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ABSTRACT 
 
This paper presents a unified approach to human activity 
capturing and recognition. It targets applications such as a 
speaker walking, turning around, sitting and getting up from a 
chair in a classroom setting. A panoramic camera capturing 
system is designed for video capture. Virtual camera control 
outputs the region of interest (ROI) video that covers the 
speaker. Given a ROI sequence, the virtual camera control 
parameters are used for the recognition of activities like walking, 
and the motion parameters of each frame are used for the 
recognition of other activities like turning around, sitting down 
and getting up etc. For motion parameter based recognition, the 
likelihood of the motion parameters is represented using a 
multivariate Gaussian model. The temporal change of the 
likelihood is characterized using a continuous density hidden 
Markov model (HMM). Experimental results show that the 
method works well in recognizing the above mentioned human 
body activities. 

 
 
 

1. INTRODUCTION 

Analysis of typical activities such as a speaker walking, turning 
around, sitting down on a chair, and getting up from a chair in a 
classroom settings is the main concern in this paper. It has many 
potential applications in the areas of indexing classroom and 
seminar presentations, and in  human computer interfaces. While 
recognition of these activities is important, capturing of the 
regions of interest corresponding to these activities is essential to 
the success of the overall application. While most previous work 
discuss the two problems separately, we present a framework 
that integrates the capturing and recognition processes. 

There have been quite a few systems that use active camera 
like Sony’s EVI camera, or combine it with other wide-angle 
cameras for seminar capturing [7]. In general these systems 
involve camera motion, which is not helpful in the recognition 
process. Therefore, we choose the Flycam [3] panoramic system 
to capture the activities. For the system, we have designed virtual 
camera control methods [9][10] to output ROI video that covers 
the speaker. The advantage of this system is that it is automatic, 
and the speaker is always in the scene. There is no physical 
camera motion in the system and the virtual camera parameters 
are readily available for recognition purpose. Figure 1 gives one 
example of such a capturing result. 

The human activities usually involve changes in the 
environment, object occlusion, etc. Therefore, feature point 

based or region-based techniques that work well on facial 
expression, gesture recognition, etc. [8] cannot be directly 
applied here. Given the complexity of human body motion, 
techniques that do not require explicit image feature detection or 
segmentation are of much interest. Among the early work is 
Davis and Bobick [2], wherein they use temporal templates for 
human movement recognition. Their method requires less 
computation, but is sensitive to variances in the movement. Little 
and Boyd [4] use the moments of moving points to represent the 
optic flow for the purpose of periodic human gait recognition.  
Yacoob and Black [11] propose recognition of activities based 
on matching of principal components under global temporal 
change.  

Our proposed method integrates the capturing and 
recognition processes. The virtual camera control parameters are 
used for the recognition of some activities like walking, and the 
motion parameters of each frame are used for the recognition of 
other activities. Similar to those using global motion fields that 
do not require image feature tracking or segmentation, we 
introduce a multivariate Gaussian model to represent the 
likelihood of the motion parameters. The temporal change of the 
likelihood is characterized using a HMM for activity 
recognition. Motion parameter based recognition of activity is 
then posed as a maximum likelihood parameter estimation 
problem. The virtual camera control parameters and HMM are 
designed to work on different types of activities. Experimental 
results show that the method works well in recognizing such 
complex human body activities. 

2. PANORMAIC CAPTURING OF HUMAN 
ACTIVITIES 

The Flycam [3] panoramic system is used to capture the speaker. 
The camera system is fixed and covers all the area where the 
speaker activities take place. The panoramic system produces 
real time panoramic video output. While we can compress the 
panoramic video first and extract ROI video from compressed 
domain for later activity recognition [10], here we choose to 
extract ROI video in real time [9] from the panoramic video. By 
doing this, we can avoid storing extra large amount of redundant 

 
 

(a) Panoramic view (b)ROI output 

Figure 1. Panoramic capturing and  ROI output.  



 

 

data outside the ROI area in the panoramic video and still do not 
lose any information about the activities. Figure 2 shows the 
general system architecture for activity capturing and 
recognition. The ROI video output and its associated virtual 
camera control parameters are used for activity recognition. 

 Our initial experiments consist of ten activities. We 
separate these activities into three groups. In the first group, we 
have: walking toward left and walking toward right.  In the 
second group, we have:  turning of the body from left to front 
(“l2f”), front to left (“f2l”), front to right (“f2r”) and right to 
front (“r2f”). In the third group we have: standing up (“su”), 
sitting down (“sd”), starting to sit down but returning to the 
standing position without sitting down (“bu”), and starting to get 
up (from a sitting position) but returning to the sitting position 
without getting up (“bd”). The third group is designed in such a 
way that the sequences have similar sub-processes. Figure 3(a-c) 
shows three representative frames (r-frames) from a “su” ROI 
video sequence. 

The speaker is simply modeled as a point object 
corresponding to the centroid of the body. The ROI output is a 
predetermined rectangular region that surrounds this point. Thus, 
the ROI basically tracks the body centroid. We have a simple 

centroid model ( ) ( ), ( ), ( ), ( )
T

x yk x k y k v k v k =  F , where 

( ), ( ),x k y k are the positions of the centroid, and ( ), ( )x yv k v k  are 
the velocities of the centroid in x  and y  direction respectively. 
The ROI detection results are processed through a Kalman filter. 

The Kalman filter output ( ) [ ( ), ( ), ( ), ( )]Tx yk x k y k v k v k
∧ ∧ ∧ ∧ ∧

=F is 
then used to steer a virtual camera to create smooth ROI video 
output. According to [9], the virtual camera control has three 
regimes. When the speaker is motionless or moving only in a 
small region, ROI is kept at the same position (stabilization 
control). When the speaker changes his position by a large 
distance, an IIR filter is used to steer ROI to catch up with the 
speaker (transition control). After the speaker has been centered, 

ROI is changed according to the estimate [ ( ), ( )]x k y k
∧ ∧

 (following 
control).  

3. HUMAN ACTIVITY RECOGNITION BASED ON 
VIRTUAL CAMERA CONTROL PARAMETERS 

Further observation of the activities described in the last section 
show that the first group of activities basically correspond to the 
virtual camera control in the “transition control” and “following 
control” regimes in x direction, while the second and the third 
group correspond to the “stabilization control” in x  direction. 

Figure 4 shows representative frames of the walking sequences. 
Since walking is a periodic process, modeling it is hard [4] . 
However, from above observation, we conclude that a decision 
on pattern of walking activity can be made if virtual camera 
control process falls into the categories of “transition control” 
and “following control” in x direction.   

4. HUMAN ACTIVITY RECOGNITION BASED ON 
MOTION PARAMETERS 

The second and the third group of activities correspond to virtual 
camera motions that are not consistent in one direction. It is not 
straightforward to do activity recognition directly based on the 
virtual camera parameters as discussed in the previous section. 
Therefore, we propose to use a probabilistic model to 
characterize these types of activities.  

 
4.1. A Gaussian motion parameter model 
Here, we use a model-based approach proposed in [1] to 
compute the motion parameters. Here we use simplest model, i. 
e. the 2-D optic flow or the motion vector for recognition. The 
motion vector V at a given position ( , )x y=x can be 

represented as: ( ) ( , )x yv v=V x . These parameter values are 

then organized into a vector by row scanning the image. Let L  
be the number of pixels in a video frame or a region of interest in 
a frame (ordered according to a row scan). Let  

1 2 1[ , ,...... , ...... ]L L T
x x x y yv v v v v=Z       (1) 

 
Note that Z  is a 2N L= × dimensional vector.  We model Z  
as a multivariate Gaussian. Let the mean of this Gaussian be m  
and the covariance be Q . Then, given Z  from an observation 
class Ω, we can write the conditional probability ( | )P ΩZ  as:  

1

1/ 2

1exp( )
2( | )

(2 )N
P

π

−− − −
Ω =

T(Z m) Q (Z m)
Z

Q
  (2) 
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Figure 2. General system architecture for activity 
capturing and recognition. 

  
(a)First r-frame (c)Third r-frame 

 

 

 
(b) Second r-frame (d) Object window in (b) 

Figure 3.Representative frames from a �su� ROI sequence. 

  
(a)Walking toward left (b)Walking toward right 

Figure 4. Representative frames from walking sequences.  



 

 

If we have activity in class Ω, then (2) gives the likelihood 
of the motion parameters for a given frame. This is the basis for 
later statistical modeling of the activities using HMM. This 
approach to modeling the observation is inspired by the work in 
[5], where the observation vector is the image intensity, and the 
application is object recognition. In the following discussion, we 
will refer to Z  as the motion object (MO). 

Let 
~
Z Z m= - ,the covariance matrix can then be 

decomposed as: = TQ ΦΛΦ , where the columns of Φ  are 
the orthonormal eigenvectors of Q , and Λ  corresponds to the 

diagonal eigenvalue matrix of Q .  Let =
~TY Φ Z , (2) can be 

computed as:  
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Where M is the dimension of the principal subspace, iy is the ith 
component of Y , and iα  is the ith  eigenvalue of Q .  

In (3), we divide the likelihood for a MO into two parts; the 
first part, ( | )PP ΩZ , corresponds to the likelihood of the MO in 
the principal subspace as used in principal component analysis 
(PCA); the second part, ( | )cP ΩZ corresponds to the likelihood 
of the MO in the complementary orthogonal subspace of the 
principal subspace. PCA has been successfully used activity 
analysis [11]. The principal space is enough for general 
representation and approximation purposes. However, note that 
the likelihood in the principal space ( | )PP ΩZ  does not provide 
an optimal approximation of the likelihood ( | )P ΩZ  in the 
whole space. The second part ( | )cP ΩZ  plays an important role 
in the recognition process. This is also observed in our 
experiments (discussed in section 5).  To reduce the expense of 
computation of ( | )cP ΩZ , following [5], we use an optimal 
approximation of it: 
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It is generally not necessary to use the motion parameters of 
the whole ROI video frame for activity recognition. Instead, an 
even smaller region that covers the object, called object window, 
is chosen in our experiment. Figure 3(d) shows such an object 
window in the frame of Figure 3(b). 
    
4.2. HMM for activity modeling 

In the context of human motion recognition, promising results 
have been obtained using the HMM [12]. A generic HMM [6] 
can be represented as { , , , }A Bl p= X , where 

'1 1{ , ,...... }Nq q qΞ =  denotes the 'N  possible states, 

{ }ijA a= denotes the transition probabilities between the hidden 

states, { (.)}jB b= denotes the observation symbol probability 
corresponding to the state j, and p  denotes the initial state 
distribution.  

We choose a four-state continuous density HMM for 
activity recognition here. The number of states is empirically 
determined and we observed that an increase to a larger number 
of states did not result in any performance gains on our initial 
data sets. The first step of our HMM training is to obtain the 
observation model B . Since the motion pattern at any given 
short interval can be regarded as unchanged, we can divide the 
sequence into temporal segments where each segment 
corresponds to a state. We uniformly segment each training 
sequence into four segments before clustering. Each segment is 
assigned a state number that is the same as its segment order in 
the sequence. As in speech recognition, this method provides a 
good initial clustering of states. The position of the MO in each 
frame is manually selected around the moving subject.  Then, we 
compute m  and Q , and consequently Φ and Λ  for each 
state. After this step, we follow the conventional K-means 
clustering method to iteratively classify the frames based on their 
likelihood computed using (3). Any misclassified initial 
segmentation can be corrected in the clustering process. Note 
that we have one set of bases for each hidden state. 

The next step is to obtain the state transition matrix A . 
This is done using the EM algorithm. A  is initialized as shown 
in Figure 5(a). Note that we do not need to compute p , as in our 
model we always start in state 1. The trained HMM structure for 
the “bd” activity is shown in Figure 5(b). Given a video 
sequence 1 2{ , ,....... }TO O O , where T  is the length of the 
sequence, we then want to find one model *iλ from a given 

dictionary 1 2{ , ,...... }Eλ λ λ ; the recognition of the activity *iλ  
follows from the maximum likelihood estimate: 

[ ( / )]
1

* argmax iP O
i E

i λ
≤ ≤

=     (5) 

5. EXPERIMENTAL RESULTS 

The Flycam system is used to capture the speaker activities and 
produces panoramic video of size 800x300 in pixel resolution. 
The output ROI window size is 200x200. The size of object 
widow for motion parameter based recognition is 64x160. We 
collect 20 sequences for each activity. Each sequence contains 
20 to 30 frames. Half of the video sequences are used for 
training, while the other half are used for evaluation.  For 
simplicity, the subjects are asked not to wave hands or make 
other gestures while recording the video. They also pause for a 
while between two consecutive activities. This creates artificial 
zero motion frames in the video, and thus simplifies the 
segmentation of activities. Therefore, it makes the recognition 
similar to isolated-word instead of connect-word recognition in 
speech processing [6]. 



 

 

In recognizing the activities, the ROI sequences are first 
segmented into smaller sequences containing one single activity 
each based on the temporal position of zero motion frames. The 
recognition of walking activity is processed using the virtual 
camera control parameters first. For the rest of the video 
sequences, motion parameter based recognition method is used.  
The optic flow vectors of a ROI frame are computed first based 
on [1] to obtain the MO. The MOs are normalized to a zero-
mean unit-norm. Since the subject is kept at a constant distance 
from the camera, no normalization is needed here. However, if 
the video is captured at different scales, we can use the bilinear 
transformation to normalize the parameters. 

Table 1 summarizes recognition results. Results on group 1 
activities are stable as expected. Results for group 2 are better 
than those for group 3 activities. This is partly due to the fact 
that group 3 activities share similar sub-processes, making their 
estimation more difficult. Also, group 3 activities are more 
complex. For example, the first state of “su” is the same as the 
first state of “bu”.  In addition, the transitions in “bu” and “bd” 
are also more complicated than those in group 1.   

Two different numbers of principal subspace dimensions 
are also tested. In general, larger dimensions of principal 
subspaces perform better than smaller ones, but we did not 
observe significant differences here between six and ten 
dimensions. PCA based method is also tested here. It is done by 
taking ( | )

P
P− ΩZ  out of computation in (3). It is essentially the 

same feature used in [11]. It can be seen from experiment that in 
general MO method outperforms the PCA method.  

6. CONCLUSIONS 

While most previous solve the problem of capturing and 
recognition of human activities separately, in this paper we 
present a unified approach that integrates the capturing and 
recognition processes. A panoramic camera capturing system is 
designed for capturing purpose. Virtual camera control outputs 
the ROI video that covers the person. Given a ROI sequence, the 
virtual camera control parameters are used for the recognition of 
some activities, and the motion parameters of each frame are 
used for the recognition of other activities. The likelihood of the 
motion parameters is optimally approximated based on a 
multivariate Gaussian model. The temporal change of the 
likelihood is characterized using a continuous HMM for activity 
recognition. Experimental results show that the method works 
well in recognizing such complex human body activities. 

For simplicity, we have worked on activity sequences that 
have explicit shot boundaries. Our on-going work is the 
recognition of activity sequences without explicit boundaries. 

We are also investigating the research on a more general 
Bayesian Network for even more complex human activities.  
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Activity Group1 Group2 Group3 
Virtual Camera 

Control Parameters 100% ---- ---- 

6 bases  ---- 75% 60% PCA 10 bases ---- 80% 75% 
6 bases  ---- 90% 80% MO 10 bases  ---- 90% 85% 

Table 1. Experimental results on the test sequences. 
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(a) HMM for “bd” 
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(b) HMM for “bd” 
after training 

Figure 5. An example HMM for the �bd� sequence. 


