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ABSTRACT
Mobile phones are becoming multimedia devices. It is com-
mon to observe users capturing photos and videos on their
mobile phones on a regular basis. As the amount of digital
multimedia content expands, it becomes increasingly diffi-
cult to find specific images in the device. In this paper,
we present a multimodal and mobile image retrieval proto-
type named MAMI (Multimodal Automatic Mobile Index-
ing). It allows users to annotate, index and search for digital
photos on their phones via speech or image input. Speech
annotations can be added at the time of capturing photos
or at a later time. Additional metadata such as location,
user identification, date and time of capture is stored in the
phone automatically. A key advantage of MAMI is that
it is implemented as a stand-alone application which runs
in real-time on the phone. Therefore, users can search for
photos in their personal archives without the need of con-
nectivity to a server. In this paper, we compare multimodal
and monomodal approaches for image retrieval and we pro-
pose a novel algorithm named the Multimodal Redundancy
Reduction (MR2) Algorithm. In addition to describing in
detail the proposed approaches, we present our experimen-
tal results and compare the retrieval accuracy of monomodal
versus multimodal algorithms.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Signal pro-
cessing ; I.4.9 [Image Processing and Computer Vi-
sion]: Applications

General Terms
Algorithms, Measurement, Experimentation

Keywords
∗This work was performed when the author was visiting
Telefónica Research at Barcelona

Multimodal Indexing, Mobile Search and Retrieval, Digital
Image Management

1. INTRODUCTION
Mobile phones have become multimedia devices. Therefore,
it is not uncommon to observe users capturing photos and
videos on their mobile phones. As the amount of digital
multimedia content expands, it also becomes increasingly
difficult for a user to find specific images in the device. In
order to tackle this problem, we have proposed a multimodal
image annotation, indexing and retrieval prototype named
MAMI [1, 2]. MAMI is implemented as a mobile application
that runs in real-time on the phone. Users can add speech
annotations at the time of capturing photos or at a later
time. Additional metadata is also stored with the photos,
such as location, user identification, date and time of capture
and image-based features. Users can search for photos in
their personal repository by means of speech or image input
without the need of connectivity to a server.

Desired content is typically searched for by providing a mono-
modal input query (text, audio or image). Therefore, re-
trieval algorithms do not usually take full advantage of the
multimodal information stored with the images. In this pa-
per, we study the impact on image search and retrieval of
multimodal fusion techniques. Moreover, we present a novel
multimodal redundancy reduction algorithm where a mono-
modal input query makes use of multimodal information in
order to return more relevant results to the user. In addition
to describing in detail the proposed approaches, we present
our experimental results and compare the retrieval accuracy
of monomodal versus multimodal algorithms.

In the area of image multimodal tagging and retrieval, there
are several research projects that propose the mobile phone
as an interface for tagging and/or retrieval of the user’s mul-
timedia data [3, 4, 5, 6, 15]. We shall highlight three pieces
of work that are particularly related to ours. Wang et al.
[6] propose a multimodal (spatial, social and topical) mo-
bile phone-based system that allows users to browse through
their digital library as well as their social networks and sur-
roundings. Their mobile application acts as a browser with
a connection to a server. In addition, they correlate pictures
according to multiple modalities, but the desired images are
still searched for according to a single modality. Xie et al.
[15] provide a nice description of how a mobile phone with
a server-based architecture can perform both image and au-



dio search queries. They present several application exam-
ples for both image and audio separately. However, their
work does not exploit multiple modalities to enhance the
results and proposes a server-based architecture instead of
performing such tasks locally on the phone, as is the case of
the system presented in this paper.

The most relevant project to ours is probably Fan’s et al. [3]
system, where mobile web search is enhanced via multimodal
input. Their system sends the image taken by the camera
phone to find images on the web that are similar to it, e.g.
from a product the user wants to get information for, etc..
Users can refine their search by providing input text queries.
Multimodality is used in the web search refinement step, in
order to increase the relevance of the results. They do not
use speech input.

The system presented in this paper (MAMI) exploits the
availability of multiple modalities (audio and visual) to in-
crease retrieval accuracy of the user’s personal image database.
In addition, MAMI’s processing is carried out entirely on the
mobile phone, without the need of a remote server.

This paper is structured as follows: First, Section 2 presents
the multimodal processing algorithms and Section 3 describes
in detail the proposed multimodal retrieval algorithms. Our
experiments are presented in Section 4. Finally, Section 5
summarizes our findings and outlines our future work.

2. MULTIMODAL PROCESSING ON A CAM-
ERA PHONE

In this paper, we focus on the impact that having multiple
modalities has in annotating, searching for and retrieving
personal pictures that are stored on the user’s mobile phone.
We have developed a mobile phone-based prototype named
MAMI (Multimodal Automatic Mobile Indexing) [1, 2] that
allows users to easily perform these tasks in their mobile
phones. When the user takes a picture with MAMI, (s)he
can add an acoustic tag at the time of capture. This audio
tag is associated with the image and it is indexed in a local
database. Upon indexing, the system computes and stores
acoustic and image feature vectors (descriptors) and adds
additional metadata information such as location, date and
time of capture and user ID.

At a later time, when the user desires to search for and
retrieve a specific image, (s)he can query the system via a
speech query or a sample image. In both cases, the query
is processed by MAMI to compute the query’s descriptors.
These descriptors are compared to all other descriptors in
the local database and MAMI retrieves the 4 pictures (4-
best) that best match –i.e. whose descriptors are the closest
to– the user’s query.

In addition, the user can click on any of the retrieved images
and query the MAMI prototype to show images similar to
the chosen one, according to a variety of dimensions: loca-
tion, time, visual and acoustic tag similarity.

Note that all the processing in the MAMI prototype is done
locally on the mobile phone. This constitutes one of the ad-
vantages of this prototype over other systems, as it does not
depend on network availability or server access constraints.

With the MAMI prototype, all indexing can be done at the
time of capture and therefore no information is forgotten by
the user. In addition, MAMI’s audio processing is speech
independent and therefore highly suitable to handle proper
names that typically do not exist in standard dictionaries.
Local processing, however, poses several challenges, partic-
ularly in terms of the mobile phone processing capability.
The MAMI prototype overcomes these limitations by using
optimized and effective algorithms, both for the image and
audio processing modalities.

We direct the reader to our previous work [1, 2] for a detailed
description of MAMI’s interface and audio processing. The
focus of this paper is the addition of image processing and
multimodal image retrieval. In particular, we propose the
Multimodal Redundancy Reduction Algorithm (MR2) to se-
lect the most representative pictures of the contexts that the
user might be looking for. The MR2 algorithm is designed to
avoid retrieving unnecessary repetitions of pictures from the
same context. As shown in Section 4, this algorithm boosts
the system’s accuracy in returning the right picture(s), i.e.
the picture(s) that the user was interested in. A more de-
tailed explanation of the MR2 algorithm is given in Section
3. In the next subsections, we present an overview of the
acoustic and image feature extraction algorithms used in the
MAMI prototype, as well as the distance metrics proposed
in the audio and image spaces.

2.1 Acoustic Processing
Audio input is used in the MAMI prototype either for tag-
ging or searching. In both cases, the audio recording is car-
ried out via a push-to-talk method. The audio tags are
stored in disk as .wav files. A typical audio tag contains
a variable amount of silence at both ends, together with
some click and background noises, depending on how hard
the user clicks the stop-start buttons. These silence and
noise segments are filtered out using a simple energy-based
speech/non-speech detector with a variable threshold to ac-
commodate different background conditions. Then, 10 Mel
Frequency Cepstral Coefficients (MFCC) [9] are extracted
every 20ms, including CMN (Cepstral Mean Normalization)
and excluding the C0 component. This choice of acoustic
features was designed to optimize the discriminative power
of the audio descriptor, while keeping the feature extraction
as fast as possible. The obtained feature vectors are stored
in memory for later use.

In order to compare two audio tags, the Dynamic Time
Warping (DTW) algorithm is applied to their acoustic fea-
ture vectors, using the Euclidean distance between individ-
ual frames. The choice of DTW was driven by its efficiency
and accuracy in pattern matching repetitions of the same
utterance by the same speaker. In our experience [1], this
feature representation and distance metric has been robust
to typical background noises, such as urban outdoor noises.

When the user looks for a specific image via an audio tag,
the MAMI prototype performs a DTW comparison between
the input query’s feature vector and all stored audio feature
vectors. In order to speedup this computation, we constrain
the amount of time warping to twice the tag’s length. The
final result of this comparison is the distance, normalized by
the overall number of frames.



2.2 Image Processing
Edge-derived features have traditionally been an important
and computationally light-weight approach to characterize
image content. MAMI’s image processing module uses the
Edge Histogram Descriptor (EHD) of the MPEG-7 Visual
Standard for measuring similarity between images. The
EHD is designed to capture the spatial distribution of edges
in an image by computing a histogram that represents the
frequency and the directionality of the brightness changes in
the image [13].

To extract the EHD, a given image is first sub-divided into
4 × 4 sub-images. Each sub-image is further divided into
non-overlapping image blocks, which are the basic units for
edge extraction. The number of image blocks is typically
fixed (e.g. 1100). Therefore, the block size depends on the
resolution of the image. Each of the image blocks is then
classified into one of the five types of edges, namely: ver-
tical, horizontal, 45-degree diagonal, 135-degree diagonal or
non-directional. This classification is performed by apply-
ing edge detectors with the corresponding directions on the
image block and selecting the one with the strongest (high-
est in value) response. If the response is above a certain
preset threshold (e.g. 11), the block is classified as an edge
of the respective orientation. Otherwise, it is classified as
a non-edge block [8, 13]. All the blocks in a sub-image are
classified and a 5-bin histogram is constructed to charac-
terize the distribution of edges in the sub-image. The end
of this process yields an edge histogram with a total of 80
(16× 5) bins, since there are 16 (4× 4) sub-images. This 80
dimensional histogram constitutes the image feature vector
that is stored with the rest of the image metadata for later
use.

In order to compare two images, the Euclidean distance is
applied to their image feature vectors, such that the smaller
the distance, the more similar the images are. When the
user looks for a specific image via an image sample, the
MAMI prototype computes the Euclidean distance between
the input image’s visual feature vector and all stored image
feature vectors.

3. MULTIMODAL INFORMATION FUSION
The availability of multimodal metadata allows for the for-
mulation of image retrieval algorithms that combine this in-
formation intelligently. In this paper, we focus on the com-
bination of image and audio features in the context of an
image search task.

The first subsection presents the three fusion techniques that
were tested in our experiments. The second subsection pro-
poses a new algorithm named Multimodal Redundancy Re-
duction Algorithm (MR2) that takes advantage of multiple
modalities to increase the accuracy of the image search re-
sults.

3.1 Multimodal fusion techniques
There has been extensive previous work in the area of mul-
timodal information fusion for multimedia data search [7,
14]. Typically, multimodal fusion algorithms carry out the
fusion at the feature or at the decision levels. When fus-
ing at the feature level, a large dimensional feature vector
is created with the features from all modalities, followed by

PCA for dimensionality reduction and/or ICA for identify-
ing statistically independent sources. Finally, a classifier is
applied.

Fusion techniques at the decision level, however, process the
data from each modality independently and apply a fusion
algorithm when making the classification decision. Some
examples include product combination [11], weighted-sum
[12], voting and min-max aggregation [7].

In this paper, we have considered fusion techniques at the
decision level as they allow the use of different algorithms
for characterizing and comparing the feature vectors in each
of the modalities. In particular, we have opted for the
weighted-sum (linear combination) approach, due to its sim-
plicity and reasonable level of tolerance to noise in the input
data. We shall describe next three alternative implementa-
tions of the weighted-sum that use different weights in the
linear combination.

The first fusion alternative (fusion1) explored is shown in
equation 1

Df (i, j) = W
Ddtw(i, j)

max(Ddtw(i, ·)) + (1−W )
Dehd(i, j)

max(Dehd(i, ·))
(1)

where Df (i, j) is the fused distance between images i and j,
Ddtw(i, j) is the DTW distance between the acoustic tags of
images i and j, Dehd(i, j) is the visual distance between im-
ages i and j, W is the weight and max(Ddtw(i, ·)), max(Dehd(i, ·))
are the maximum values of the pairwise distances between
image i and all other pictures in the acoustic and image
spaces.

The value of weight W is determined empirically from real
data. Figure 1 shows the average accuracy of this algorithm
in our multimodal image dataset1 when varying the weight
W from 0 (only using image information) to 1 (only using
acoustic information). The optimum value is found at W =
0.7.
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Figure 1: Selection of the weight W in the first fusion
algorithm.

The second fusion alternative (fusion2) does not use the
weight W , but normalizes each modality by its mean µ and

1See section 4 for a detailed description of the dataset.



standard deviation σ, as shown in Equation 2:

Df (i, j) =
Ddtw(i, j)− µDdtw(i,·)

σDdtw(i,·)
+

Dehd(i, j)− µDehd(i,·)
σDehd(i,·)

(2)

Equation 2 makes sure that the probability density function
(pdf) –assumed to be a normal distribution– of each modal-
ity’s output values overlaps around 0 and is scaled to have
unit variance.

Finally, the third fusion alternative (fusion3) adds an extra
weight to each modality (Wdtw and Wehd) to Equation 2.
These weights are designed to compensate for the likely non-
Gaussianity of the pdf’s both in the image and audio metric
spaces. Given Ddtw(i, .) and Dehd(i, .), we first compute the
total dynamic range of each of the distances. Note that
outliers (if any) have been previously filtered out. Next,
we compute the number of times that the distances in each
modality fall below the 50% of such dynamic range [10]. The
weights Wdtw and Wehd are computed as the ratio of these
values between the two modalities.

3.2 Multimodal Redundancy Reduction Algo-
rithm

The multimodal annotation capability of the MAMI pro-
totype augments the user personal images with additional
metadata: audio and image feature vectors, date and time,
location and user identification. However, a typical picture
search task will only include a monomodal input, either by
means of an acoustic query (i.e.the user provides the audio
tag associated with the desired picture) or an image query
(i.e. the user provides an exemplary picture that is similar
to the desired image).

In this Section, we present a Multimodal Redundancy Re-
duction Algorithm (MR2) that takes advantage of the mul-
timodal metadata in search mode to improve the accuracy
of the search.

The MR2 algorithm attempts to maximize the probabil-
ity that a desired picture will appear in the N -best pic-
tures which are retrieved by the MAMI prototype and con-
sequently shown to the user. To do so, the MR2 algorithm
exploits the information contained in the modality not used
in the input query (e.g. image for audio queries and vicev-
ersa) to avoid showing redundant images to the user, i.e. im-
ages that were taken in the same context and display similar
content.

Note that redundant images are very common in personal
image databases, because users typically take more than one
picture in the same scene (and context) to ensure that the
desired content has been captured. Also note that once the
user has identified the desired image, (s)he should be able to
select it and retrieve related images from a variety of perspec-
tives, including visual, acoustic, temporal and geographical.

Figure 2 illustrates the MR2 algorithm via an example of an
audio query searching for pictures containing the acoustic
tag: ”beach”. The top row in the Figure, shows the 6-best

Figure 2: Multimodal Disambiguation algorithm.

results, according to the acoustic distances between audio
feature vectors, as described in Section 2.1. Underneath
each of the 6-best images, we show their associated audio
tag for reference. From these results, the MAMI prototype
would show the user the best N = 4 pictures as depicted in
Figures 3(a) and (b).

In this example, the tags bench, bush and boats appear in
the top 4 results, due to ambiguities in the audio process-
ing. In the case of monomodal query processing, the MAMI
prototype would retrieve and present to the user the N = 4-
top images, i.e. several pictures from the same context and
none from the desired topic, as seen in Fig. 3(a). The MR2
algorithm, however, considers the image similarity between
the retrieved pictures, marking as redundant –i.e. belonging
to the same context– the 2nd and 6th best images. This is
done by computing for each picture in the N -best list (ex-
cept for the first one) its K-best (K = 3 in this example)
pictures according to the non-queried modality. Images in
the N -best list are discarded if any of the pictures in their
corresponding K-best list has been selected before. The
MR2 algorithm will mark them as redundant. For example,
the K-best list for the 2nd-best picture in the top row of the
Figure –labelled with the tag bench– contains the 1st-best
picture. Therefore, the 2nd-best image is considered redun-
dant, as the system has already included a similar image in
the list of images that will be shown to the user. As a re-
sult of running the MR2 algorithm in this example, the user
would be presented with the set of 4-best pictures shown in
Fig. 3(b). Note how, in the case of the MR2 algorithm, each
image belongs to a different context and there is at least 1
image from the desired context.

Finally, the MR2 algorithm is described in Alg. 1. As it
will be shown in Section 4, this algorithm increases image
retrieval accuracy when compared to monomodal methods.
In addition, the computational complexity associated with
the MR2 algorithm is insignificant, as all pair-wise multi-
modal distances can be performed off-line.

4. EXPERIMENTAL RESULTS
In this section, we describe the multimodal database and the
experiments performed to test the impact of using multiple
modalities when searching for pictures. We also evaluate the



(a) (b)

Figure 3: Final 4-best images displayed to the in-
put query beach: (a) Monomodal processing and (b)
Multimodal Redundancy Reduction algorithm.

Algorithm 1 MR2: Multimodal Redundancy Reduction
Algorithm

Input: a given query Q (either acoustic or image)
while n ≤ N do

Retrieve the next closest image Xn to Q
if n = 1 then

Set X1 as the first output.
else

Compute the closest K images (Ym=1...K) to Xn given
the modality not used in query Q
if (Ym=1...K) contains any images in X1...n−1 then

discard Xn

else
include Xn to the output and n = n + 1

end if
end if

end while
Output: list of N most relevant pictures shown on screen

effectiveness of the MR2 algorithm proposed in this paper
when compared to a monomodal query approach.

4.1 Multimodal Database
In order to carry out the experiments, we collected a multi-
modal database. Six different participants (one female, five
male, with ages ranging from 25 to 40) were asked to use
the MAMI prototype for a few days. They were asked to
take at least 2 exemplary pictures –with their correspond-
ing audio annotations– of a set of categories or contexts,
e.g. monument, street, building,car, beach, etc. The num-
ber of pictures taken by the users ranged between 52 and
212 pictures, with an average of 91. Figure 4 depicts a few
exemplary pictures from the multimodal database, together
with their associated audio tags.

4.2 Multimodal fusion experiments
The multimodal experiments were performed in a per speaker
basis, given that the MAMI prototype is intended to be a
personal system. For each picture in each of the participant’s
databases, we searched for the best (or N -best depending on
the test performed) set of pictures (different from the one

Figure 4: Examples of pictures taken by the partic-
ipants with their annotations.

taken as query) with smallest distance to the input image,
either in the image or acoustic space. A metric of accuracy
is reported as the % of times that the correct picture –i.e.
the picture comes from the same context as the desired one–
was retrieved.

We performed a first set of experiments where we searched
for the closest picture given a multimodal query (audio and
visual features) as input. The distance was measured in each
modality independently and then using the three previously
described fusion algorithms.

User image audio fusion1 fusion2 fusion3

user1 81.1% 90.6% 95.8% 95.8% 92.5%
user2 84.9% 98.8 % 98.8% 98.8% 98.8%
user3 51.9% 61.5% 73.1% 73.1% 69.2%
user4 85.5% 87.0% 92.8% 94.2% 89.9%
user5 46.9% 96.9% 96.9% 92.2% 96.9%
user6 66.7% 84.1% 90.5% 85.7% 84.1%

average 69.5% 86.5% 91.3% 90.0% 88.6%

Table 1: Retrieval accuracies for all users and re-
trieval algorithms for 1-best output.

Table 1 presents the retrieval accuracy results for the indi-
vidual modalities and for the three fusion alternatives pro-
posed. Results are given at the individual participant and
average level and correspond to considering only the first
returned result (1-best).

As seen on the Table and in the case of the individual modal-
ities, audio always outperforms image processing. Among
the fusion techniques, fusion1 obtains the best average score,
but has the burden of requiring recomputation of the lin-
ear combination weight W when there are changes in the
database. Fusion2 and fusion3 do not require any tuning.
Fusion2 achieves slightly better performance than fusion3
on average, but for some speakers its score falls below the
best of the individual modalities. Fusion3 always equals or
outperforms the best individual modality and therefore it is
considered to be the most robust approach over all options.

In the current MAMI prototype implementation, the user re-
ceives back the 4-best images matching the query. The user
will typically consider that the system behaved correctly if



the image he/she was expecting is in the displayed set. In-
tuitively, it seems that the system’s performance could be
increased the more images it would show to the user. Figure
5 shows the average accuracy for each of the retrieval algo-
rithms shown above as a factor of the number of images (N)
returned as possible matches. As expected, the system’s ac-
curacy increases with N . In a standard mobile phone screen,
N = 9 would probably be the maximum number of images
that could be shown and still be easily recognized by the
user.
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Figure 5: Accuracy for all evaluated techniques as a
function of N-best output

As can be seen in the Figure, the system always behaves
worse on average in the monomodal case than with any of
the proposed fusion techniques. It is interesting to note that
image-based retrieval increases performance much faster than
any other approach, reaching over 93% accuracy at N = 92.
Among the three different fusion techniques, fusion1 ob-
tains the best results until N = 5, when fusion2 –i.e. au-
tomatic weight selection via variance/mean normalization–
becomes the best choice. It seems that all fusion techniques
reach a stable accuracy point for N > 5.

4.3 Multimodal Redundandy Reduction
As previously explained, the MR2 algorithm has two design
variables: (1) N , the number of pictures that will be shown
to the user; and (2) K, the size of the list of similar pictures
according to the complementary modality to that being used
in the query.

In order to test the MR2 algorithm, we used the same mul-
timodal database presented above.

Figure 6 shows the accuracy as a function of K for several
values of N (i.e. 1, 2, 4, 6 and 9 images presented to the
user) and in the case of an acoustic input query. By design,
the algorithm never alters the first picture shown. Therefore
N = 1 always gives the same result, which is equivalent to
using only acoustic information in the system. For N > 1,
accuracy increases as N increases. For N = 4, 6, 9, accuracy
remains almost constant for K < 7 and starts decreasing
afterwards. This is explained by the fact that the larger
the number of images used for disambiguation, the higher

2For appropriate viewing we have trimmed the image accu-
racy values for N < 3
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Figure 6: Audio query MR2 Algorithm as a func-
tion of N and number of redundant elements con-
sidered(K)

the probability to include images that are not related to the
input image. Therefore, the larger the K, the larger the
number of images that would be excluded from the output
list without being redundant. The optimum value for K de-
pends on the size of the database and on the average number
of redundant images that it contains. The database used in
our experiments had 2 to 5 redundant images for each im-
age, depending on the user and the context. Performance
does not seem to suffer in the range Kε[1, 7).

If we consider the inverse case, i.e. an image query with
audio used to eliminate redundancy, we obtain a similar plot
and similar optimum values for K. Therefore, we set the
MAMI prototype to work with N = 4 pictures shown to the
user, and K = 4 pictures used in the redundancy elimination
algorithm. Results for these settings in the two possible
input query modalities are shown in table 2.

4.4 Overall Results
Next, we shall summarize the results of our experiments.
Table 2 depicts the accuracy of the MAMI prototype when
showing the 4-best pictures for each of the proposed tech-
niques: monomodal, MR2 algorithm with K = 4 and the
best result obtained with the fusion algorithms.

Query MonoModal MR2 Fusion(best)
audio 94.48 % 95.04%

95.63%
image 83.87 % 84.92%

Table 2: Results for all Presented Techniques

The MR2 algorithm outperforms the monomodal approaches.
Its point of departure is the monomodal query result, and
reduces the redundancy of the results by using the comple-
mentary modality. On a per-user analysis, we observe that
the impact of the MR2 algorithm is more significant as the
monomodal approach is more prone to errors. In the case
of audio queries, the worst performing user in our study
obtained an audio monomodal accuracy of 88.4%, whereas
his accuracy improved to 90.3% when using the MR2 algo-
rithm. In the case of image queries, the worst performing



user obtained accuracies of 75.0% and 78.1% for the mono-
modal and MR2 cases respectively. Finally, note that the
multimodal fusion techniques obtain the best results when
compared to any of the other approaches. However, they re-
quire a multimodal input query, consisting of an image and
an audio tag.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a mobile, multimodal image
annotation, indexing and retrieval prototype named MAMI.
It allows users to annotate and search for digital photos on
their camera phones via speech or image input. The focus
of this paper has been the multimodal nature of MAMI. In
particular, we have proposed and evaluated two multimodal
approaches to image retrieval: First, we have compared the
accuracy of three multimodal fusion algorithms. Secondly,
we have described a novel algorithm for multimodal redun-
dancy reduction (MR2 algorithm). In order to validate and
compare the various approaches, we have created a multi-
modal image database with 546 pictures for 6 users.

Our experiments have shown that:

1. The multimodal fusion algorithms have higher accu-
racy than their monomodal counterparts.

2. The multimodal redundancy reduction (MR2) algo-
rithm also has higher accuracy than the monomodal
approaches on image retrieval. More importantly, the
MR2 algorithm is able to improve accuracy in the
cases where the monomodal retrieval algorithm ex-
hibits poor performance.

3. The MR2 algorithm augments monomodal queries with
information from the complementary modality to the
one used in the query. All the necessary information
can be precomputed off-line. Therefore, the MR2 al-
gorithm’s computational cost is equivalent to that of
monomodal approaches.

We believe that multimodal approaches to multimedia in-
dexing and retrieval in mobile phones will play a crucial role
in the years to come. Therefore, some of our lines of future
work include:

1. The development of a client-server architecture in the
MAMI prototype, such that users would be able to
upload their mobile pictures and search for their digital
content in the server with increased capabilities.

2. The implementation of a clustering approach in the
image and audio spaces to increase the efficiency and
scalability of the search algorithms.

3. The deployment of a user study to compare the pro-
posed multimodal approach to traditional and text-
based approaches to multimedia information retrieval.

4. The inclusion of other modalities for more accurate
retrieval, e.g. location, time and date, social context,
etc.
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