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Abstract—We present here a prototype video analysis and [4], [24] have addressed practical issues of spatio-temporal
retrieval system, called NeTra-V, that is being developed to segmentation for object-based video retrieval.
build an object-based video representation for functionalities This paper describes some key aspects of a video anal-

such as search and retrieval of video objects. A region-based . . . .
content description scheme using low-level visual descriptors is ysis and retrieval system, called NeTra-Which is being

proposed. In order to obtain regions for local feature extraction, developed with the objective of providing content-related
a new spatio-temporal segmentation and region-tracking scheme functionalities. One of the main research focuses of NeTra-V is
is employed. The segmentation algorithm uses all three visual to puild an object-based representation for video data, which
features: color, texture, and motion in the video data. A group \yij| enable the search and retrieval of meaningful physical
processing scheme similar to the one in the MPEG-2 standard is _, . . . .
used to ensure the robustness of the segmentation. The proposeoObJeCtS_ in a video (.:Iatab-ase. as well gs other video content
approach can handle complex scenes with large motion. After analysis. Toward this objective, a region-based content de-
segmentation, regions are tracked through the video sequencescription scheme using low-level visual descriptors is proposed
using extracted local features. The results of tracking are se- here. In order to obtain regions for local feature extraction, a
quences of coherent regions, called "subobjects.” Subobjects are e,y gpatio-temporal segmentation and region tracking scheme
the fundamental elements in our low-level content description . . . ;
scheme, which can be used to obtain meaningful physical objectsIS employed. S_ecuon I glyes an overview of the system.
in a high-level content description scheme. Experimental results Section Ill details the spatio-temporal segmentation scheme.
illustrating segmentation and retrieval are provided. Section IV llustrates the use of local features for region
Index Terms—Content-based retrieval, object-based video re- traCk'ng_' Section V. describes the IOW'-IeveI video Con_tent
trieval, region tracking, spatio-temporal segmentation, video in- description scheme and the corresponding feature descriptors.

dexing. Section VI concludes with discussions.

|. INTRODUCTION Il. SYSTEM OVERVIEW

ITH the rapid developments in multimedia and Internet Fig. 1 shows the schematic diagram of the NeTra-V system.
applications, there is a growing need for new reprd-he research focus of this paper is on the shaded blocks,
sentations of video that allow not only compact storage w@fith the emphasis on the segmentation and tracking scheme
data, but also content-based functionalities such as search @sgential to the low-level content description. Our work on
manipulation of objects, semantic description of scenes, demporal shot parsing and global feature extraction has been
tection of unusual events, and possible recognition of objecteported earlier in [5].
Current video standards, such as MPEG-2 and H.263 [10], aréA video clip, whether in raw format or in one of the
designed to achieve good data compression, but do not providgrent compression standards, is a stream of binaries not
any content-related functionalities. well organized in terms of its content. As a first step toward
There has been much work done on the emerging MPE@étter organization of data, the long video clip is parsed in
standard [21], which is targeted toward access and manipuide temporal domain into short video shots, each of which
tion of objects as well as more efficient data compressiogpntains consistent visual content. Often, partitioning points
However, to date, applications are limited to cutting andf the video shots are natural camera breaks or editing cuts.
pasting a few objects in simple scenes. There is no visuslvideo shot can be considered as a basic unit of video data.
information extracted from the object itself that can be usegince visual information is similar in each shot, global image
for a similarity search or for recognition. features such as color, texture, and motion can be extracted
On the other hand, growing research in content-based videad used for the search and retrieval of similar video shots.
retrieval [1], [5], [9], [12], [14], [25], [26] has provided ways This is what most current video retrieval systems do.
of searching video clips based on global similarities such asHowever, this approach provides very limited video infor-
color, texture, and motion. However, much of the prior worknation, and cannot answer simple questions such as, “What
in this area is restricted to global visual features. Very feWind of things are in the video?” In order to further exploit
the video content, a video shot needs to be decomposed into
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Fig. 2. General segmentation scheme. One group of frames is shHoignthe spatially segmented fram&1, P2, and P3 are the first, second, and
third predicted frames, respectively.

ties, and relationships are possible. The strategy adopted im The optical flow method does not cope well with large
NeTra-V is to first build a low-level video content description ~ motion.

that can be completely automated. This low-level contente Regions of coherent motion may contain multiple objects
description serves as the base for a high-level video content and need further segmentation for object extraction. For
description which will incorporate the domain knowledge example, a region of blue sky and white clouds that
to “intelligently” organize the low-level description through undergoes the same camera panning will be segmented
training and learning, to achieve the goal of a true object-based into one region.

representation. However, high-level content analysis is part ofTO overcome these drawbacks, it is important to incorporate

our ongoing _researc_h and 1S b_eyond the Scope of this papegpatial information into motion segmentation. One feasible
The following sections will discuss the spatio-temporal seg proach is to spatially segment the first frame to obtain
mentation and tracking schemes that are essential to this |0\B—. ; .

. . . Initial segmentation results, and then motion segment subse-
level object-based content description. A description SChemSent frames using affine region matching. There are several
and the feature descriptors for defining such a description z%g ) . '
advantages of doing this.

also given.
e Multiple objects with the same motion are separated by
spatial segmentation. These objects can still be merged
[ll. SPATIO-TEMPORAL SEGMENTATION together for analysis if necessary after motion estimation.
« Affine region matching is a more reliable way of estimat-
A. General Scheme ing motion than optical flow methods, and there are some

Spatio-temporal segmentation has been a very challenging fast_ numerical methods proposed to estimate the affine
research problem, and many algorithms are proposed in the motion parameters [2], [3], [20].
literature [6], [7], [13], [22], [23]. Many approaches use optical Problems remain for this approach to work in practice. The
flow methods [11] to estimate motion vectors at the pixlew objects entering the scene and the propagation error due
level, and then cluster pixels into regions of coherent motidf affine region matching must be handled. We propose using
to obtain segmentation results. Using motion information fé group processing scheme similar to the one employed in
segmentation is a good idea that exploits the underlying natbM®EG-2 to refresh the spatial segmentation and ensure the
of the video data, but there are two major drawbacks to thigsbustness of the algorithm. This scheme is illustrated in
approach. Fig. 2.
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Video data are processed in consecutive groups of framewerging based on color and texture similarities as well as
These groups are nonoverlapping and independent of edloh boundary length between the two regions. The algorithm
other. The best value for the number of frames in a group designed for general image data, and requires very little
depends on object motion activities in the video data. larameter tuning from the user. The only parameter to be
our experiments with football video sequences, this numbgpecified is the scale factor for localizing the boundaries. Two
was set to 7. There is onEframe in each group, which is examples of image segmentation using this algorithm are given
spatially segmented first. Starting from tlidrame, the rest in Figs. 3 and 4 where the spatially segmented images are
of the frames in the group are segmented consecutively marked ‘7.”
affine matching the segmented regions to their next frame.

These motion segmented frames are calfettames. Instead C. Motion Segmentation
e e o each S04P 1 S°he resuts of st seqmenttion can e sed for e re
toward both the forward and backward directions. This wag 0" Maching. A six-parameter two-dimensional (2-D) affine

the lenath of motion brediction o tion is reduced by h ﬁansformation is assumed for each region in the frame, and
€ lengih of motion prediction propagation 1S reduced by "ad o iimated by finding the best match in the next frame.
and segmentation accuracy is improved.

Thi h d h disadvant in that obi Consequently, segmentation results for the next frame is
_'is scheme does have a disadvantage in that o Jec%stained. A Gaussian smoothing is performed on each frame
disappearing just before theframe or appearing just after

: A .~ before affine estimation.
the I-frame are not handled in that group. The initial regions 1) Gradient-Based Affine Motion Estimatio@radient-

are dgtermlned at the time dfframe segmentation. Regl_on ased affine motion estimation is performed on the luminance
can disappear because of being covered by other regions

moving out of the image boundary, but no new regions acggrrnpgnent Of. the vi_deo data .0|_"|Iy.. Mathematically,_ the
labeled during theP-frame segmentation. The situations oF llowing functional f is to be minimized for each region
region disappearing and appearing are handled by the adjacent
groups provided that the objects stay in the scene for at least fla) = Z g[li(2', ) — Ix(x, y)] (1)
a group of frames. The time span for error is short—at most (z.9)ER
three frames or 1/10 s, and the false segmentation should not ) ] ] ) )
be severe under normal circumstances. An alternative way'gf€ré @ is a six-parameter affine motion vector which can
implementing the scheme could be simultaneous forward aPf@ Separated in the andy directions,a = [a. a,]* and
backward prediction like the one used fBrframes in MPEG- @« = [@a1 a2 %3]T' ay = lay ay ays]", g is a robust
2, i.e., thel-frames are set at the two ends of each group, aREOr norm to reject outliers, defined as [13]
Epr?' prediction with less error is chosen from the t\_/vo directions. gle) = /(o +¢?) )

is approach should achieve better segmentation results, and
can handle situations of region disappearing and appeariggheres is a scale parametef; and, are the current frame
However, the initial spatial segmentations at the two endgd the next frame, respectively,andy are pixel locations,
could differ significantly because of large object motion, thug’ = z + dz andy/ = y + dy, dz, anddy are displacement
increasing the complexity of region tracking. For this reasogectors,dz = vLa, anddy = bTay, whereb = [1 z 4%,
this approach is not adopted in our current implementation. |gnoring high-order terms, a Taylor expansion of (1) gives

f(a) = f(ao) + V f(ao) (a — ao)

B. Spatial Segmentation +Lia- a0)T V2 f(ao) (a — ag). (3)

The success of the spatio-temporal segmentation algorithm. . ,
depends largely on a good initial spatial segmentation. VVes'ng a modified Newton's method .[15] _that ensures both
use an algorithm proposed in our previous work [16], Whicﬂesce_nt and convergence, can be |ter_at|ve_ly solved by
provides a general framework for color and texture imagLéDdatlng the following equation at thigh iteration:
segmentation, and gives good segmentation results ona diverse ;x4 1] = q[k] — E|{V>f(a[k])} "'V F(alk]) (4
collection of images. A brief description of the algorithm
is given here. Unlike previous work which considers colovherec[k] is a search parameter selected to minimfzé-or
and texture segmentation as two separate issues, this metfigdVv f and V2 f are calculated as shown in (5) and (6) at the
integrates color and texture features together to compute thwtom of the next page. Note that the gradient components
segmentation. First, the direction of change in color and textupé, /d+' and 81, /3y’ can be precomputed before the start of
is identified and integrated at each pixel location. Then igerations.
vector is constructed at each pixel pointing in the direction 2) Affine Parameter Initialization:The method derived in
that a region boundary is most likely to occur. The vector fielection 111-C1 requires the cost function to be convex in affine
propagates to neighboring points with similar directions, argpace to guarantee convergence to the global minimum. We
stops if two neighboring points have opposite flow directiongassume this to be true in the vicinity of the actual affine
which indicates the presence of a boundary between tbarameter values. Thus, a good initialization is needed before
two pixels. After boundary detection, disjoint boundaries atarting the iterations. In the case that affine parameters of
connected to form closed contours. This is followed by regidhe previous frame are known, we can make a first-order
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Fig. 3. Example of spatio-temporal segmentation of one group of frames in the “flower garden” sequence. Arrows indicate the actual flow of video frames
in time. Image marked [ is segmented spatially, while images marked1:” “ P2,” and “P3"” are segmented by motion prediction.

assumption that the region is going to keep the same motidihis is only needed once for every group of frames, and can
and use the affine parameters of the previous frame as Heeperformed at the beginning of either forward or backward
initial values for the current frame. direction. The initialization of the other direction is directly
For the first frame to be segmented by motion prediction estimated by reversing the affine parameters. The search is
each group, whose previous frame isfaftame, a hierarchical performed using all three color components to ensure best
search is performed to obtain the best initial affine parameterssults. To reduce the complexity, a four-parameter affine
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Vif = Z de oy o, 88];3 dr de? 9z’ y oz 22 ur|. 6)
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Fig. 4. Example of spatio-temporal segmentation of one group of frames in a football game video database. Arrows indicate the actual flow of gideo frame
in time. Image marked [ is segmented spatially, while images marked1}” “ P2,” and “PP3” are segmented by motion prediction.

TABLE |
SEARCH RANGE AND STEP OF AFFINE PARAMETERS
x-translation (pixel) | y-translation (pixel) scale rotation (degree)
range -22t0 22 -22t0 22 0.89to0 1.11 951095
step 1 1 0.01 0.5

model which accounts for and y translations, scale, andeffective values taken into account of the projection from the
rotation is used. The image is downsampled first, and resultswnsampled image.

of the search at a lower resolution are projected back to the3) Occluded and Uncovered Area®ccluded and uncov-
original image size for fine tuning. Table | gives the valuesred areas are difficult to handle in motion prediction. The
of search range and search step for each parameter at gtablems are ill posed, and cannot be solved without assuming
original image resolution. The values of search range are th@me prior knowledge. The following heuristics are used in
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our method to avoid false segmentation due to these twimleo frames has oné frame that is segmented by color and
situations. texture information and severdt-frames that are segmented

In order to reduce the effects of occlusion, pixels alonigy motion information. Note that the segmentation technique is
boundaries are not used for affine estimation. An occlusiaiesigned quite generally, and can be adapted for object-based
occurs when there are pixels from different regions predictirmpding with modifications [19].
to the same location in the next frame. There is an ambiguity
in region labeling of that point in the next frame. The problem IV. REGION TRACKING AND LOCAL FEATURES
is solved if the layer information of the regions, i.e., which
region is on top and which is below, is known. A layered\. General Scheme

representatlon of the two overlapping regions 15 comput_edThe processes of tracking and local feature extraction are
as follows. First, errors between a predicted point and i

- . . .(E?osely related in the NeTra-V system. One advantage of using
predicting pixels from the two regions are calculated. The pmme proposed segmentation scheme is that the problem of

II\SI :(onf‘sr'blﬁ' ’ fctck)]mln\? rflromirt]he r?rﬂlor;hm;h n?bsr:]a]!lg err?r:Tegion tracking is simplified. There are two types of region
ext, for afl ot the overiapping points, the number ot (e po E?acking: intragroup region tracking and intergroup region

possibly” coming from each region is counted. The regloPracking. Within each group, region tracking is already done

with more “possible” points is considered on top of the Otheduring the segmentation. This accounts for most of the frames

one, and all overlapping points are assigned to this region.in the video and reduces the complexity of tracking. The
An uncovered area appears when two or more regions moys :

fhaining problem is to track regions across two adjacent
apart. The problem is more difficult because there is littl gp g )

information known about the new area. It m ntain mult roups. Because the regions could differ significantly in two
0 0 own about the new area. ay conta utip roups due to large object motion, it is impossible to match
regions, and may cause the algorithm to fail if it is treated

. : . S of the regions between the two groups. The constraint for
one integrated new region. Intuitively, a point is uncoverey

when the original pixel moves away while there is no refillin acking has to be relaxed. We do not attempt to match every
from the mogon ofnei hborin ix)elrls This indicates that thgeegion In the current group to the regions in the next group.
9 9p : Naturally, intergroup region tracking would be done on the

uncovered point might belong to the nearest region along tBSundary frames between the two groups. In our scheme, it
direction opposite of the original pixel motion. This is true j :

when the boundary line between the two neighboring regiohsqsepiﬁlcgvr;ig on thel-frames of the two groups because of
is perpendicular to the motion direction of the original region ' .

at the uncovered area. Since the uncovered area is usually & {-ffame segmentation is more accurate thErframe
narrow long strip, this method works well most of the time. segmentation.

There are some extreme cases when this approach fails, but 'I;]here akr.e NO NEW regions llntroduczdﬁ?ﬂf:ameﬁ. ?lnce
nevertheless, it gives a simple and logical estimation of the € tracking requirementis loose and the length of a group
uncovered area. is not too long, it is adequate to use thdrames.

¢ In our video content description discussed later, each
group of frames is represented by iiframe, and local
features are only extracted from the segmented regions in
Figs. 3 and 4 give two spatio-temporal segmentation ex- the I-frame. Therefore, it is convenient to ugdrames
amples using our proposed approach, one from an MPEG-2 for intergroup region tracking.

standard test sequence “flower garden,” the other from arhe tracking between two consecutivérames is done by
football game sequence. The resolution of all our testing vidggmparing the similarity between regions in the two frames
sequences is 352 240. One group of frames is shown fofysing some of the local features extracted from each region.
each example. Arrows indicate the actual flow of video framgsy. 5 jljustrates the intergroup region-tracking process. In this
in time, while the order of segmentation process starts with theawing, regions labeled! in six consecutivel-frames are

I frames and proceeds 81, P2, and P3 frames. It can be racked. Notice the occlusion effect that the tracking algorithm
seen from the examples that the segmentation of the tree angst handle.

the sky in the “flower garden” sequence, and the helmet and
the jersey in the football sequence is quite cfear. B. Region Tracking Using Local Features
Although these initial results shown here seem to be promis-

ing, they are far from being perfect. Further improvements q lor. text ) d locati Motion feat
are needed, and segmentation continues to be an imporfgﬁlu € color, texture, size, and location. viotion teatures are

research issue. To summarize, we have presented a pracHé o predict region Iopations. In_tegrating infprmation from

solution to the spatial-temporal segmentation problem, Whig gr.ent features 'S an |mp9rtant ISSU€. A Welghted sum of
uses all three visual features: color, texture, and motion in tHE"V'd“a' feature distances is often used in the literature, but
video data, to segment the video data. To ensure the robustrﬂégges not have much physical meaning, and the weights are

of the algorithm, a group processing scheme similar to tH@ually assigned arbitrarily. In our approach to the region-
' tching problem, we observe that color is the most dominant

one employed in the MPEG-2 standard is used. Each groupr%‘? : .
visual feature, and we use it to rank the distance measure.
2The original color images can be found at http//copland.ece.ucdpther features are only used as constraints to eliminate false

edu/Demolvideol. matches, and this is achieved by the use of thresholds. In other

D. Results of Spatio-Temporal Segmentation

The local features used for measuring region similarity
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Fig. 5. lllustration of intergroup region tracking. Regions labekédn six consecutive/-frames are tracked in the drawing. Notice the occlusion effect
that the tracking algorithm must take care of.

words, the goal is to find the most similar region in color thathosen for matching. For the other region, its second most
is also close in texture, size, and location. The optimal valusinilar region in the nexf-frame is chosen for consideration,
of the thresholds are determined experimentally and remaind the same process continues until either the match is found
unchanged for the same type of data, for example, all of the no matching region is determined.
football game databases.

Details on each feature and its distance measure are @de-Results of Region Tracking

scribed in Section V. For a regioR in the current/-frame, Fig. 6 shows two examples of intergroup tracking. A set

the steps for finding the matching region in the néstame of six consecutive/-frames is shown in each example, and
are as follows. a bounding box covering the tracked region is drawn on
1) Forevery region in the nedtframe, the size and textureeach image. The thresholds are set to be the same for all
differences withR are compared witl#s and é7—the of the testing sequence$s = 0.5, 87 = 1.0, 8, = 60,
preset thresholds for differences in size and texturgy, — 0.005, andéc = 0.25. Fig. 6(a) is a half zoom-out view
respectively. If both values are less than the thresholdst, a football field. The tracked region is a moving upper body
the region is considered as a candidate for color rag a football player. Notice the movements of other similar
ordering. objects nearby that makes tracking more difficult. Fig. 6(b)
2) Affine motion compensation is estimated to predict théhows the tracking of a person’s face. Notice that in the first
approximate location ofit in the nextI-frame. The frame, the face is partially occluded, while in the last frame,
distance between the location of a candidate regigRere is a segmentation failure which merges the face with the
and the predicted location oR is calculated and is helmet. In both cases, the tracking algorithm is robust enough
denoted byd,.d; has to be less thafl;, an image- to find the region.
size-dependent threshold, for the region to remain inThe tracking technique presented here still needs to be
candidacy. improved. One consideration is the multiple-to-one and one-to-
3) The color feature distance between a candidate regigmultiple region matching that can match one region to several
and R is weighted byl + Wrdy, where Wi is a connected regions instead of the one-to-one method used
constant. That is, the further away a candidate region, there. This will be especially useful when oversegmentation or
less likely that it will be the true match. The particulatindersegmentation occurs. Other issues include global motion
weighting by location difference is needed because thesempensation to estimate true object motion and the use of
might be some objects nearby with similar color, texturghape features for the matching process.
and size. The weighted color distande is checked
against a thresholé to validate candidacy. V. LOW-LEVEL VIDEO CONTENT DESCRIPTION
4) The candidate regions are ranked in termsief The
region having the minimum value is determined to bg\
the match forR. _ . o
If a match satisfying all of the conditions cannot be found, With regions tracked and local features extracted, it is now
R is determined to have no match in the nétrame. If there poss_lble to define a low-level object-based dgscrlptlon scheme
is a sequence of regions tracked upitothe tracking ends at for yldeo data. Before we proceed, two new items need to be
the current frame. Possible scenarios for this kind of situati&‘?f'ned'
could be that the object is getting occluded, moving out of * I-region: a region in an/-frame is called ar region.
the image boundary, or turning away from the camera so that Subobject: a subobject is a sequence of trackéd

. Description Scheme and Feature Descriptors

the surface is no longer seen. On the other haddan be regions. The reason for using the name “subobject” is
the start of a new sequence of matched regions if there is no that object definitions are often quite subjective, and
previous tracking that goes up . a spatially segmented-region is usually a part of a

) lf. two reglon_s in the currenf-frame have th'e §ame mO_St 3The terminology of descriptors and the description scheme used here is
similar region in the next/-frame, the more similar one is similar to the ones used in the MPEG-7 requirements document V.5.
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ik

Fig. 6. Two examples of intergroup tracking in a football game video database, each showing a set of six consdcamns, which covers 42
frames or 1.4 s of video.

video shot (shot features)

< N

subobject subobject fundamental
(subobject features) (subobject features) element
I-region I-region
(I-region features) ~  (I-region features)

Fig. 7. Structure of low-level content description scheme.

meaningful large physical object. In the actual video, It can be seen from the structure that each group of video
a subobject describes the visual characteristics of tiedmes is represented by ifsframe. Since the length of the
part of an object. In our experiments, the duration of group is not long and feature information does not change
subobject is required to be at least/drames or 0.5 s much within each group, this approach is valid, and reduces
long to ensure that the subobject is indeed a part of @fe complexity. Within each group, the segmentation provides
object that stays significantly long in the scene. subobject access on a frame-by-frame basis, which is needed

The structure of the description scheme is given in Fig. for object manipulation.

« Each video shot is decomposed into a set of subobjectsA subobject is a fundamental element of this description
The subobjects are obtained by tracking. scheme. Similarity search and retrieval are mainly performed

» Each subobject consists of a sequence of tracked using the subobjectd-region information can also be used
regions. Thel-regions are obtained by segmentation. if necessary. For example, in order to answer a query such
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TABLE I
FEATURE DESCRIPTORS ATEACH LEVEL

Features | I-region Subobject Video Shot
label region label in the subobject | subobject label in the shot labels of all subobjects
region label in the frame frame numbers

labels of all I-regions

color region color histogram mean of [-region features global color histogram
texture | region Gabor texture feature | mean of I-region features global Gabor texture feature
motion | affine motion parameters mean and variance of I- global motion histogram

region features

shape Fourier-based descriptor mean of [-region features
using curvatare, centroid
distance, and complex coor-
dinate functions

size number of pixels mean of [-region features

location | centroid and bounding box | mean

as “find the subobjects that move from left to right,” motion Shape: The contour of a region is represented by curvature,
and location information of eachregion of the subobject is centroid distance, and complex coordinate functions. The
needed. Extracted subobjects are intermediate results that wdlhtour length is normalized to 64. For each representation, the
be used to obtain meaningful physical objects in a high-levemplitude part of its FFT is used as shape feature to reduce
content description scheme. noise effects and preserve rotational invariance. The feature
The three elements in the description scheme, shot, swectors of all three representations are lexically arranged to
object, andI-region, are described by their correspondingbtain the final feature vector. Euclidean distance is used for
feature descriptors, summarized in Table 1. Shot-level featur@igilarity measure. Details can be found in [17].
are global visual features. Subobject-level features are derive®ize: The size of each region is its number of pixels
from the statistics of thé-region features. Brief explanationsnormalized by the video frame size. For two regions with size
of the feature descriptors are given below. S.4 andSp, the difference in size is expressed in a ratio form,
Label: This is for access purpose. For example, if a specifi€a — Spl/ max(Sa, Sp).
I-region is needed, the label of the subobject that it belongsLocation: Location of a region is described by its cen-
to is first obtained from the shot label. From the subobjet©id. The difference in locations is roughly estimated by the
label, the I-region label and the frame number are foundruclidean distance between the two centroids.
Finally, from thel-region label, the actual region in the frame In our current subobject search and retrieval experiments,
is obtained. the method of integrating different subobject features is similar
Color: A 256-dimensional color histogram is used. Th& the one used in region matching. There is one dominant
256 color clusters are trained from the test database usfggture for rank ordering, and other features are only used as

a generalized Lloyd algorithm. The color distance is definé??nstra?“ts- However, many problems remain for further inves-
quadratically using the method described in [8]. tigation: Which features will best characterize the subobjects

Texture: Each pixel in the image is filtered by a Gabofor some common application needs? Which feature among

filterbank of five scales and six orientations. A 60-dimension{le™ IS to be the dominant one? At this stage, the user has to
Gabor texture feature vector is obtained by the mean and fiRlect the appropriate features for the query.
variance of these filtered coefficients. A Euclidean distance
measure is used. Details of Gabor texture features can BbeSearch Results and Discussions
found in [18]. Fig. 8 shows an example of retrieving subobjects with
Motion: Six-dimensional affine motion parameters are usefimilar color (dominant) and texture. The query is a football
for I-region motion features. Because a Euclidean distance ff¥ayer’s face with a mask. The search performed on a group
the affine parameters does not have much physical meanigg46 similar video shots including the query shot. These shots
an appropriate similarity measure for this type of motioall contain zoom-in views of football players from two teams
feature is still under investigation. However, theregion of different uniforms. The shots range from 60 to 300 frames
affine motion feature can be used indirectly to predict réeng and contain a total of 2500-3000 subobjects. The top six
gion locations as mentioned in the tracking process. At shetatches are shown, and they all contain faces with a mask.
level, a 256-dimensional global motion histogram is computedhe first retrieval is, in fact, the reappearance of the player’s
The motion histogram describes statistical information of tiface in the query video shot after he turns his face sideways.
motion vectors, and details can be found in [5]. The third and fourth retrievals also belong to one video shot,
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Fig. 9. Example of retrieving scenes where there is a subject moving across the screen in 2 s. A box is drawn on the images in the third column
to highlight the object.

but are separated into two subobjects due to a segmentatiott can be seen from the examples that the proposed low-level
failure. content description provides a way of finding information in
By using the subobject information in the video data, thine video without any high-level understanding of the actual
system is also able to answer more complicated questions, sachtent. How to organize this information into a meaningful
as “show all the scenes where there is an object moving acrosgresentation is an interesting and challenging problem. Most
the screen in 2 s.” The corresponding query can no longer tiethe time, users are not satisfied with meaningless retrieval
described by a simple example, but could be expressed usiagults that are merely similar in visual appearance. For
a query language, for example, as shown in Fig. 9. Soregample, in Fig. 10, the system successfully identifies three
retrieval results are also given in the figure. In each of tlebobjects: a flying football, a diving player's head, and his
retrievals, there is a human object moving across the screepper body in the same video sequence. While each individual
Some of the movements are actual object motion, while sorsebobject contains one separate piece of information in the
are due to camera panning. video, the integration of all of the information to classify such a
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Fig. 10. Three identified subobjects in the same video sequence. The same conskfatimes are shown in each row. The three subobjects are, from
top to bottom, a football, a player's head, and his upper body, respectively.
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