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Abstract—We present here a prototype video analysis and
retrieval system, called NeTra-V, that is being developed to
build an object-based video representation for functionalities
such as search and retrieval of video objects. A region-based
content description scheme using low-level visual descriptors is
proposed. In order to obtain regions for local feature extraction,
a new spatio-temporal segmentation and region-tracking scheme
is employed. The segmentation algorithm uses all three visual
features: color, texture, and motion in the video data. A group
processing scheme similar to the one in the MPEG-2 standard is
used to ensure the robustness of the segmentation. The proposed
approach can handle complex scenes with large motion. After
segmentation, regions are tracked through the video sequence
using extracted local features. The results of tracking are se-
quences of coherent regions, called “subobjects.” Subobjects are
the fundamental elements in our low-level content description
scheme, which can be used to obtain meaningful physical objects
in a high-level content description scheme. Experimental results
illustrating segmentation and retrieval are provided.

Index Terms—Content-based retrieval, object-based video re-
trieval, region tracking, spatio-temporal segmentation, video in-
dexing.

I. INTRODUCTION

W ITH the rapid developments in multimedia and Internet
applications, there is a growing need for new repre-

sentations of video that allow not only compact storage of
data, but also content-based functionalities such as search and
manipulation of objects, semantic description of scenes, de-
tection of unusual events, and possible recognition of objects.
Current video standards, such as MPEG-2 and H.263 [10], are
designed to achieve good data compression, but do not provide
any content-related functionalities.

There has been much work done on the emerging MPEG-4
standard [21], which is targeted toward access and manipula-
tion of objects as well as more efficient data compression.
However, to date, applications are limited to cutting and
pasting a few objects in simple scenes. There is no visual
information extracted from the object itself that can be used
for a similarity search or for recognition.

On the other hand, growing research in content-based video
retrieval [1], [5], [9], [12], [14], [25], [26] has provided ways
of searching video clips based on global similarities such as
color, texture, and motion. However, much of the prior work
in this area is restricted to global visual features. Very few
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[4], [24] have addressed practical issues of spatio-temporal
segmentation for object-based video retrieval.

This paper describes some key aspects of a video anal-
ysis and retrieval system, called NeTra-V,1 which is being
developed with the objective of providing content-related
functionalities. One of the main research focuses of NeTra-V is
to build an object-based representation for video data, which
will enable the search and retrieval of meaningful physical
objects in a video database as well as other video content
analysis. Toward this objective, a region-based content de-
scription scheme using low-level visual descriptors is proposed
here. In order to obtain regions for local feature extraction, a
new spatio-temporal segmentation and region tracking scheme
is employed. Section II gives an overview of the system.
Section III details the spatio-temporal segmentation scheme.
Section IV illustrates the use of local features for region
tracking. Section V describes the low-level video content
description scheme and the corresponding feature descriptors.
Section VI concludes with discussions.

II. SYSTEM OVERVIEW

Fig. 1 shows the schematic diagram of the NeTra-V system.
The research focus of this paper is on the shaded blocks,
with the emphasis on the segmentation and tracking scheme
essential to the low-level content description. Our work on
temporal shot parsing and global feature extraction has been
reported earlier in [5].

A video clip, whether in raw format or in one of the
current compression standards, is a stream of binaries not
well organized in terms of its content. As a first step toward
better organization of data, the long video clip is parsed in
the temporal domain into short video shots, each of which
contains consistent visual content. Often, partitioning points
of the video shots are natural camera breaks or editing cuts.
A video shot can be considered as a basic unit of video data.
Since visual information is similar in each shot, global image
features such as color, texture, and motion can be extracted
and used for the search and retrieval of similar video shots.
This is what most current video retrieval systems do.

However, this approach provides very limited video infor-
mation, and cannot answer simple questions such as, “What
kind of things are in the video?” In order to further exploit
the video content, a video shot needs to be decomposed into
meaningful physical objects, so that search, retrieval, and
content manipulation based on object characteristics, activi-

1Netra means eye in Sanskrit, an ancient Indian language. NeTra is also
the name of an image retrieval system described in [17].
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Fig. 1. Schematic diagram of the NeTra-V system.

Fig. 2. General segmentation scheme. One group of frames is shown.I is the spatially segmented frame.P1, P2, and P3 are the first, second, and
third predicted frames, respectively.

ties, and relationships are possible. The strategy adopted in
NeTra-V is to first build a low-level video content description
that can be completely automated. This low-level content
description serves as the base for a high-level video content
description which will incorporate the domain knowledge
to “intelligently” organize the low-level description through
training and learning, to achieve the goal of a true object-based
representation. However, high-level content analysis is part of
our ongoing research and is beyond the scope of this paper.

The following sections will discuss the spatio-temporal seg-
mentation and tracking schemes that are essential to this low-
level object-based content description. A description scheme
and the feature descriptors for defining such a description are
also given.

III. SPATIO-TEMPORAL SEGMENTATION

A. General Scheme

Spatio-temporal segmentation has been a very challenging
research problem, and many algorithms are proposed in the
literature [6], [7], [13], [22], [23]. Many approaches use optical
flow methods [11] to estimate motion vectors at the pixel
level, and then cluster pixels into regions of coherent motion
to obtain segmentation results. Using motion information for
segmentation is a good idea that exploits the underlying nature
of the video data, but there are two major drawbacks to this
approach.

• The optical flow method does not cope well with large
motion.

• Regions of coherent motion may contain multiple objects
and need further segmentation for object extraction. For
example, a region of blue sky and white clouds that
undergoes the same camera panning will be segmented
into one region.

To overcome these drawbacks, it is important to incorporate
spatial information into motion segmentation. One feasible
approach is to spatially segment the first frame to obtain
initial segmentation results, and then motion segment subse-
quent frames using affine region matching. There are several
advantages of doing this.

• Multiple objects with the same motion are separated by
spatial segmentation. These objects can still be merged
together for analysis if necessary after motion estimation.

• Affine region matching is a more reliable way of estimat-
ing motion than optical flow methods, and there are some
fast numerical methods proposed to estimate the affine
motion parameters [2], [3], [20].

Problems remain for this approach to work in practice. The
new objects entering the scene and the propagation error due
to affine region matching must be handled. We propose using
a group processing scheme similar to the one employed in
MPEG-2 to refresh the spatial segmentation and ensure the
robustness of the algorithm. This scheme is illustrated in
Fig. 2.
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Video data are processed in consecutive groups of frames.
These groups are nonoverlapping and independent of each
other. The best value for the number of frames in a group
depends on object motion activities in the video data. In
our experiments with football video sequences, this number
was set to 7. There is one-frame in each group, which is
spatially segmented first. Starting from the-frame, the rest
of the frames in the group are segmented consecutively by
affine matching the segmented regions to their next frame.
These motion segmented frames are called-frames. Instead
of the beginning frame, the middle frame of each group is set
as the -frame in our implementation. Motion prediction is
toward both the forward and backward directions. This way,
the length of motion prediction propagation is reduced by half
and segmentation accuracy is improved.

This scheme does have a disadvantage in that objects
disappearing just before the-frame or appearing just after
the -frame are not handled in that group. The initial regions
are determined at the time of-frame segmentation. Regions
can disappear because of being covered by other regions or
moving out of the image boundary, but no new regions are
labeled during the -frame segmentation. The situations of
region disappearing and appearing are handled by the adjacent
groups provided that the objects stay in the scene for at least
a group of frames. The time span for error is short—at most
three frames or 1/10 s, and the false segmentation should not
be severe under normal circumstances. An alternative way of
implementing the scheme could be simultaneous forward and
backward prediction like the one used for-frames in MPEG-
2, i.e., the -frames are set at the two ends of each group, and
the prediction with less error is chosen from the two directions.
This approach should achieve better segmentation results, and
can handle situations of region disappearing and appearing.
However, the initial spatial segmentations at the two ends
could differ significantly because of large object motion, thus
increasing the complexity of region tracking. For this reason,
this approach is not adopted in our current implementation.

B. Spatial Segmentation

The success of the spatio-temporal segmentation algorithm
depends largely on a good initial spatial segmentation. We
use an algorithm proposed in our previous work [16], which
provides a general framework for color and texture image
segmentation, and gives good segmentation results on a diverse
collection of images. A brief description of the algorithm
is given here. Unlike previous work which considers color
and texture segmentation as two separate issues, this method
integrates color and texture features together to compute the
segmentation. First, the direction of change in color and texture
is identified and integrated at each pixel location. Then a
vector is constructed at each pixel pointing in the direction
that a region boundary is most likely to occur. The vector field
propagates to neighboring points with similar directions, and
stops if two neighboring points have opposite flow directions,
which indicates the presence of a boundary between the
two pixels. After boundary detection, disjoint boundaries are
connected to form closed contours. This is followed by region

merging based on color and texture similarities as well as
the boundary length between the two regions. The algorithm
is designed for general image data, and requires very little
parameter tuning from the user. The only parameter to be
specified is the scale factor for localizing the boundaries. Two
examples of image segmentation using this algorithm are given
in Figs. 3 and 4 where the spatially segmented images are
marked “ .”

C. Motion Segmentation

The results of spatial segmentation can be used for affine re-
gion matching. A six-parameter two-dimensional (2-D) affine
transformation is assumed for each region in the frame, and
is estimated by finding the best match in the next frame.
Consequently, segmentation results for the next frame is
obtained. A Gaussian smoothing is performed on each frame
before affine estimation.

1) Gradient-Based Affine Motion Estimation:Gradient-
based affine motion estimation is performed on the luminance
component of the video data only. Mathematically, the
following functional is to be minimized for each region

:

(1)

where is a six-parameter affine motion vector which can
be separated in the and directions, and

, , is a robust
error norm to reject outliers, defined as [13]

(2)

where is a scale parameter, and are the current frame
and the next frame, respectively,and are pixel locations,

and , , and are displacement
vectors, and , where .

Ignoring high-order terms, a Taylor expansion of (1) gives

(3)

Using a modified Newton’s method [15] that ensures both
descent and convergence, can be iteratively solved by
updating the following equation at theth iteration:

(4)

where is a search parameter selected to minimize. For
(1), and are calculated as shown in (5) and (6) at the
bottom of the next page. Note that the gradient components

and can be precomputed before the start of
iterations.

2) Affine Parameter Initialization:The method derived in
Section III-C1 requires the cost function to be convex in affine
space to guarantee convergence to the global minimum. We
assume this to be true in the vicinity of the actual affine
parameter values. Thus, a good initialization is needed before
starting the iterations. In the case that affine parameters of
the previous frame are known, we can make a first-order
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Fig. 3. Example of spatio-temporal segmentation of one group of frames in the “flower garden” sequence. Arrows indicate the actual flow of video frames
in time. Image marked “I” is segmented spatially, while images marked “P1,” “P2,” and “P3” are segmented by motion prediction.

assumption that the region is going to keep the same motion,
and use the affine parameters of the previous frame as the
initial values for the current frame.

For the first frame to be segmented by motion prediction in
each group, whose previous frame is an-frame, a hierarchical
search is performed to obtain the best initial affine parameters.

This is only needed once for every group of frames, and can
be performed at the beginning of either forward or backward
direction. The initialization of the other direction is directly
estimated by reversing the affine parameters. The search is
performed using all three color components to ensure best
results. To reduce the complexity, a four-parameter affine

(5)

(6)



620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 1998

Fig. 4. Example of spatio-temporal segmentation of one group of frames in a football game video database. Arrows indicate the actual flow of video frames
in time. Image marked “I” is segmented spatially, while images marked “P1,” “P2,” and “P3” are segmented by motion prediction.

TABLE I
SEARCH RANGE AND STEP OF AFFINE PARAMETERS

model which accounts for and translations, scale, and
rotation is used. The image is downsampled first, and results
of the search at a lower resolution are projected back to the
original image size for fine tuning. Table I gives the values
of search range and search step for each parameter at the
original image resolution. The values of search range are the

effective values taken into account of the projection from the
downsampled image.

3) Occluded and Uncovered Areas:Occluded and uncov-
ered areas are difficult to handle in motion prediction. The
problems are ill posed, and cannot be solved without assuming
some prior knowledge. The following heuristics are used in
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our method to avoid false segmentation due to these two
situations.

In order to reduce the effects of occlusion, pixels along
boundaries are not used for affine estimation. An occlusion
occurs when there are pixels from different regions predicting
to the same location in the next frame. There is an ambiguity
in region labeling of that point in the next frame. The problem
is solved if the layer information of the regions, i.e., which
region is on top and which is below, is known. A layered
representation of the two overlapping regions is computed
as follows. First, errors between a predicted point and its
predicting pixels from the two regions are calculated. The point
is “possibly” coming from the region with a smaller error.
Next, for all of the overlapping points, the number of the points
“possibly” coming from each region is counted. The region
with more “possible” points is considered on top of the other
one, and all overlapping points are assigned to this region.

An uncovered area appears when two or more regions move
apart. The problem is more difficult because there is little
information known about the new area. It may contain multiple
regions, and may cause the algorithm to fail if it is treated as
one integrated new region. Intuitively, a point is uncovered
when the original pixel moves away while there is no refilling
from the motion of neighboring pixels. This indicates that the
uncovered point might belong to the nearest region along the
direction opposite of the original pixel motion. This is true
when the boundary line between the two neighboring regions
is perpendicular to the motion direction of the original region
at the uncovered area. Since the uncovered area is usually a
narrow long strip, this method works well most of the time.
There are some extreme cases when this approach fails, but
nevertheless, it gives a simple and logical estimation of the
uncovered area.

D. Results of Spatio-Temporal Segmentation

Figs. 3 and 4 give two spatio-temporal segmentation ex-
amples using our proposed approach, one from an MPEG-2
standard test sequence “flower garden,” the other from a
football game sequence. The resolution of all our testing video
sequences is 352 240. One group of frames is shown for
each example. Arrows indicate the actual flow of video frames
in time, while the order of segmentation process starts with the

frames and proceeds to1, 2, and 3 frames. It can be
seen from the examples that the segmentation of the tree and
the sky in the “flower garden” sequence, and the helmet and
the jersey in the football sequence is quite clear.2

Although these initial results shown here seem to be promis-
ing, they are far from being perfect. Further improvements
are needed, and segmentation continues to be an important
research issue. To summarize, we have presented a practical
solution to the spatial–temporal segmentation problem, which
uses all three visual features: color, texture, and motion in the
video data, to segment the video data. To ensure the robustness
of the algorithm, a group processing scheme similar to the
one employed in the MPEG-2 standard is used. Each group of

2The original color images can be found at http://copland.ece.ucsb.
edu/Demo/video/.

video frames has one frame that is segmented by color and
texture information and several-frames that are segmented
by motion information. Note that the segmentation technique is
designed quite generally, and can be adapted for object-based
coding with modifications [19].

IV. REGION TRACKING AND LOCAL FEATURES

A. General Scheme

The processes of tracking and local feature extraction are
closely related in the NeTra-V system. One advantage of using
the proposed segmentation scheme is that the problem of
region tracking is simplified. There are two types of region
tracking: intragroup region tracking and intergroup region
tracking. Within each group, region tracking is already done
during the segmentation. This accounts for most of the frames
in the video and reduces the complexity of tracking. The
remaining problem is to track regions across two adjacent
groups. Because the regions could differ significantly in two
groups due to large object motion, it is impossible to match
all of the regions between the two groups. The constraint for
tracking has to be relaxed. We do not attempt to match every
region in the current group to the regions in the next group.

Naturally, intergroup region tracking would be done on the
boundary frames between the two groups. In our scheme, it
is performed on the -frames of the two groups because of
the following.

• -frame segmentation is more accurate than-frame
segmentation.

• There are no new regions introduced in-frames. Since
the tracking requirement is loose and the length of a group
is not too long, it is adequate to use the-frames.

• In our video content description discussed later, each
group of frames is represented by its-frame, and local
features are only extracted from the segmented regions in
the -frame. Therefore, it is convenient to use-frames
for intergroup region tracking.

The tracking between two consecutive-frames is done by
comparing the similarity between regions in the two frames
using some of the local features extracted from each region.
Fig. 5 illustrates the intergroup region-tracking process. In this
drawing, regions labeled in six consecutive -frames are
tracked. Notice the occlusion effect that the tracking algorithm
must handle.

B. Region Tracking Using Local Features

The local features used for measuring region similarity
include color, texture, size, and location. Motion features are
used to predict region locations. Integrating information from
different features is an important issue. A weighted sum of
individual feature distances is often used in the literature, but
it does not have much physical meaning, and the weights are
usually assigned arbitrarily. In our approach to the region-
matching problem, we observe that color is the most dominant
visual feature, and we use it to rank the distance measure.
Other features are only used as constraints to eliminate false
matches, and this is achieved by the use of thresholds. In other
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Fig. 5. Illustration of intergroup region tracking. Regions labeledA in six consecutiveI-frames are tracked in the drawing. Notice the occlusion effect
that the tracking algorithm must take care of.

words, the goal is to find the most similar region in color that
is also close in texture, size, and location. The optimal values
of the thresholds are determined experimentally and remain
unchanged for the same type of data, for example, all of the
football game databases.

Details on each feature and its distance measure are de-
scribed in Section V. For a region in the current -frame,
the steps for finding the matching region in the next-frame
are as follows.

1) For every region in the nextframe, the size and texture
differences with are compared with and —the
preset thresholds for differences in size and texture,
respectively. If both values are less than the thresholds,
the region is considered as a candidate for color rank
ordering.

2) Affine motion compensation is estimated to predict the
approximate location of in the next -frame. The
distance between the location of a candidate region
and the predicted location of is calculated and is
denoted by has to be less than , an image-
size-dependent threshold, for the region to remain in
candidacy.

3) The color feature distance between a candidate region
and is weighted by , where is a
constant. That is, the further away a candidate region, the
less likely that it will be the true match. The particular
weighting by location difference is needed because there
might be some objects nearby with similar color, texture,
and size. The weighted color distance is checked
against a threshold to validate candidacy.

4) The candidate regions are ranked in terms of. The
region having the minimum value is determined to be
the match for .

If a match satisfying all of the conditions cannot be found,
is determined to have no match in the next-frame. If there

is a sequence of regions tracked up to, the tracking ends at
the current frame. Possible scenarios for this kind of situation
could be that the object is getting occluded, moving out of
the image boundary, or turning away from the camera so that
the surface is no longer seen. On the other hand,can be
the start of a new sequence of matched regions if there is no
previous tracking that goes up to.

If two regions in the current -frame have the same most
similar region in the next -frame, the more similar one is

chosen for matching. For the other region, its second most
similar region in the next -frame is chosen for consideration,
and the same process continues until either the match is found
or no matching region is determined.

C. Results of Region Tracking

Fig. 6 shows two examples of intergroup tracking. A set
of six consecutive -frames is shown in each example, and
a bounding box covering the tracked region is drawn on
each image. The thresholds are set to be the same for all
of the testing sequences: , , ,

, and . Fig. 6(a) is a half zoom-out view
of a football field. The tracked region is a moving upper body
of a football player. Notice the movements of other similar
objects nearby that makes tracking more difficult. Fig. 6(b)
shows the tracking of a person’s face. Notice that in the first
frame, the face is partially occluded, while in the last frame,
there is a segmentation failure which merges the face with the
helmet. In both cases, the tracking algorithm is robust enough
to find the region.

The tracking technique presented here still needs to be
improved. One consideration is the multiple-to-one and one-to-
multiple region matching that can match one region to several
connected regions instead of the one-to-one method used
here. This will be especially useful when oversegmentation or
undersegmentation occurs. Other issues include global motion
compensation to estimate true object motion and the use of
shape features for the matching process.

V. LOW-LEVEL VIDEO CONTENT DESCRIPTION

A. Description Scheme and Feature Descriptors3

With regions tracked and local features extracted, it is now
possible to define a low-level object-based description scheme
for video data. Before we proceed, two new items need to be
defined.

• -region: a region in an -frame is called an region.
• Subobject: a subobject is a sequence of tracked-

regions. The reason for using the name “subobject” is
that object definitions are often quite subjective, and
a spatially segmented-region is usually a part of a

3The terminology of descriptors and the description scheme used here is
similar to the ones used in the MPEG-7 requirements document V.5.
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Fig. 6. Two examples of intergroup tracking in a football game video database, each showing a set of six consecutiveI-frames, which covers 42
frames or 1.4 s of video.

Fig. 7. Structure of low-level content description scheme.

meaningful large physical object. In the actual video,
a subobject describes the visual characteristics of that
part of an object. In our experiments, the duration of a
subobject is required to be at least 3-frames or 0.5 s
long to ensure that the subobject is indeed a part of an
object that stays significantly long in the scene.

The structure of the description scheme is given in Fig. 7.

• Each video shot is decomposed into a set of subobjects.
The subobjects are obtained by tracking.

• Each subobject consists of a sequence of tracked-
regions. The -regions are obtained by segmentation.

It can be seen from the structure that each group of video
frames is represented by its-frame. Since the length of the
group is not long and feature information does not change
much within each group, this approach is valid, and reduces
the complexity. Within each group, the segmentation provides
subobject access on a frame-by-frame basis, which is needed
for object manipulation.

A subobject is a fundamental element of this description
scheme. Similarity search and retrieval are mainly performed
using the subobjects.-region information can also be used
if necessary. For example, in order to answer a query such
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TABLE II
FEATURE DESCRIPTORS ATEACH LEVEL

as “find the subobjects that move from left to right,” motion
and location information of each-region of the subobject is
needed. Extracted subobjects are intermediate results that will
be used to obtain meaningful physical objects in a high-level
content description scheme.

The three elements in the description scheme, shot, sub-
object, and -region, are described by their corresponding
feature descriptors, summarized in Table II. Shot-level features
are global visual features. Subobject-level features are derived
from the statistics of the-region features. Brief explanations
of the feature descriptors are given below.

Label: This is for access purpose. For example, if a specific
-region is needed, the label of the subobject that it belongs

to is first obtained from the shot label. From the subobject
label, the -region label and the frame number are found.
Finally, from the -region label, the actual region in the frame
is obtained.

Color: A 256-dimensional color histogram is used. The
256 color clusters are trained from the test database using
a generalized Lloyd algorithm. The color distance is defined
quadratically using the method described in [8].

Texture: Each pixel in the image is filtered by a Gabor
filterbank of five scales and six orientations. A 60-dimensional
Gabor texture feature vector is obtained by the mean and the
variance of these filtered coefficients. A Euclidean distance
measure is used. Details of Gabor texture features can be
found in [18].

Motion: Six-dimensional affine motion parameters are used
for -region motion features. Because a Euclidean distance for
the affine parameters does not have much physical meaning,
an appropriate similarity measure for this type of motion
feature is still under investigation. However, the-region
affine motion feature can be used indirectly to predict re-
gion locations as mentioned in the tracking process. At shot
level, a 256-dimensional global motion histogram is computed.
The motion histogram describes statistical information of the
motion vectors, and details can be found in [5].

Shape: The contour of a region is represented by curvature,
centroid distance, and complex coordinate functions. The
contour length is normalized to 64. For each representation, the
amplitude part of its FFT is used as shape feature to reduce
noise effects and preserve rotational invariance. The feature
vectors of all three representations are lexically arranged to
obtain the final feature vector. Euclidean distance is used for
similarity measure. Details can be found in [17].

Size: The size of each region is its number of pixels
normalized by the video frame size. For two regions with size

and , the difference in size is expressed in a ratio form,
.

Location: Location of a region is described by its cen-
troid. The difference in locations is roughly estimated by the
Euclidean distance between the two centroids.

In our current subobject search and retrieval experiments,
the method of integrating different subobject features is similar
to the one used in region matching. There is one dominant
feature for rank ordering, and other features are only used as
constraints. However, many problems remain for further inves-
tigation: Which features will best characterize the subobjects
for some common application needs? Which feature among
them is to be the dominant one? At this stage, the user has to
select the appropriate features for the query.

B. Search Results and Discussions

Fig. 8 shows an example of retrieving subobjects with
similar color (dominant) and texture. The query is a football
player’s face with a mask. The search performed on a group
of 46 similar video shots including the query shot. These shots
all contain zoom-in views of football players from two teams
of different uniforms. The shots range from 60 to 300 frames
long and contain a total of 2500–3000 subobjects. The top six
matches are shown, and they all contain faces with a mask.
The first retrieval is, in fact, the reappearance of the player’s
face in the query video shot after he turns his face sideways.
The third and fourth retrievals also belong to one video shot,
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Fig. 8. Example of retrieving subobjects with similar color and texture.

Fig. 9. Example of retrieving scenes where there is a subject moving across the screen in 2 s. A box is drawn on the images in the third column
to highlight the object.

but are separated into two subobjects due to a segmentation
failure.

By using the subobject information in the video data, the
system is also able to answer more complicated questions, such
as “show all the scenes where there is an object moving across
the screen in 2 s.” The corresponding query can no longer be
described by a simple example, but could be expressed using
a query language, for example, as shown in Fig. 9. Some
retrieval results are also given in the figure. In each of the
retrievals, there is a human object moving across the screen.
Some of the movements are actual object motion, while some
are due to camera panning.

It can be seen from the examples that the proposed low-level
content description provides a way of finding information in
the video without any high-level understanding of the actual
content. How to organize this information into a meaningful
representation is an interesting and challenging problem. Most
of the time, users are not satisfied with meaningless retrieval
results that are merely similar in visual appearance. For
example, in Fig. 10, the system successfully identifies three
subobjects: a flying football, a diving player’s head, and his
upper body in the same video sequence. While each individual
subobject contains one separate piece of information in the
video, the integration of all of the information to classify such a
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Fig. 10. Three identified subobjects in the same video sequence. The same consecutiveI-frames are shown in each row. The three subobjects are, from
top to bottom, a football, a player’s head, and his upper body, respectively.

scene as an action of catching a football would provide a more
meaningful description of the video content. However, this is
hard to achieve automatically using low-level features. Incor-
porating domain knowledge into these features through train-
ing and learning is necessary to go beyond the current stage
and achieve the goal of a true object-based representation.

VI. CONCLUSIONS

In this paper, we have described some key aspects of
the NeTra-V system, whose main objective is to build an
object-based video representation. A low-level content de-
scription scheme is proposed, and the components necessary
to achieve such a description are implemented, including
a new automatic spatio-temporal segmentation and region-
tracking scheme. Some experimental results are provided
to demonstrate the feasibility of our approach. Quantitative
performance evaluation measures are being investigated. For
future research, our main focus is on incorporating domain-
specific knowledge to achieve a high-level content description.
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