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ABSTRACT

Markov Random Fields (MRF) have proven to be extremely useful
models for efficient and accurate image segmentation.Recent litera-
ture points to an increased effort towards incorporating useful priors
(shape, geometry, context) in a MRF framework. However, topo-
logical priors, considered extremely crucial in biological and natu-
ral image sequences have been less explored. This work proposes
a strategy wherein free parameters of the MRF are used to make it
topology aware using a semantic graphical model working in con-
junction with the MRF. Estimation of free parameters is constrained
by prior knowledge of an object’s topological dynamics encoded by
the graphical model. Maximizing a regional conformance measure
yields parameters for the frame under consideration. The application
motivating this work is the tracing of neuronal structures across 3D
serial section Transmission Electron Micrograph (ssTEM) stacks.
Applicability of the proposed method is demonstrated by tracing 3D
structures in ssTEM stacks.

Index Terms— MRF, Parameter Estimation, Image Sequence
Analysis

1. INTRODUCTION

Markov Random Field (MRF) models have found wide applicability
in image analysis due to their ability to fuse prior knowledge with
the observed data efficiently and accurately. Classical formulations
predominantly restrict themselves to smoothness priors driven by in-
tensity (color, texture) likelihoods. Recently, there has been effort
focussed on embedding contextual and geometric priors into random
fields with impressive results. This paper explores a novel topology
prior, an area that is gaining renewed interest in the MRF literature.
In particular this work concerns itself with a setting where image
characteristics change with respect to some parameter. In case of
tracking applications, the aforementioned parameter is time, while
it is the z-direction for image stacks. In other words, given N im-
ages, the problem is to localize the object in each image by handling
prior knowledge of topological changes an object may undergo. The
application motivating this work is the tracing of 3D structures from
serial section Transmission Electron Micrograph (ssTEM) stacks ob-
tained from a retinal connectome [1]. The requirement of automated
or even human assisted semi-automated tracing methods for connec-
tomes cannot be overemphasized. The single connectome under con-
sideration could take biologists a year or so to fully annotate. The
challenges involved in segmenting ssTEM stacks are coping with
excessive deformations across depth, capturing topological changes
(shrinkage, expansion, merging and splitting) that may occur at any
depth, and building appearance models from noisy textures. Fig-
ure 1 illustrates the ability of the proposed topology aware MRF to
capture massive object deformations and topological changes (con-
tour splitting and merging). The ability to induce knowledge about

Fig. 1. (Best Viewed in Color) The above figure shows cross-
sectional images sampled from a retinal connectome acquired using
scanning section transmission electron microscopy. The images are
2D crosssections of neuronal structures present in the three dimen-
sional volume. As can be seen, manual markup of these structures is
challenging considering the number of structures to be traced (vol-
ume of data). The image analysis problem is to reconstruct these
neuronal structures in three dimensions, given an initial contour in
the first slice. Some critical challenges that need to be overcome are
capturing abrupt contour deformations across the z-direction, and
detection of topological changes such as splitting and merging of
contours. The first row in the above figure shows an example of a
contour initially splitting into two contours (frame 2-3) and further
splitting into three contours (frame 3-4). The second row illustrates
an example of a contour splitting on the right (frame 1-2) and merg-
ing on the left (frame 2-3). Developing a technique that overcomes
the challenges stated above and achieves results as illustrated is cen-
tral to interpreting electron micrograph data. The contours shown
are not annotated by a human, but automatically generated by the
technique proposed in this work.

the split/merge behavior of a target is made possible by topological
priors, and is inherently different from shape/geometric priors.

The basic idea behind the proposed technique is to learn a prior
model (topological dynamics) that auto-tunes MRF parameters as
one moves through an image sequence. A little thought must con-
vince the reader of advantages offered by auto-tuning parameters
across the image stack. One could attempt to learn parameters us-
ing (state of the art) pseudolikelihood or max margin techniques.
However, as the object’s appearance and topology change from one
frame to another, it is not obvious how one adopts a single learnt pa-
rameter vector (or its distribution) for the frame under consideration.
The proposed method utilizes topological dynamics of the object to
constrain parameter variations. This is implicitly achieved by using
free parameters of the MRF to control topological dynamics of the
object. This is an important difference in the context of image se-
quence analysis, since there are changes from one frame to another



(illumination, occlusion, object deformations to name a few) that
cannot be accounted for by a single parameter vector for the entire
image sequence. Hence, it makes sense to learn a prior model lend-
ing flexibility to parameter variations rather than pick a parameter
vector learnt offline. The aim of this paper is to present a method
that is capable of wrapping around a non-parametric segmentation
technique (eg: mrfs, level sets), thereby achieving two objectives:
Firstly, embedding topological priors using free parameters of the
algorithm. Secondly, auto-tuning the free parameters by topology
control equations thus annulling the need for hand tuned parameters.
The primary contributions of this work include:

• A framework for online parameter estimation in Dynamic
Markov Random Fields

• Enforcing prior knowledge of learnt topology to improve im-
age sequence analysis

In developing our algorithms (Section II) we emphasize generating
solutions conforming to prior topology as opposed to global opti-
mization. Hence, in certain cases (when feasible parameter set size
is large), local solutions are accepted for tractability.

Related Works: A detailed treatment of MRFs can be found in
Boykov et al. [2] and is not discussed here. Vu et al. [3] introduced
shape, Winn et al. [4] introduced contextual priors in MRFs. Work
dealing with topology models deals with constraining object topol-
ogy [5], and does not learn a topological model over possible events.
Further, the idea of modeling topological priors using free parame-
ters of the dynamic MRF is inherently different from the previous
formulations. The proposed technique encodes a topological prior
(see Figure 3) into a non-parametric segmentation framework, in
contrast to deformable shape prior segmenter such as the work of
Cremers et al [6]. The primary motivation of both works are dif-
ferent, while a unification would intuitively lead to a stronger seg-
menter. Papers by [7, 8] illustrate different approaches for Electron
Micrograph segmentation/tracing.

2. FORMULATION

Notations: The following discussions conform to, I1:N : Set of
N images comprising the sequence, z : Iterator that moves over
depth/time, Cαz : Segmentation partitioning slice z with parameter
α, yp,z, xp,z : Label and Data at pixel p in slice z.

MRFs are models formulated to solve the image labeling prob-
lem. The aim is to label every pixel p ∈ Pz in an image with a label
yp from a label set L ∈ {1, 2, ...|L|}. Each pixel p resides in a pla-
nar graph and has data xp,z associated with it at slice z. Depending
on the problem requirements, the number of neighbors with which a
pixel can interact (or has direct edges to) defines the size of its neigh-
borhood (Np). The goal is to infer the pixel labels conditioned on
the data as efficiently and accurately as possible. The cost function
employed for MRFs is given by:

E(yz) =
∑
p∈Pz

Vp(yp,z) +
∑

p∈Pz ,q∈Np

Vpq(yp,z, yq,z) (1)

Unary Potentials:Vp(yp,z) = − logP (xp,z, yp,z−1|yp,z), the neg-
ative log likelihood function is commonly known as the unary or
terminal cost. In order to spatially localize an object of interest in
slice z, we propose the following form for the spatial localization
prior, which acts as a rough shape prior. The following equation bi-
ases likelihood potentials (in slice z) to assume shapes that resemble
previous segmentations(in slice z − 1). In words, the farther a pixel
is from a previous segmentation in z−1, the less likelihood it has of
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Fig. 2. Illustration of the algorithm flow for a single iteration of
Topology aware MRFs. The prior contour is utilized to generate a
prediction using spatially constrained graph cuts. The prediction is
used to score (regional stability likelihood) multiple segmentations
obtained by varying MRF parameters P. The parameter having max-
imum conformance to topology priors is the segmentation result for
the current slice, and acts a prior for the next slice.

being foreground.P (yp,z−1|yp,z) = exp(−φ̂p,zH(φ̂p,z)/σs)yp,z+

(1 − exp(−φ̂p,zH(φ̂p,z)/σs))(1 − yp,z), where σs is a smooth-
ing parameter. φ̂p,z is the signed distance function of the segmen-
tation result in z − 1, and acts as a prior for segmenting slice z.
Unary potentials are constructed from multiplying the spatial local-
ization prior with pixel wise likelihoods. Interaction Potentials: are
neighborhood potentials modeling pixel similarity Vpq(yp, yq) = λI
exp(−||xp − xq||/σ2

I )δ(yp 6= yq). Inferring yp from equation 1 re-
quires its minimization, which is achieved by a mincut [9] on the
constructed graph.

As mentioned earlier, the main problem being addressed in this
work is to make the segmentation algorithm topologically aware of
expansion/shrinkage and split/merge events. Figure 2 illustrates the
proposed workflow. The novelty of the proposed formulation lies in
the introduction of scoring functions for topological transitions using
a regional stability likelihood. Initially, a spatially constrained graph
cut (constraining the search space of a contour from one frame to an-
other) aids in enforcing 3D smoothness. Subsequently, topological
priors are incorporated by maximizing a likelihood function learnt
from training data.

2.1. Topological Prior as a State Transition Model

We now introduce the notion of regional stability. Regional stability
for purposes in this paper is the stability of a segmentation result to
variations in free parameters of the algorithm. In the case of Markov
random fields with clique size 2, regional stability can be determined
by finding out the stability of segmentation by varying regularization
(λI ) and edge strength parameters (σI ). It is well known that the
output of segmentation gradually changes from undersegmentation
to oversegmentation as the effect of the interaction and edge strength
parameters are varied. The greater the value of σI , larger is the vari-
ance of the contrast sensitive potential Vpq thus favoring only very
strong edges, while reduction in value begins favoring weaker edges.
On a similar note, λI can be seen as a parameter controlling the rel-
ative importance of unary and interaction terms. In order to detect a
split or merge event, a search is carried out in the parameter space θz



Slice t Slice t+1 Slice t+1

Initial Slice Likely 
Transition

Unlikely 
Transition

Split 
Area 
Max

Merge 
Area 
Min

Split / 
Merge 
Prior

Data 
Likelihood

Merge 
Detect

Split 
Detect

Prior 
Label

N/A

N/A

Fig. 3. Illustration of the prior information available pertaining to
topological changes. The regional conformance likelihood is con-
structed based on the above illustration. See text for an explanation
of the different rows in the above figure.

= (σI , λI)z to ascertain regional stability. Since the parameter vari-
ations control the regional stability of the segmentation outcome, the
method to search over this 2D parameter space for stable regions in
the vicinity of the previously segmented contour is referred to as re-
gion search. In the following, note a change in notation from yp,z
to Cz . The higher level graphical model works on a more global
interpretation (Cz) of the contour as a collection of pixels, while the
MRF works at the level of pixels (yp,z) by factorizing their probabil-
ities as is evident from the previous sections. The regional stability
likelihood R, used for constructing the higher level graphical model
is defined as:

R = P (Cz, Iz|Cz−1) = P (Iz|Cz, Cz−1)︸ ︷︷ ︸
Data Quality

P (Cz|Cz−1)︸ ︷︷ ︸
Plausibility

(2)

The data quality is measured by the histogram intersection between
f(Iz(Cz)) and f(Iz−1(Cz−1)). Note that the histogram intersec-
tion between two histograms hib, hjb, b ∈ {1, ..B} with B bins is
defined by

∑B
i=1 min{hib, hjb}. The function f can be any func-

tion estimating the density of pixel intensity. The simplest form
(also used in this work) would be a histogram of pixel values of
foreground pixels from frame z − 1 and z. The topological priors
available for the problem at hand are now formalized, (see Figure 3):
Split/Merge Prior: Chance of contour splitting (merging) into (from)
more than three sub-contours is extremely low. Split Area Max: If
area of contour in z decreases in comparison to area in z − 1 (split
or shrinkage), area of overlap between contours in z − 1 and z must
be maximal. Merge Area Min: Chance of contour merging with an-
other contour results in a contour with area around the sum of two
parent contours. Split Detect: Splits occur when there are multi-
ple overlapping connected components between frame z − 1 and
z. Merge Detect: Merges occur when there is a massive change in
contour areas between frame z − 1 and z. Data Likelihood Agree-
ment: The agreement of data likelihoods between successive over-
lapping contours must be maximized. In short, a contour moves
down a serial stack and can undergo any one of four topological
events, namely shrinkage, expansion, split, and merge. A shrink-

age(expansion), considered a regionally stable event is always as-
sumed to decrease(increase) a contour’s surface area from one frame
to another. Further, a split(merge) is considered a regionally unsta-
ble event with prior constraints on the nature of split (merge). The
events are mutually exclusive, meaning they cannot co-occur for a
given contour. The state transition distribution modeling topologi-
cal events is P (Cz|Cz−1). Consider Cz−1 to be an estimate of the
contour using an estimation procedure, and ∪Li=1Cz(i) to be the set
of L contours generated by a parameter setting of the segmentation
algorithm. We define two important quantities,

• Relative Surface Area(d): The ratio of contour areas from
the estimated contour from slice z − 1 and the L overlapping
(across slices) contour(s) produced by the segmentation algo-
rithm on slice z, d =

|Cz−1|
∪Li=1|Cz(i)|

• Region Stability(r): Regional stability as one transitions from
frame z−1 to the current frame z. The function is constructed
so that if there is expansion or shrinkage (considered stable
transitions since the connected component is preserved), r
evaluates to a non-negative number, while it is negative for
split or merge behavior. r = −(IS ∨ IM ). The variables IS
and IM are indicator variables indicative of a split or merge
respectively, and ∨ refers to a logical OR operation.

IS =

{
1, 1 < L < Lprior
0, otherwise IM =

{
1, d < 0.5
0, otherwise

(3)

The probability of a topological change occurring, without any im-
age dependent information is given by:P (Cz|Cz−1) =

∑4
i=1 P (T =

i). The contour transition prior is modeled under the assumption
that transitions corresponding to different topological events are
normally distributed with respect to d. The decomposition of prob-
abilities with events T = {1, 2, 3, 4} corresponding to shrinkage,
expansion, split, and merge is given by: P (T = 1) = N (1 +
µ1, σ1)H(d−1)H(r), P (T = 2) = N (1−µ1, σ1)H(1−d)H(r),
P (T = 3) = N (µ2, σ2)IS , P (T = 4) = N (µ3, σ3)IM . In the

Algorithm 1 Topology Aware MRF: Particle Filter Inference.
NOTE: α,w represent particles (MRF parameters) and their weights
Require: I1:N , C1,K, q (importance density)
αi1 ∼ q(αz|αz−1) wi1 = 1/K, 1 ≤ i ≤ K
for z = 2 : N do

Resample: {wiz−1}1≤i≤K , wiz−1 = 1/K ∀i ∈ 1..K
for i = 1 : K do
αiz ∼ q(αz|αz−1)

Cα
i

z = argmin
Mz

E(Mz|Iz, Cz−1, α
i
z)

wiz = wiz−1
P (Iz |C

αiz
z )P (C

αiz
z |Cz−1)

q(αiz |αz−1)

end for
Normalize Weights wiz =

wiz∑K
j=1 w

j
z
, 1 ≤ i ≤ K

α∗z =
∑K
i=1 w

i
zα

i
z , C∗z = argmin

Cz

E(Cz|Iz, Cz−1, α
∗
z)

end for

above equation, H refers to the Heaviside function that evaluates to
one if the argument is non-negative. µi, σi, where 1 ≤ i ≤ 3 are
parameters of a normal distribution learnt respectively for shrink-
age/expansion, split and merge. Lprior is the maximum number of
contours that can result from a split, as observed from the training
data. Given the result from the MRF segmentation and a learnt



Fig. 4. (Best Viewed in Color) Results indicating the applicability
of the full model latching on to topological events, including dras-
tic deformations and splitting. Each row illustrates performance on
different stacks.
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Fig. 5. (X-axis: Frame Number, Y-axis: F Measure), F-measure
plots comparing proposed topology aware model (red) with tradi-
tional graph cuts alone (green) and level set tracker (blue). The
topology aware model consistently outperforms traditional graph
cuts and level set based trackers.

topology model, the challenge is to infer the optimal parameter αz
for every frame. The algorithm for inferring the joint model is pre-
sented in Algorithm 1, where a particle filter [10] estimates optimal
parameter values using a set of K particles.

3. EXPERIMENTS

Experimental results are reported on 3D electron micrographs,
where a subset of 3D stacks with annotations were used for learning
parameters of the topology model. Subsequently, the learnt parame-
ters were utilized for tracing, as shown in Figure 4. Preprocessing:
The electron micrograph data is inherently noisy and may contain
distractions. We employ the Contrast Limited Adaptive Histogram
Equalization procedure for preprocessing. Likelihood Potentials:
Electron Micrograph data is rich in texture, but not of the sort one
would find in traditional texture analysis literature. It is used as
a valuable cue by biologists, but would appear to be visually very
noisy for an untrained person. We propose computing multi-scale
local histograms from Isz = Iz ∗ gσi , 1 ≤ i ≤ S. The above
equation refers to smoothing of image Iz at position z on the stack
by a Gaussian kernel gσ of standard deviation σi, where S is the
total number of scales used for smoothing. Consider qsp to be a pixel
response to a smoothing at scale s and let Qzp be the feature vector

for pixel p. The unary potential functions are denoted denoted by,

Vp(yp = 1) = −log(P (Qzp|FGz−1))

Vp(yp = 0) = −log(P (Qzp|BGz−1)) (4)

Here FG and BG refer to the set of foreground and background
pixels respectively segmented from the previous frame. This feature
vector captures the notion of multi scale neighborhood averages and
concatenates the same to form a feature vector. A total of three
scales (S = 3) were employed for the gaussian kernel, while the
costs were evaluated using standard histogram techniques. Fig-
ure 4 illustrates the working of the entire model with the regional
likelihood maximization, and more complex topological changes.
Observe massive contour elongation along the first few slices that
the algorithm is able to trace with the displacement prior and sub-
sequently utilize the regional stability measure to detect topological
changes and trace each contour over depth. Figure 5 reports eval-
uation of proposed scheme in comparison to traditional methods
(including traditional MRF cost and level set based trackers) on
synthetic data and sampled stacks from the connectome. Significant
variations in the magnitude of F-measures justifies the need for the
proposed technique. In conclusion, this work presented an algorithm
for utilizing learnt topology priors for enhancing performance on
image sequence analysis task by fusing a top down graphical model,
with a low level MRF with promising results. Future work includes
scaling the proposed technique to simultaneously trace multiple
structures.
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