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Abstract—We present a system for automatically extracting the 
region of interest and controlling virtual cameras control based on 
panoramic video. It targets applications such as classroom lectures 
and video conferencing. For capturing panoramic video, we use 
the FlyCam system that produces high resolution, wide-angle 
video by stitching video images from multiple stationary cameras. 
To generate conventional video, a region of interest (ROI) can be 
cropped from the panoramic video. We propose methods for ROI 
detection, tracking, and virtual camera control that work in both 
the uncompressed and compressed domains.  The ROI is located 
from motion and color information in the uncompressed domain 
and macroblock information in the compressed domain, and 
tracked using a Kalman filter. This results in virtual camera 
control that simulates human controlled video recording. The 
system has no physical camera motion and the virtual camera 
parameters are readily available for video indexing. 
 

Index Terms—Panoramic Video, Region of Interest, Virtual 
Camera Control, MPEG. 
 

I. INTRODUCTION 

Distance learning and teleconferencing are becoming 
increasingly popular. A typical scenario is a speaker giving a 
lecture in a seminar or teleconference. Good speakers typically 
move around and gesture to enhance the lecture. Ideally, an 
automated video capture system will keep the speaker “in the 
frame.” Though a wide-angle camera may do this, it will 
necessarily result in a low resolution image of the distant 
speaker. Conversely, a mechanical pan-tilt-zoom camera can 
capture a good image, but the speaker may wander out of the 
camera view even with sophisticated automatic tracking. This 
paper presents a solution where a good video image is 
automatically produced by cropping a region of interest  (ROI) 
containing the speaker from a high-resolution panoramic image. 

The first problem considered here is the design of the video 
capture system. It is natural to use a panoramic camera to 
capture a wide-angle view of the entire scene, with the 
advantage that the speaker is always in the scene. The ROI 
image of the speaker is obtained by cropping the panoramic 
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video. The system is robust because the subject is always in the 
panoramic view. In this paper, the FlyCam [10] system 
generates wide-angle panoramic video. Fig. 1(a) shows an 
example panoramic video frame, and a corresponding ROI is 
shown in Fig. 1(b). 

Cropping a ROI from the panoramic video results in a 
“virtual camera” that can be panned and zoomed. The second 
problem considered here is how to control the virtual camera to 
produce a smooth ROI sequence for viewing. In the real-time 
case, the panoramic video is typically in raw (uncompressed) 
format, and needs processing in the uncompressed domain. For 
applications where recorded video is viewed later, compressed 
domain processing is more efficient. Our system supports 
MPEG-1 and MPEG-2 video compression. The primary 
objective is to provide fast and robust virtual camera control in 
both the compressed and uncompressed domains. 

We integrate ROI detection and tracking for virtual camera 
control. In the uncompressed domain [25], the ROI is detected 
from motion and color information. In compressed domain [24], 
the ROI is first located from P frame macroblock information. 
Then, detection results are up-sampled to obtain the ROI for the 
whole video stream. The ROI location is then processed using a 
Kalman filter to steer a virtual camera for display or recording. 
The Kalman filter output smoothes the ROI motion to mimic the 
response of a human camera operator (as discussed later). Since 
the panoramic camera is statically mounted, no physical camera 
control is needed.  

The paper is organized as follows: Section II discusses the 
related work. Section III introduces the FlyCam system and the 
general system architecture. Section IV discusses the ROI 
detection in uncompressed and compressed domain. Section V 
discusses tracking using Kalman filtering. Section VI details the 
virtual camera control strategy. Experiments and discussions 
are given in section VII and section VIII, respectively. 

II. RELATED WORK 

Research on automatically capturing lectures or conferences 
can be categorized into two areas. The first involves active 
camera tracking and the second involves virtual camera control 
based on panoramic video capturing.  

Active camera control has been investigated by Zheng et al. 
[34] for robot control. Zobel et al. [35] design camera control 
method for the purpose of visual tracking. Sony’s EVI-D30 
camera [22] can be used to track moving objects and has the 
basic functions needed for the application presented in this 
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paper. However, in our experiment, we find this kind of 
steerable camera suffers from the drawback that the objects are 
difficult to track once they drift out of the camera’s field of 
view. Mukhopadhyay and Smith [18] use IR beacons for 
tracking, which also suffer the same problem.  

Chen and Williams [6] and many others have developed 
systems that compose existing still images into a panorama that 
can be dynamically viewed. Teodosio and Bender [29] have 
developed a system that composites successive video frames 
into a still panorama. Nayar [19] has created an omnidirectional 
digital camera using curved mirrors. A conventional camera 
captures the image from a parabolic mirror, resulting in a 
hemispherical field of view. Majumder et al. [16] use 12 video 
cameras and a mirror apparatus to form a spherical panoramic 
image using texture-mapping hardware. Swaminathan and 
Nayar  [27] have taken a similar approach, using an array of 
board cameras. Instead of piecewise image warping, a table 
lookup system directly warps each image pixel into the 
composite panorama. In a more recent work by Nicolescu and 
Medioni [20], a camera array is used for panoramic image 
composition. There is also commercially available 
low-resolution panoramic camera used for meeting recording, 
for example, by Lee et al.[15]. Other commercially available 
systems include BeHere [3], IPIX [14], etc. In our work, we use 
the FlyCam [10] system to capture panoramic video. FlyCam 
stitches video from multiple cameras to create a high-resolution 
output. Other recent systems that stitch multiple camera input 
include RingCam [8] developed by Cutler et al. for meeting 
recording. While in this work we use FlyCam for panoramic 
video capturing, in general any kind of panoramic video can be 
used with our system.  

Speaker tracking is needed to generate the best ROI video 
from the captured panoramic video. Previous person-tracking 
efforts date back to the early 1980s. An example is O'Rourke 
and Badler’s [21] work on 2-D kinematic modeling. Other 
vision-based techniques include skin-color-based tracking [23] 
by Stiefelhagen et al., motion-based tracking [7] by Cutler and 
Turk, and shape-based tracking [2]  by Baumberg and Hogg. 
Darrell et al. [9] integrate stereo, color, and face detection with 
person tracking. Wang and Brandstein [30] combine image and 
audio data (from a microphone array) for the purpose of face 
tracking. Wang and Chang [31] have developed a system that 
can detect a face in an MPEG video based on DCT coefficients, 
avoiding the expense of decompression. Their face detection 
rates reportedly approach 90%. Depending on the application, 
the tracking system can be complex, for example, Tao et al. [28] 
use a layered representation for multiple object tracking. As we 
will see in section IV, complex speaker tracking models are not 
needed for the specific application presented in this paper.  

Since the main objective of the above systems is tracking or 
detection, the output of these systems is usually an object 
outline. Using this kind of raw tracking results to steer ROI 
selection usually produces objectionable jitter in the video 
output. Therefore, the ROI output must be processed for optimal 
control of the virtual camera.  Examples  include the 3D virtual 

cinematographer by He et al. [13], 3D animation by Gleicher 
and Witkin [11], and fovea area view by Wei and Li [32]. Since 
the work here involves moving a small ROI rectangle inside a 
large panoramic video, our virtual camera control is equivalent 
to controlling a moving camera in a 2D image plane. Our main 
concern is to design a new method that simulates the response of 
a human operator, as discussed in section VI.  

III. SYSTEM ARCHITECTURE 

A. The FlyCam System 

Fig. 2(a) shows the FlyCam system developed at FX Palo 
Alto Laboratory. This system generates panoramic video from 
multiple adjacent cameras in real-time. Lens distortions are 
corrected and the images are stitched seamlessly by digital 
warping. Fig. 2(b) shows a modified version of the cylindrical 
camera that covers a 180º frontal view. A FlyCam is compact 
and inexpensive, using component cameras that cost around 
$100 each. The system presented here uses a 180º view FlyCam 
as the video input device.  

B. General System Architecture 

Fig. 3 shows the general system architecture of the camera 
control system based on a 180º FlyCam. Each component 
camera in the FlyCam system produces NTSC video that is 
digitized using a frame grabber. The FlyCam software unwarps 
and stitches the input video streams to produce panoramic 
video. The panoramic video can be kept in raw format or 
compressed into MPEG stream for recording or viewing. The 
video is further processed through ROI detection, Kalman 
filtering, and virtual camera control. After the above processing, 
the output digital ROI video can be recorded or distributed, for 
example over the web. The core part of the system is ROI 
detection, Kalman tracking and virtual camera control, as 
discussed in the following sections.  

IV. ROI DETECTION 

Many methods have been proposed for object tracking. Since 
our primary objective is to capture a single speaker in a 
panorama, complex models such as those of section II are not 
needed. The speaker is modeled as a point object corresponding 
to the centroid of the speaker’s motion. The ROI output is a 
rectangular region of predetermined size, for example 200x200, 
surrounding the centroid point. Thus, ROI detection reduces to 
detecting the centroid of the moving part of the body.  

While in some applications the panoramic video must be 
processed in uncompressed domain, other applications require 
compressed domain processing. For example, only panoramic 
video may be available from a server, and thus the virtual 
camera control must be done on the client side. Streaming video 
is almost always delivered in a compressed format. A 
straightforward solution is to uncompress and process the raw 
video, but it is much more efficient if the processing can be done 
in the compressed domain. The only difference between 
uncompressed and compressed video processing is our 
approach to ROI detection. We present two separate methods 
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for ROI detection depending on whether the source video is 
uncompressed or compressed.  

A. Uncompressed Domain ROI Detection 

1) Feature Extraction: Two principal features are considered 
for ROI detection: optical normal flow and color. The method is 
based on the overall confidence of motion and color change at 
each pixel. The confidence value is computed as a weighted sum 
of the color and motion information.  

Given two consecutive frames, a standard measure of optical 
flow from pixel intensity is given by 

0x y tI U I V I+ + =                (1) 

Where xI  and yI are the spatial derivative of image intensity 

in the x  and y  directions, U  and V are the corresponding 

velocities, and tI is the temporal derivative. The normal flow is 

typically defined as [1]:  

2 2

t
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x y

I
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I I
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+
               (2) 

This value is normalized to [0,1], and is used as the 
confidence of motion at each pixel. The normalized values are 

denoted by ( ),mC x y . 

Besides motion, color provides important information about 
the scene. While any of the traditional color spaces (such as 
RGB, HSV, Luv, etc.) can be used, it has been observed that the 
HSV space is better suited for computing the color changes. 
Separating hue from the saturation and brightness adds 
robustness under most lighting variations. For example, Bradski 
[5] uses the distribution of the hue (H) value for tracking. The 
pixel-wise hue difference between two consecutive frames is 
computed and normalized to between 0 and 1. The normalized 

color confidence is denoted by ( ),cC x y . 

The overall confidence value of motion and color change at 

each pixel is then computed as a weighted sum of ( ),cC x y and 

( ),mC x y :  

( ) ( ) ( )1 2, , ,m cC x y w C x y w C x y= +        (3) 

Though weights in (3) can be fixed, a better way to combine 
the motion and color information is to use a spatially varying 
weight according to the homogeneity of the image. This can be 
obtained directly from the spatial derivatives of the image as 
shown in Fig. 4. We choose 1w  to be ( , )x yMax I I , where xI  

and yI are the normalized (0-1) spatial derivates at x  and y  

directions, and set 2 11w w= − . If the spatial derivatives at a 

given pixel are very small, (2) tends to create large errors for 
normal flow estimation. In this case 1w  can be set to zero. The 

above choice of 1w  is observed to work well in our 

experiments. xI  and yI  represent the homogeneity at a given 

pixel. The computation of them just involves the subtraction of 
pixel intensities at two neighbor pixels. Therefore, they can be 
reliable computed and the complexity of computation is very 

low. This is ideal for real time applications. Optimal selection of 
the weights requires extensive data training that is not discussed 
here. After the confidence value at each pixel is computed, a 
confidence map for a given video frame is obtained. This 
confidence map is then used for feature tracking. Fig. 5(b) 
shows the confidence map of a frame from a panoramic video 
shown in Fig. 5(a). 

2) Centroid Detection: Thresholding the confidence map 
separates the moving part of the body from non-moving region 
(background plus non-moving part of the body) of the scene. 
Fig. 5(c) shows such moving part obtained from Fig. 5(b). The 
white pixel is the non-moving region, and the black pixel is the 
moving part of the body. The centroid of the moving part of the 
body (and thus the ROI) can be located from the first order 
spatial moment of the moving part, which yields a reasonable 
estimate of the centroid. The moment computation is realized 
using the Intel Image Processing Library. Fig. 5(d) shows the 
manually segmented moving part. It is observed that when the 
speaker’s clothes do not have much texture as shown in Fig. 
5(a), the detected moving part tends to be located at the edges of 
the body. Since the body is symmetric, the detected centroid will 
not drift much (have much error) in the x  direction but it will  
drift more in the y  direction. Nevertheless, in general the drift 

is very small (shown in Table I) compared to the ROI output that 
is as large as 200x200. The drift in y  direction will not 

significantly change the viewing result and this is also observed 
in the experiment.  

B. Compressed Domain ROI Detection  

Compressed domain video processing can be done rapidly 
and efficiently.  While Zhang et al. [33] and many others use 
compressed domain features for video data segmentation and 
indexing, very few efforts have been made to use them for 
detection purposes. An example of compressed domain face 
detection is given in [31]. The method proposed here is based on 
our previous work on motion activity detection [26]. The ROI is 
detected using the P frames in the MPEG stream. This includes 
extracting P frames from the video and detecting the ROI in a P 
frame. The detected ROI position is then propagated to 
neighboring frames by temporal up-sampling. Note that even 
though we discuss the algorithms based on recorded video, they 
can be applied to real-time encoded MPEG stream the same 
way.  

1) MPEG Motion Compensation: At this point, it is helpful to 
briefly review the MPEG motion compensation scheme [12]. 
Motion compensation helps reduce temporal redundancy 
between the frames in a video sequence. An MPEG-encoded 
video contains three types of frames: I frames, which are 
intra-coded, P frames, which are coded using forward 
prediction, and B frames, which are coded using both forward 
and backward prediction. Fig. 6 shows a typical MPEG 
sequence, which is also a group of pictures (GOP). Note that the 
display and transmission have different orders. For simplicity, 
only progressive video is discussed here, however, the proposed 
method also works on interlaced video if only one field of a 
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frame is taken for processing.  
To exploit temporal redundancy, MPEG adopts macroblock 

motion estimation. To reduce the bit rate, some macroblocks in 
the P or B frames are coded using their differences from 
reference macroblocks. Since only the P frames are used for 
camera control, we ignore the others. During motion 
compensation, the encoder first searches for the best match of a 
macroblock in the neighborhood in the reference frame. If the 
prediction macroblock and the reference macroblock are not in 
the same position, motion compensation is applied before 
coding. When a macroblock has no motion compensation, it is 
referred to as a No_MC macroblock. Generally, there are two 
kinds of No_MCs: one is the No_MC intra-coded and the other 
is the No_MC inter-coded. A typical MPEG encoder contains a 
classifier that determines whether a macroblock is intra- or 
inter- coded by comparing the prediction error with the input 
picture elements (pels). If the mean squared error of the 
prediction exceeds the mean squared pel value then the 
macroblock is intra-coded, otherwise it is inter-coded.  The 
No_MC intra-coded and inter-coded scheme can be obtained 
correspondingly. In general, the condition for a No_MC 
inter-coding can be written as: 

( )2
( ) ( )c rI I σ− <∑

x

x x             (4) 

Where ( , )tx y=x  is the position of a point in the 

macroblock, σ  is the threshold, cI is the current (P type) 

frame, and rI  is the reference frame which is either an I frame 

or a P frame.  
Only P frames have No_MC inter-coded macroblocks. In the 

special case when the macroblock perfectly matches its 
reference, it is skipped and not coded at all. For illustration, the 
skipped marcroblock is categorized as a No_MC inter-coded 
macroblock as shown in Fig. 6. Note that unless skipped, 
No_MC inter-coded macroblocks still take significant 
bandwidth for encoding and decoding.  

2) Detecting the ROI Centroid in P Frames: 
The MPEG motion compensation scheme borrows its 

strategy from traditional region-based optical flow estimation, 
even though the motion vectors it provides are not the same as 
optical flow. In the case of a video where there is only one 
moving object, motion compensation information becomes 
especially important in locating the moving part of the body.  

If the center of a macroblock is to represent the whole block, 
then a sub-sampled image of the original frame can be obtained. 
Since the macroblock size is 16x16, the height and width of the 
sub-sampled image are 1/16th of the original frame height and 
width respectively. If an estimation of the centroid of the ROI in 
the sub-sampled image is obtained, it can then be up-sampled, 
i.e. the estimated centroid position ( , )x y can be scaled by 16 

(which is fixed for MPEG video) to estimate its location in the 
original frame. Sub-sampling tends to create aliasing effects 
when there are high frequency signals in the original image. 
That is why traditional motion estimation methods usually filter 
the images with a Gaussian filter before sub-sampling.  

Given a point and its neighborhood, where a point refers to 
the centroid of a macroblock and the neighborhood refers to the 
whole macroblock, motion can be estimated by minimizing the 
following summed square difference of intensity constancy [4]: 

( )2
( ) ( ( ))c rI I− −∑

x

x x V x             (5) 

If the motion is zero, i.e. ( ) =V x 0 , then we can find that  

( )2
( ) ( )c rI I−∑

x

x x is to be minimized. A simple comparison 

shows that it achieves the same objective as (4). Therefore 
No_MC inter-coded macroblocks can be used to represent the 
non-moving region of the scene, which has no motion. 

In a panoramic video scene, the ROI should contain the 
region with motion. In the compressed domain, the non-moving 
region is first detected using the macroblock motion 
information. The ROI is then detected by taking the complement 
of the non-moving region. Fig. 5(a) shows an example of a 
frame from a panoramic video, and it is also a P frame.  Fig. 5(e) 
shows the ROI detection results based on No_MC coding 
information, where the white macroblock is the non-moving 
region, and the black macroblock is the moving part of the body. 
Since the body region is assumed to be connected, a median 
filter improves the detection by eliminating unconnected 
macroblocks. After detecting the moving part, the object’s 
centroid can be easily located in the sub-sampled image domain. 
The location is then scaled by 16 times to estimate  the ROI 
centroid in the original video frame. In theory, when the 
speaker’s clothes do not contain much texture, the 
compressed-domain centroid estimate will be close to that of the 
uncompressed domain. However, as shown in Fig. 5 after spatial 
up-sampling to the original video size, we find the detected 
motion region is larger than that from the uncompressed 
domain. Motion detection is generally more robust for 
macroblocks than for pixels, because the larger macroblocks 
tend to average out noise.  

The usual 29.97 frames per second video rate is higher than is 
necessary for ROI processing, so temporal sub-sampling can 
reduce the necessary computation. Fig. 8(a-d) show four 
consecutive frames from a seminar room video. Note that the 
frame-to-frame motion of the speaker is quite small. The ROI 
centroid moves only several pixels per frame. Therefore, there 
is no noticeable difference if the centroid of Fig. 8.a is applied to 
the following frames (note that the original ROI is shifted 40 
pixels upward in the picture to center it on the upper body). 

For efficiency, it is reasonable to use the sub-sampled video 
consisting of only P frames. After the ROI is detected in each P 
frame, it is then up-sampled to obtain ROI positions of 
neighboring I and B frames in the original video sequence. ROIs 
in the I and B frames can be are determined by interpolating 
between the ROI locations in the two neighboring P frames. In 
this case, the ROI of the last P frame must be determined before 
the interpolation. Note that the sub-sampling is not regular, 
since the P frame distances are generally not uniform.  
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V. TRACKING USING A KALMAN FILTER 

Detecting ROI centroid coordinates is generally a noisy 
process. Errors and noise may come from many sources, such as 
sub-sampling, lighting change, etc. If the noise is assumed to be 
Gaussian, then it can be handled with an extended Kalman filter. 
The centroid has a trajectory in 2D space. The trace in the x  
direction can be modeled by the second-order Taylor series 
expansion of the form: 

2( 1) ( ) ( ) ( ) / 2 . . .x xx k x k v k T a k T h o t+ = + + +      (6) 

( 1) ( ) ( ) . . .x x xv k v k a k T h o t+ = + +          (7) 

Where ( )x k is the centroid coordinate in the x direction, 

( )xv k is the velocity, and ( )xa k is the acceleration, T is the time 

interval, and . . .h o t  are higher order terms. Similarly, the same 
model applies to the y  component of the trajectory. Combining 

these gives a  centroid system model: 
( 1) ( ) ( )k k k+ = Φ + ΓF F w             (8) 

Where ( ) ( ), ( ), ( ), ( )
t

x yk x k y k v k v k =  F , ( )y k  is the 

centroid y coordinate, ( )yv k is the velocity, while ( )kw  is the 

system Gaussian noise, representing the centroid acceleration in 
the x  and y  directions, and  

2

2

  0  1  0  T  0  2
0  1  0  

,  0    
0  0  1  0 2

T     00  0  0  1  

0      T  

T

T T

 
        Φ = Γ =            
  

 

Higher order Taylor series expansions can be applied to the 
centroid system model, which would lead to higher model 
orders. However, in our experiments we found it did not 
appreciably improve results. Additionally, the system variables 
provide enough information for virtual camera control as 
discussed in the following section.  

Since the speaker is modeled as a point, a location 
measurement can be modeled as: 

( ) ( ) ( )k H k k= +Z F n              (9) 

Where ( )kZ is the measurement, ( )kn is the Gaussian 

measurement noise, and H is the measurement transfer 
function (in this case a scaling factor). 

The covariance form of Kalman filtering recursively updates 
the prediction based on the innovation information at each step. 
The prediction at each update is output for further virtual 
camera control purposes. The predicted or estimated variable 
used to control the recording process is 
^
( ) [ ( ), ( ), ( ),  ( )]t

x yk x k y k v k v k
∧ ∧ ∧ ∧

=F . 

VI. VIRTUAL CAMERA CONTROL  

Kalman filtering reduces most of the noise inherent in the 
tracking estimate, and suffices for most purposes. However, if 
the tracking result is used to move the ROI window directly, the 

quality of the output video is often jittery. The resulting motion 
is less smooth than that of a physical camera, which has inertia 
due to its mass. Therefore, an additional filtering step is taken to 
produce a smoother and more pleasing video output.  

The approach to virtual camera control is based on the 
following observation. When a speaker is motionless or moving 
only within a small region, an experienced camera operator 
usually does not move the camera (stabilization control). When 
the speaker changes his position by a large distance, the 
operator must move the camera to catch up with the speaker 
(transition control). After the speaker has been centered, the 
operator then follows further movement (following control). 
Accordingly, the virtual camera control operates in three similar 
regimes. 

“Stabilization control” is based on the Kalman filter 
estimates of position and velocity. The initial centroid position 

is registered first, denoted as ( ) [ ( ), ( )]t
R R Rk x k y k=Y , where 

( ), ( )R Rx k y k  correspond to its x  and y coordinates. In each 

frame, the estimated speed and position are obtained from ( )k
∧
F  

in the Kalman filter update calculation. If the following two 
conditions are satisfied, the virtual camera is fixed and the 
registered position is used as a position output. First, the new 
position must be within a specified distance of the registered 
position. Second, the estimated speed must be below a specified 
threshold in a given direction. Otherwise, the virtual camera 
control is changed to the “transition” regime. The “stabilization 
control” conditions can be formalized as: 

( ) ( )Rk k=Y Y                  (10) 

 1 2

3 4

  | ( ) ( ) | , | ( ) ( ) | ,   

| ( ) | ,  | ( ) |

R R

x y

if x k x k y k y k and

v k v k

σ σ

σ σ

∧ ∧

∧ ∧

− < − <

< <
 

Where 1 2 3, ,σ σ σ  and 4σ   are thresholds, and ( )kY is the 

ROI output. 
In the “transition” regime, a low pass filter is used to 

smoothly update the virtual camera location. For this purpose, a 
first order IIR filter is used: 

1 2( 1) ( ) ( )k k kα α
∧

+ = +Y Y X            (11) 

Where 1 2 1α α+ = , 1 2, 0α α > , and ( ) [ ( ), ( )]tk x k y k
∧ ∧ ∧

=X is 

the centroid estimated from the Kalman filter, and serves as the 
input to the IIR filter. The virtual camera now follows ( )kY , 

which is smoother than the Kalman filter output. It also helps to 
reduce the noise in the case of abrupt changes that the Kalman 
filter does not handle well. Experiments show that values of 

1 20.8, 0.2α α= =  give a reasonable simulation of human 

camera operation.  
Since the IIR filter (11) tends to create delays in the output, 

the number of steps in the “transition” stage is limited. After a 
certain time in the “transition” regime, for example 0.5 
seconds, the camera control is switched to the “following” 
regime.  Updating the ROI position directly from the Kalman 
filter output realizes this objective: 
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( ) ( )k k
∧

=Y X                 (12) 

Note that this is equivalent to setting 1 20, 1,α α= = in the IIR 

filter (11). Fig. 9 and Fig. 10 show the results for three kinds of 
camera control in uncompressed and compressed domain for a 
video recorded at the same frame rate. The view angle is chosen 
to emphasize the control process in the x  direction.  

The Kalman filter assumes environmental noise is Gaussian, 
and handles lighting change and occlusion very well. But many 
noises are not Gaussian. For example, the projection display and 
the audience both can produce constant noise in fixed regions, 
as seen in Fig. 1. This knowledge can be incorporated into the 
tracking system to improve performance, especially because the 
panoramic video cameras are fixed with respect to the 
background. Configuration parameters allow some part of these 
regions such as projection display to be ignored. By offering 
this kind of flexibility, the tracking technology can be easily 
adapted to different environments.  

VII. EXPERIMENTAL RESULTS 

Experimental evaluation of our tracking system was 
performed on panoramic video taken in a seminar room during 
seminars and presentations. The speaker moves around at  the 
front of the seminar room during a lecture. Panoramic video can 
be produced in real-time at around 15 fps. To ensure frame rate, 
the panoramic video was stitched off-line and stored. Five video 
sequences up to 30 minutes were recorded and compressed to 
MPEG-2 format, using the following settings: 4MBit/s, 
29.97fps, 800x352 pixels/frame. 

A 200-frame video sequence showing a speaker moving from 
right to left in the seminar room was used for testing. The 
moving part of the body was manually segmented for each 
frame, and its centroid served as ground truth for ROI detection 
and tracking experiments. Though precise segmentation is 
difficult, the precision is not absolutely critical for virtual 
camera control. As long as the speaker is contained in the ROI 
output, the manual segmentation result is good enough as a 
reference ground truth.  

First, ROI detection is processed for P frames from the test 
MPEG video and the corresponding frames from the 
uncompressed test video. The drifts (errors) between computed 
centroids and those of ground truth are calculated. As shown in 
Table I, the drifts for uncompressed domain and compressed 
domain are quite close. Since ROI detection in uncompressed 
domain has a higher resolution than that (spatially sub-sampled 
using marcroblocks) in compressed domain, the uncompressed 
domain detection performs better in the x  direction. On the 
other hand, as discussed in section IV, ROI detection in 
compressed domain is more stable even though it has lower 
resolution. Therefore no significant difference can be seen 
between the performance of ROI detection for both compressed 
and uncompressed domain in y  direction.  

The drifts between computed centroids after Kalman filtering 
and ground truth are also calculated. Kalman filtering generally 
improves performance for both uncompressed domain and 

compressed domain, except for the y direction in 

uncompressed domain. This can be explained the same way as 
discussed in centroid detection in uncompressed domain. Note 
that temporal up-sampling of P frame ROI detection result in 
general does not affect overall result after tracking. Since a 
much larger ROI window (200x200) is used as output, the 
average drifts and their standard deviations indicated in Table I 
in general ensure that the speaker is covered in the ROI output. 

We note that the speaker need not be exactly at the center of 
the ROI video for most purposes. It is also observed that there is 
no single standard for when and by how much to move the 
virtual camera as far as the smoothness is concerned. Therefore, 
to benchmark the system we only determine whether the speaker 
is covered in the ROI video output and whether the video is 
smooth. The results turn out to meet the requirement in general. 
Two demonstration sequences showing virtual camera control 
results have been put on the website at: 
http://vision.ece.ucsb.edu/~xdsun/data/ROI. 

Software was developed to view ROI video in both 
compressed and uncompressed domains. The 
uncompressed-domain processing software is developed based 
on Intel Image Processing Library. A video player was also 
developed based on the MPEG player distributed by the MPEG 
Software Simulation Group [17] to view compressed-domain 
output video. Fig. 10 shows a user interface to the player. ROIs 
of size 200x200 are displayed to judge the tracking results. 
Since the upper body is more important in viewing, the ROI is 
shifted upward by a fixed number of pixels when playing. 
Experiments show that after initialization, the software controls 
the virtual camera to follow the speaker. We tested the programs 
by enabling and disabling the ROI processing. In terms of 
computation complexity, we observe that the delay created by 
virtual camera control is not noticeable. Since the size of the P 
frame macroblock information is insignificant compared to the 
entire video stream, the compressed domain ROI processing can 
be done extremely rapidly. 

VIII. DISCUSSION  

In this paper a new method is presented for determining the 
region of interest in a classroom scene captured by a panoramic 
video system. The method integrates detection, tracking and 
recording processes to mimic human camera control. 
Processing can be done efficiently in both the compressed and 
uncompressed domains. The entire process is fully automated 
and experiments show that it is sufficiently robust and rapid for 
real-time applications.  

Provided there is only one speaker in the scene, this method 
can be applied to a panoramic view of up to 360º using the 
system shown in Fig. 2(a). Note that, even though the FlyCam 
system is used here for panoramic view capturing, our approach 
applies to panoramic video produced by other systems as well. 
Even though the MPEG format is discussed here, the method 
can be applied to other formats such as H.263 which have 
similar forward motion compensation schemes.  

For typical lectures where the speaker remains at roughly the 
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same distance from the camera, zooming is not necessary.  
However, digital zooming could be achieved by scaling the ROI 
for applications, as discussed in [23] and [30]. Physically 
zooming  panoramic cameras is not generally practical, thus the 
highest ROI resolution depends on the resolution of the original 
panorama. Zooming in at an even higher resolution is an 
interesting research problem.  

The cropped ROI video can be streamed over the Internet as 
part of on-line learning software interface. It can also be sent to 
devices such as smart phones for wireless access. In these cases, 
the resolution of ROI video can be scaled as appropriate. 
Adapting ROI video to fit different resolutions like those 
mentioned above and industry standards is part of our future 
work. 

Since the panoramic camera is stationary, the tracking 
information also provides indexing features for the video 
content. Spatial data about the lecture environment can be 
combined with the tracking information to provide descriptive 
indexes about lecturer activity. Since the region of interest is 
isolated from other objects in the scene, the recorded result may 
also be useful for object based coding, such as in MPEG-4. 
Other research possibilities include virtual camera control for 
multiple objects, synchronizing the ROI output with 
PowerPoint slides, analyzing speaker activity, or using the ROI 
image as a basis for gesture tracking or face recognition. 
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(a) Panoramic scene view. (b)Region of interest. 

Fig. 1. An example of a panoramic scene and its region of interest. 
 
 

 
(a) 360º view FlyCam. 

 

 
(b) 180º view FlyCam. 

Fig. 2. FlyCam examples. 
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Fig. 3. General system architecture. 
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Fig. 4. Building the confidence Map. 
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(a) A frame from a panoramic video. 

 
(b)Confidence map.  

 
(c)Motion region detection based on confidence map. 

 
(d)Manually segmented motion region. 

 
(e) Compressed-domain motion region after median filtering. 

Fig. 5. Detection of moving part for a frame in a panoramic video. 
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Fig. 6. An example of  MPEG group of pictures (GOP). 
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Fig. 7. Coded macroblock types in MPEG video P frame. 
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Frame  Frame Information 

 

(a) P frame 
Frame Size:  
                800x352 
ROI Size: 
                200x200  
ROI Centroid (x,y) : 
                 (231, 125) 

 

(b) B frame 
The ROI centroid of (a) is 
applied here. 

 

(c) B frame 
The ROI centroid of (a) is 
applied here. 

 

(d) I frame 
The ROI centroid of (a) is 
applied here. 

Fig. 8. Four consecutive frames in different frame types in an MPEG video 
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(a) Stabilization control 

 
(b) Transition control. 

 
 

(c) Following control. 

Fig. 9.  Simulation of three types of camera control in uncompressed domain. 
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(a) Stabilization control 

 
(b) Transition control 

 
 

(c) Following control 

Fig. 10.  Simulation of three types of camera control in compressed domain. 
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ROI detection result for frames 
at P frame only 

ROI tracking result for all the 
frames 

 

Centroid 
Drift (pixel) 

Drift Standard 
Deviation 
(pixel) 

Centroid 
Drift (pixel) 

Drift Standard 
Deviation 
(pixel) 

x direction 9 5 8 5 Uncompressed 
Domain y  direction 22 9 23 8 

x direction 23 16 21 15 Compressed 
Domain y  direction 18 9 16 8 

Table I. Statistics of ROI detection and tracking result. 
 

 
Fig. 11. The interface of the MPEG player. 


