1, we can now construct a lower scale VLVQ, Γ2,
which uses Λ1 as the shape lattice, and a lower scale lattice coset Λ2

as the base lattice. Continuing in this manner, a series of decreasing
scale VLVQs - Γ1, Γ2, Γ3,..., can be constructed using decreasing
scale lattice cosets Λ0, Λ1, Λ2, Λ3,..., such that the ith VLVQ Γi has
Λi as its base lattice and Λi-1 as its shape lattice. 

The above mentioned series of decreasing scale VLVQs pro-
vide a convenient framework for successive approximation of vec-
tors. Consider an input vector , which is to be successively
refined. Assume that the distribution of x defines a region Rx in n-
dimensional space. It is first quantized by a lattice VQ Γ0 in the
shape of the input distribution, using a lattice Λ0 as a coarse approx-
imation. Let the quantized vector be denoted u0. Note that the
uncertainty in x has been reduced to the zero-centered Voronoi
shaped region of Λ0 around the chosen codevector u0. The first
VLVQ, Γ1, next quantizes the approximation error (x-u0) which lies
in the Voronoi region of Λ0, using the base lattice Λ1, to obtain a
refinement u1. The uncertainty in x is now reduced to the zero-cen-
tered Voronoi region of lattice Λ1. The second VLVQ Γ2, then
quantizes the error (x-u0-u1) to u2, reducing the uncertainty in x fur-
ther to the zero-centered Voronoi region of Λ2. Continuing in this
fashion, the final approximation  of the vector x is obtained as:

(6)

Thus, the first stage lattice VQ Γ0, followed by the series of VLVQs
Γ1, Γ2, Γ3,..., constitute a successive refinement uniform vector
quantization system.

We now state the sufficient conditions for the convergence of
the approximation  obtained by such a successive refinement sys-
tem, to an input vector x within the input distribution region Rx.
First, the region Rx must be contained entirely by the Voronoi
regions of lattice Λ0 around the codevectors of the first stage LVQ
Γ0. Next, all the VLVQs  Γ1, Γ2, Γ3,..., must satisfy the property in
Eq. (4). Finally, the non-negative central second moment Mi of the
Voronoi region V0(Λi) of the successive lattices must converge to 0.
These conditions are expressed mathematically as:

(7a)

(7b)

(7c)

For successive refinement applications we further require that the
non-negative sequence in Eq. (7c) is strictly monotone decreasing,
i.e. 

If indeed, the subset relationships in Eq. (7a) and Eq. (7b) are
satisfied with equality for a converging successive refinement sys-
tem, the most efficient coding scheme is obtained. In this case,
absolutely no penalty is incurred in making a transition from single
stage uniform quantization to successive refinement quantization.
Unfortunately, this rarely happens, and the usual sub optimality
introduced by successive refinement is suffered.   
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Table 1. Ohm function for the D4 
lattice

r Ω(r)
0 1

2 48

3 96

4 288

5 480

6 912

7 1344

8 2112

Table 2. Ohm-function for the D4 
coset translated by (1,0,0,0).

r Ω(r)
1 8

2 32

3 120

4 256

5 520

6 864

7 1400

8 2048
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Although by definition, there is no restriction on the nature of
the lattices Λ0, Λ1, Λ2, Λ3,..., it makes sense to have them as scaled
and possibly translated versions of the same elementary lattice.
Indeed, there are only a few lattices for each value of the dimen-
sionality n that yield optimal or near-optimal quantization in terms
of the dimensionless mean-squared-error. Further, having scaled
versions of the same lattice makes implementation easier. As such,
successive lattices are usually constrained such that,

, (8)

where ti are arbitrary translation vectors, and ri are factors by which
the uncertainty in the input vector x is reduced at the ith stage. If
each ri is greater than 1, and the conditions in Eq. (7a) and Eq. (7b)
are satisfied, convergence of the approximation error is guaranteed.

The principle of successive refinement with VLVQs is demon-
strated in Figure 1 by means of the two dimensional hexagonal lat-
tice A2. Here we see a series of decreasing scale A2 lattices each
covering the hexagonal Voronoi region of the lattice at the previous
scale. The lattice at each stage decreases in scale by a factor r = 4.
Apart from the first stage lattice VQ, all successive stages are
Voronoi lattice VQs. Note that in this figure, we have used the zero-
centered A2 lattice as the base lattice in each stage. However, this is
not the only option. Figure 2 shows two possible VLVQs for the A2
shape lattice, one with a quarter-scale translated A2 base lattice, and
the other with a quarter-scale zero-centered A2 base lattice. Note
that both the VLVQs satisfy the condition in Eq. (4). However, the
zero-centered one in Figure 2(b) is more efficient, as we see in the
next subsection.

We conclude this subsection with a final comment. The code-
vectors lying on or near the boundaries of a VLVQ does not satisfy
the centroid condition for optimality of VQs. Once successive
quantization of an input vector has been completed, a better repro-
duction is obtained if the last stage refinement vector is appropri-
ately corrected if it lies on or near the boundary of the
corresponding VLVQ shape. The centroid of the intersection of its
Voronoi region with the last stage VLVQ shape, is used as the
refinement rather than the codevector itself.

2.4  Index Entropy Coding and Efficiency

When the shape and base lattices in a VLVQ are constrained
by Eq. (5), the volume of the Voronoi region of the shape lattice is
exactly rn times the volume of the Voronoi region of the base lat-
tice. As mentioned earlier, the most efficient VLVQ satisfying Eq.
(4) to use, would then be the one which has exactly rn codevectors,
with their combined Voronoi regions exactly filling the zero-cen-
tered Voronoi region of the shape lattice. Unfortunately, except for
the cubic lattice, this condition is seldom satisfied. Let us observe
more closely the Voronoi lattice codebooks for the A2 lattice in
Figure 2. Since r = 4, and n = 2, in this example, the ideal VLVQ
should have only 42 = 16 points and still satisfy Eq. (4). Assuming a

uniform distribution of the input vectors within the Voronoi shape,
which makes sense in a multistage scenario, the index entropy for
this hypothetical VLVQ is exactly 4.0 bits. The real VLVQ in
Figure 2(a), however, consists of 21 points. 12 of them have their
Voronoi regions entirely included within the zero-centered Voronoi
region of the shape lattice, 6 have half of their volumes included,
and the remaining 3 have only a third of their volumes included.
Under the uniform distribution assumption, the index entropy can
be calculated as 4.2866 bits. The VLVQ in Figure 2(b), on the other
hand, has 19 points. 13 of them have their entire Voronoi regions
included within the zero-centered Voronoi region of the shape lat-
tice, and the remaining 6 have only half their Voronoi regions
included. This amounts to an index entropy of 4.1875 bits. As such,
the zero-centered base lattice VLVQ in Figure 2(b) is more efficient
than the one in Figure 2(a). 

In general, for VLVQs constrained as in Eq. (5), the index
entropy H under uniform distribution assumptions, is lower
bounded by  bits. That is, . The closer the
entropy of a practical VLVQ comes to this value, the more efficient
it is. A more generic measure of index entropy, independent of the
scale factor r and dimensionality n is the normalized index entropy
E, defined as:

 bits/dimension (9)

E gives a measure of the average number of bits spent per dimen-
sion, in reducing the uncertainty region around a vector by an
octave, i.e. by a factor of two in each dimension. Note that the
lower bound on the normalized index entropy is unity, implying

. The closer the normalized index entropy of a VLVQ comes
to this value, the more efficient it is. Two observations must now be
made. First, we conjecture that for any n, and any single lattice
based VLVQ, E asymptotically reaches 1 as . Second, in n-
dimensions, the lattice which yields the optimal quantization in
mean-squared-error sense, is not necessarily the most efficient for
successive refinement for a given r, in terms of the normalized
index entropy. For example, the cubic lattice yields VLVQs with E
= 1 for any n and any r. However, it is poor in terms of normalized
mean-squared-error.

In practice, a Huffman coder or an arithmetic coder can be
employed to code the indices close to their entropies. The probabil-
ity for each codevector is taken as proportional to the volume inter-
sected by the Voronoi region around it, with the zero-centered
Voronoi region of the shape lattice.

2.5  Multistage and Tree-Structured Lattice VQs

In a VLVQ based successive refinement lattice VQ scenario,
as long as the VLVQ used at a particular stage remain independent
of the index chosen at the previous stage, we call the successive
refinement scheme multistage. If the successive VLVQs are con-
strained by Eq. (8), the average normalized index entropy for the

Λi

Λi 1–

ri
------------ ti–=

VLVQ

Figure 1. Illustration of multistage Lattice VQ with the A2 lattice
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Figure 2. Voronoi Lattice VQs for the A2 lattice.
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VLVQs Γ1, Γ2,..., is given by:

, (10)

where Hi is the index entropy for Γi, and the summations are over
all the VLVQs.

However, the average normalized index entropy can be further
reduced by using tree-structured codebooks. For example, consider
the 6 codevectors on the edge of the Voronoi shape in Figure 2(b).
Each of them have only half of their Voronoi regions included
within the VQ shape. Therefore, if the codevector chosen at any
stage is one of these 6, it will not be necessary to use the full VLVQ
in the subsequent stage to code the error. A lattice codebook in the
shape of half the Voronoi region should be sufficient to refine the
uncertainty in the input vector. Simply using a subset of the next
stage full VLVQ whose Voronoi regions contain half the shape
Voronoi region, can serve the purpose, and is easily implemented. If
the successive codebooks each reduce the scale by the same factor
r, tree-structuring over multiple stages with an appropriately chosen
full VLVQ will only yield a finite number of possible subset code-
books, thereby easing implementation further. A Markov chain
modeling can then be used to compute the average index entropy.
We now state without proof an important asymptotic result regard-
ing tree-structured codebooks designed using the subset partition-
ing approach. If an infinite number of stages are used, the terminal
codevectors of a tree-structured system designed using VLVQ sub-
sets as above, will cover the entire space evenly. Since the sub opti-
mality due to possible duplications on the boundaries at each stage
can now be neglected, the index entropy will reach the entropy of
the source. This in turn implies that the lower bound unity of the
average normalized entropy for successive refinement is achieved,
because there is no advantage in single stage quantization over suc-
cessive refinement. In practice, because of a finite number of
stages, the average normalized entropy remains greater than 1.

2.6  VLVQs based on Voronoi Codes

The index entropy coding approach mentioned above is by no
means simple for higher dimensional lattices. The intersecting vol-
umes readily become too complex to compute. More importantly,
the use of Huffman coding or Arithmetic coding makes the codes
too vulnerable to bit errors. When scaled versions of the same lat-
tice is used for successive refinement, an alternative approach is to
use Voronoi Codes for the VLVQs without entropy coding of indi-
ces. These codes were first proposed by Conway and Sloane [4]. In
our notation, Voronoi codes are simply VLVQs satisfying Eq. (5)
with integer r, and with t chosen such that no base lattice codepoints
lie on the surface of the zero-centered Voronoi region of the shape
lattice. In such cases, the quotient group Λ/rΛ has order rn, and
therefore, the number of codevectors in the VLVQ is exactly equal
to rn. That is, if r is a power of 2, so will be the VLVQ codebook
size, and as such, an integral number of bits will be required to
specify the codebook index. No entropy coding of the indices are
done. Another advantage of using Voronoi codes is the existence of
fast encoding and decoding algorithms, as shown by Conway and
Sloane [4]. Figure 3 shows an example Voronoi code VLVQ for the
A2 lattice at r = 4. The VQ contains exactly 42 = 16 points. 

The problem with this approach, however, is that the condition
in Eq. (7b) is no longer satisfied. As seen in Figure 3, there are
some distinct patches shaded dark, within the Voronoi region of the
shape lattice that do not belong to the Voronoi region of any of the
codepoints of the base lattice. These regions lead to overload distor-
tion that grow in successive stages. If the ratio of scales r in succes-
sive stages is sufficiently large, the total volume in the overload
region will be small, but cannot be altogether eliminated. One way
to alleviate the problem partially is to use scaled up VLVQs at each

stage. If the base lattice used in stage  is , the VLVQ
designed for stage i uses a scaled up shape lattice (1+δ) , and a
correspondingly scaled up base lattice Λi=(1+δ) /ri - ti, instead
of the one given by Eq. (8). The factor δ is a small positive number
carefully chosen to eliminate the overload region partially or com-
pletely. The effective scale factor reduction from one stage to the
next is therefore ri/(1+δ) instead of ri.

3.  Vector SPIHT Implementation and Results

In vector-based SPIHT for image coding, wavelet transform
coefficients in each  window in each band are grouped as a
single vector of dimension . A parent-child relationship
between the vectors in different bands is defined as in [11]. The

-dimensional space covered by the wavelet vectors is then parti-
tioned into several classes based on certain pre-defined decision
regions that gradually decrease in scale. Specifically, the decision
regions are defined by surfaces enclosing the origin that succes-
sively decrease in size. Each region is bounded by two surfaces, one
on the inside and the other on the outside. The set-partitioning
methodology is then used to classify the actual wavelet vectors of
the image, in multiple passes, based on the region in -dimen-
sional space where they lie. Each new pass yields candidate vectors
from a new class that lie within the region associated with the pass.
The vectors ascertained as significant in a pass are roughly quan-
tized in the same pass, and then progressively refined in successive
passes using successive refinement VLVQs. 

Based on the above principle, we implemented an image cod-
ing system using 4-dimensional wavelet vectors obtained by group-
ing coefficients in each  window of each subband. The
VLVQs used have D4 shape lattice and D4 base lattice. A staggered
bit-allocation is used, as we shall shortly see. The wavelet vectors
obtained from an image are first scaled so that after scaling, the
maximum L1 norm vector is normalized to a standardized value R0.
This ensures that all the scaled vectors now lie within or on a sur-
face of L1 norm R0. The scale factor used is transmitted to the
decoder with high precision. The decision regions chosen for parti-
tioning the scaled vectors into classes are shown in the self-explan-
atory diagram in Figure 4. The first class Class0, is bounded on the
outside by a pyramidal surface of L1 norm R0, and on the inside by
the zero-centered Voronoi region of the D4 lattice at a particular
scale. All other classes are bounded on the outside as well as on the
inside by zero-centered D4 Voronoi regions, with the inside one
being at half the scale of the one outside.

Each class defined above is associated with a successive
refinement VLVQ system. When a vector is ascertained as signifi-
cant in a pass, it is coarsely quantized in the same pass with a D4
lattice VQ, and then progressively refined in each alternate succes-
sive pass using VLVQs. The first stage LVQ is in the shape of the
region for the class, with the lattice scale being half the scale of the
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Figure 3. Voronoi Lattice VQ for the A2 lattice based on Voronoi codes.
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D4 Voronoi region bounding the class on the inside. The series of
VLVQs used to gradually refine a vector in alternate successive
passes, reduce in scale by a factor of 4 at each stage. This staggered
refinement allows maintaining high efficiency of successive refine-
ment. In Figure 4, the bracketed sequence beside each class denote
the successively lower scale lattices in the successive refinement
system, used to quantize vectors in that class. This notation, how-
ever, ignores possible translations of the base lattice in the VLVQs. 

To design the VLVQs for the D4 lattice with r = 4 in Eq. (5),
two options satisfying Eq. (7a) and Eq. (7b) were investigated. If
the base lattice is zero-centered D4, the number of codevectors in
the VQ is 433, obtained by adding the first four rows of Table 1.
The index entropy can be computed as 8.55 bits/stage, with the nor-
malized entropy being 1.06875 bits/dimension. If, on the other
hand, the base lattice is D4 translated by (1,0,0,0), the number of
codevectors is 416, obtained by adding the first 4 rows in Table 2.
The index entropy can be calculated as 8.51 bits/stage, with the nor-
malized entropy being 1.06375 bits/dimension. Therefore, the latter
is more optimal. 

Two coders based on the above scheme are built. In the first,
tree-structured codebooks are used. For each class, the first stage
lattice VQ indices are coded using an adaptive arithmetic coder.
The refinement VLVQ indices are coded with fixed model arith-
metic coders with frequencies proportional to their pre-computed
probabilities. Additionally, the significance information is adap-
tively arithmetic coded as described in [11], using multiple context
models. The second coder is designed to be noise resilient, and uses
multistage codebooks with fixed length codes for the VQ indices.
No arithmetic coding of the indices or the significance information
is performed. For both the coders, 5 stages of dyadic decomposition
are used. The first two stages use Antonini’s 7/9 filters [6], while
the remaining three stages use Villasenor’s 10/18 filters. Table 3
presents the PSNR results for the two coders at 0.4 bits/pixel for
some standard test images, compared against the SA-W-VQ results
published in [8] for the D4 lattice implementation. Even without
any form of entropy coding, the PSNR results for the noise resilient
coder are superior to SA-W-VQ. Since it uses only about 30-40% of
the total bits spent, for the crucial significance information, as
opposed to 70-80% for scalar SPIHT, it is very robust to bit errors.
Table 4 presents a more comprehensive table of PSNR in dB versus
the bit rate for the arithmetic coded VSPIHT coder for several well-
known test images.

4.  Conclusions

We have introduced the Voronoi lattice VQ as a means for u
form successive refinement of vectors while preserving the me
squared-error advantage of lattice quantization. Progressive ref
ment based on the D4 lattice, have been applied to wavelet imag
codng. Investigations on labelling lattice points in a VLVQ, gene
ating ohm-functions for various lattices, and image coding us
multiwavelets are in progress.   
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Figure 4. Region Partitioning for Vector SPIHT with Successive 
refinement VLVQs
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Table 3. PSNR (dB) results at 0.4 bits/pixel

Gray 
Image

SA-W-VQ 
(D4)

VSPIHT: Tree-struc-
tured VLVQ (D4), 

entropy coded.

VSPIHT: Multi-
stage VLVQ (D4), 
no entropy coding.

Lena 35.17 36.24 35.51

Goldhill 31.01 31.99 31.43

Barbara 29.36 30.23 29.42

Table 4. PSNR (dB) vs. bit rate (bpp) for entropy coded VSPIHT

Lena Goldhill Barbara Peppers Mandrill

0.1 29.61 27.55 23.97 29.29 21.35

0.2 32.89 29.49 26.81 32.32 22.38

0.3 34.45 30.77 28.56 33.44 23.64

0.4 36.24 31.99 30.23 34.86 24.50

0.5 36.92 32.72 31.28 35.35 25.22

0.6 37.60 33.48 32.47 35.86 25.98

0.7 38.18 34.30 34.14 36.34 26.80

0.8 39.26 35.18 34.80 36.94 27.85

0.9 39.64 35.60 35.47 37.65 28.29

1.0 40.02 36.05 36.14 37.93 28.78
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Image
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