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Abstract

We introduce the use of geodesic distances and geodesic
radius for calculating pairwise similarities needed in var-
ious graph cuts based methods. By using geodesics on an
edge strength function we are able to calculate similarities
between pixels in a more natural way. Our technique im-
proves the speed and reliability of calculating similarities
and leads to reasonably good image segmentation results.
Our algorithm takes an edge strength function as its input
and its speed is independent of the feature dimension or the
distance measure used.

1. Introduction

Starting with the introduction of normalized cuts method
[8], image segmentation using graph partitioning tech-
niques has become very popular within the past few years.
There are two main steps involved in this segmentation pro-
cess: 1) building a similarity graph by calculating pairwise
similarities between pixels, 2) partitioning this graph to ob-
tain an image segmentation. In this paper we are proposing
an efficient and effective way of calculating pairwise sim-
ilarities. Our technique is based on finding geodesic dis-
tances between pixels using a variation of Fast Marching
Method (FMM) [6].

Regardless of the cost function used for the graph cut,
the image segmentation result is closely related to how
pairwise similarities are generated. In the past, most ef-
fort has been on finding better ways of partitioning the
graph. Designing better pairwise similarities did not receive
as much attention. Traditionally similarity between pixels
is reduced with increasing spatial and feature distances–

W = e
−
‖pi−pj‖

2

σp
−
‖~Fi−~Fj‖

2

σF , where pi and ~Fi denote the
location and feature vector of pixels. More recently the idea
of intervening contour is introduced [4] that reduces simi-
larity if there are image edges along a line connecting two

pixels.
Our approach in this paper combines all these ideas in

a very natural and mathematically sound way. As can be
seen, intervening contours and other rules used in calculat-
ing similarities can be thought of as a crude way of estimat-
ing geodesics on a suitable manifold. Here we introduce a
more formal way of estimating geodesics on an image. In-
tuitively our method can be explained as follows: 1) First an
edge strength function is generated from the pixel features
(gray-scale, color or texture). Values of this edge function
represent the cost of crossing a pixel when connecting two
pixels along a shortest path. We make sure that there is a
minimum cost everywhere even if the edge strength is zero.
This is to reduce the similarity if two pixels are spatially
distant. 2) Calculate geodesics from each pixel to all pix-
els. Pairwise similarity is then a monotonically decreasing
function with respect to the geodesic distances. In Fig. 1 the
behavior with increasing geodesic radius is demonstrated.

Without loss of generality, in the rest of the paper, we fo-
cus our analysis and discussion to normalized cuts method
due to its popularity. In principle, algorithms and methods
we introduce in this paper are independent of the graph par-
titioning method used.

The rest of the paper is organized as follows. In Sec-
tion 2 we review Fast Marching Method [6] and our imple-
mentation of it. In Section 3 we introduce an extension of
Fast Marching to calculate all-pairs geodesics and discuss
how we generate pairwise similarities from geodesics. Sec-
tion 4 compares our methods with the previous methods of
generating similarities and show some image segmentation
results. In Section 5 we introduce our multi resolution ap-
proach. We conclude in Section 6.

2. Fast Marching Method (FMM) for Geodesic
Distance Calculation

A fast algorithm for finding shortest paths on a graph is
Dijkstra’s algorithm [3]. If we create a graph from an im-
age using 4-neighbors of pixels, the shortest paths on graph
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Figure 1. a) original image of size 321 × 481, b) local geodesics
up to geodesic radius α = 100 around the point (50, 400), c) local
geodesics up to geodesic radius α = 300. d) Global geodesics for
the whole image.

will calculate L1 distance, e.g. the diagonal of a unit square
is 2 (instead of

√
2) regardless of how much we refine the

grid. This is because Dijkstra’s algorithm is designed to
work on a graph and does neither consider that we are on a
rectangular grid, nor tries to approximate the shortest path
in continuous domain. In contrast, Fast Marching Method
introduced by Sethian [6] calculates a first order approxi-
mation of the geodesics in continuous domain.

While conceptually Fast Marching is quite different from
Dijkstra’s algorithm, implementation of both algorithm are
very similar. Our implementation of Fast Marching uses
a heap based priority queue due to its simplicity and has
a complexity of O(n log n) for all geodesics from a single
point, where n is the number of pixels in the image. Very
recently Yatziv et al. introduced [9] an O(n) algorithm to
calculate Fast Marching by using an untidy priority queue.
For the rest of the discussion we will assume that single
source Fast Marching has O(n) complexity.

Fast Marching Method is an efficient algorithm to cal-
culate geodesic distances by solving an eikonal equation.
The general expression of the eikonal equation in 2D is the
following:

|∇T (x, y)| = F (x, y). (1)

The function F (x, y) gives the local weights used in arc
length calculation: ds2 = F 2(x, y)(dx2 + dy2). If F is
constant over the whole domain, the solution of the eikonal
equation is exactly the Euclidean distance. In our case F
is an edge strength function and the solution T gives us the
geodesic distances. The boundary conditions are given as a
set of points for which T (x, y) is known.

In our implementation of FMM we utilize three static

matrices–T , S and P–and one priority queue Q. In the
matrix T we store the solution of the eikonal equation
(geodesic distances). The matrix S tells us the state of each
point: 1 corresponds to decided, 0 to far away and -1 to
close. The matrix P contains the positions of close points
in the priority queue. This allows O(1) access to the points
in the priority queue when we need to update their distances.

To initialize the algorithm we set S(x, y) = 0 and
T (x, y) = ∞ ∀ x, y. Then for every point (x, y), whose
value T0(x, y) is known, we set T (x, y) = T0(x, y), we
update their state as decided (S = 1) and we add the
4-neighbors to the priority queue, updating their state to
close (S = −1). For every point in the queue we solve a
quadratic equation to update their value and their position
in the queue.

After this initialization phase, the main cycle of the al-
gorithm begins:

Algorithm 1 Main Loop of Fast Marching Algorithm.
while Q is not empty do

Extract q=minimum(Q).
Add it to the decided Set (S(xq, yq) = 1).
Set the state of the neighbors of q as close (S = −1).
Add 4-neighbors of q to Q or if a neighbor is already
in the queue then update its distance accordingly.

end while

3. Pairwise Geodesics as Similarities
The Fast Marching algorithm described in the previous

section can be used to find the geodesic distances of one
point (x0, y0) of the image to all the other points, simply
by setting the initial condition T (x0, y0) = 0 and solving
(1) for T . In our particular setup we use an edge strength
function as local weight function F:

F =
k(β + max(e))e
max(e)(β + e)

+ 1, (2)

where β is a constant parameter, which controls the en-
hancement or attenuation of the weak edges with respect
to the strong ones. Fig 2 shows change in the edge func-
tion with respect to β. e is the gradient magnitude of the
smoothed image. k is chosen such that (k +1) is the cost of
crossing the strongest edge. The (minimum) cost of moving
by one pixel where there are no edges is 1. We normalize
e between 0 and 1 using eN = e

β+e . Afterwards, rescaling
this function between 1 and (k + 1) leads to (2).

This 2D function F (x, y) is calculated only once at the
beginning and then used for the evaluation of all the pair-
wise geodesics. Running FMM for each pixel results in a
distance matrix of size hw × hw where h and w are height
and width of the input image. Commonly, due to memory
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Figure 2. a) An image of owls, b) edge strength F evaluated with
β = 100, c) edge strength F with β = 10. k is selected as 50.

and computational limitations similarities are limited to lo-
cal neighborhoods of each pixel. In our case we limit the
calculation of distances and similarities to a geodesic radius
α. This can be achieved simply by checking if the distance
is less than α when we extract a new element from the prior-
ity queue and stopping FMM otherwise. Geodesic distances
are then converted into similarities using s = 1− d

α . As can
be seen, by adjusting α we can control the sparsity of the
similarity matrix. Since we are running FMM n times, the
complexity of the all-pairs geodesics algorithm is O(n2). In
the rest of this section we will discuss important implemen-
tation and speed issues.

3.1. Implementation Issues with (Matlab) Sparse
Matrices and Complexity Analysis

Usually pairwise similarities are passed to the graph par-
titioning algorithm as a sparse matrix. This sparse matrix is
of size hw×hw. To form the indices of the sparse matrix all
pixels of the image are ordered as a one dimensional array
with an index i = r + h(c− 1) where r is row and c is the
column index of the image. In our case, we need to pay at-
tention to this process since the indices of the elements that
FMM returns are not ordered. In the rest of this section, we
discuss the complexity of filling a Matlab sparse matrix us-
ing similarities returned by the FMM method. Most sparse
matrix packages and representations use the same or simi-
lar format as Matlab’s, so the discussion in this section is
widely applicable.

Matlab utilizes three one dimensional arrays–s1, s2, and
s3–to store the contents of a 2D sparse matrix. s1 has length
Nmax, where Nmax is the number of nonzero elements in
the sparse matrix, and contains the values of the non zero
elements ordered in a column by column scan. s2 of length
Nmax, contains the row indices of the nonzero elements
(again visited in column by column order). Elements of s3

indicate the number of non zero elements up to the start of
each column. Because of this notation, we need to order the
indices of FMM results before inserting them to the sparse
matrix.

Since we are dealing with sorting integers (the position
indices of the pixels), which are bounded up by n = hw
and down by 1, Distribution Sort [1, Section 3.6] can be
used for sorting with O(n) complexity. As a consequence,

single source FMM still has O(n) complexity allowing us
to keep O(n2) complexity of the all-pairs algorithm.

3.2. Exploiting Symmetry of the Similarities

In our discussion so far we haven’t considered the fact
that pairwise similarities are symmetric. Say FMM is al-
ready run for pixel pi. When computing FMM for another
pixel pj , we already know the geodesic distance from pj to
pi and should not recalculate it. As discussed in Section 2,
FMM can accept a number of decided points for which the
geodesic distances are known (in addition to the distance at
starting point pj , which is 0). By reusing previously calcu-
lated geodesic distances in the following runs of FMM we
can easily avoid recalculating the same distances. This pro-
cess requires some amount of bookkeeping. We use a length
n array of linked lists to keep track of previously calculated
distances.

FMM is an approximation of the geodesic distances.
Therefore, in practice the distance from pi to pj comes out
slightly different than the distance from pj to pi due to the
discretization errors. As a consequence, an implementa-
tion of all-pairs geodesics without exploiting the symmetry
would not necessarily result in a symmetric sparse matrix,
which is not desired. However, by exploiting the symme-
try of geodesic distances we are also enforcing the sparse
matrix to be symmetric.

Our experiments show that symmetric algorithm de-
scribed in this section results in about two times increase
in speed, which shows that there is very little overhead in
our symmetric algorithm.

4. Comparison of Geodesic Similarities with
Radial Similarities

Normalized cuts method [8] is based on finding small-
est eigenvalues starting with the second smallest up to the
k’th eigenvalue and the corresponding eigenvectors of the
matrix D−1/2(D − W )D−1/2, where W is the similar-
ity matrix and D is a diagonal matrix with the diagonals
di =

∑
j w(i, j). For the efficiency of the eigensolver, it is

desirable that the matrix is sparse. For this purpose, normal-
ized cuts method usually restrict similarities to small neigh-
borhoods such that w(si, sj) = 0 if ‖pi − pj‖ > r, where
‖.‖ is the spatial distance and r is a constant, e.g. 10 pixels.
In this case, there are equal number of nonzero similarities
for each pixel. In practice, for a radius r similarities are
calculated in a square of size 2r × 2r.

In our case, we also limit ourself to local similarities by
stopping the Fast Marching algorithm when a geodesic ra-
dius of α is reached. For an indication we give the radius
for the equivalent density in our result. Since the number of
pixels visited by FMM depends on F , the total number of
similarity connections from a pixel vary from pixel to pixel.
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Figure 3. Histogram of density of similarities shown on a logarith-
mic grid. Density is defined as the number of nonzero similarities
given a pixel. a) An image of a church with large homogenous
regions, b) corresponding density histogram. c) A flower image,
which contains a lot of edges, d) corresponding density histogram.

Let us define density for a pixel pj as the number of nonzero
similarities from pj to all the pixels. Fig. 3 shows the distri-
bution of densities for two images: a church image with
large homogenous areas, and a flower images with large
number of edges. It is expected that the pixels of the church
image has larger densities than the flower image for a given
α. In Fig. 3(b) we see that for α = 10 and α = 20, there is
a peak towards right. This shows that we have stopped Fast
Marching too early. Increasing α to 30 shows that this peak
disappears and the densities are more evenly distributed. In
contrast, for the flower image we don’t observe such a peak
even for α = 10, which suggests that a large α may not be
necessary.

Table 1 and Fig. 4 display and compare the calculation
times for Fast Marching-based similarities, simple gray-
scale based (WI = e−‖Ii−Ij‖/σI ) similarities, and similari-
ties based on intervening contours (WC). Implementations
are in C++, compiled as a mex dll and called from Mat-
lab. We obtained a fairly optimized implementation of inter-
vening contours based similarities (WC) from Jianbo Shi’s
web site: http://www.cis.upenn.edu/∼jshi/software/. In this
case we are timing the C++ function affinityic(), which ac-
cepts an edge function and a list of pairwise coordinates
for which WC is calculated1. Our implementation of Fast
Marching Method is based on O(n log n) algorithm. Sim-

1We disable the random sub sampling to avoid heuristics in our bench-
marks.

Image Size 255 × 148
α avg. density radius FMM WI WC

10 73.65 4 9.98s 1.21s 2.30s
20 264.19 8 14.16s 1.58s 8.16s
30 547.66 12 20.27s 2.43s 21.68s
40 909.28 15 27.97s 3.70s 37.76s
50 1331.41 18 36.84s 4.94s Failed

Image Size 112 × 74
α avg. density radius FMM WI WC

10 41.05 3 0.99s 0.10s 0.45s
20 134.17 6 1.32s 0.19s 0.98s
30 260.21 8 2.02s 0.27s 1.96s
40 411.04 10 2.82s 0.38s 3.28s
50 568.59 12 3.69s 0.50s 5.02s
60 727.95 14 4.60s 0.57s 6.05s
70 923.53 15 5.57s 0.71s 8.49s
80 1087.1 16 6.62s 0.80s 9.91s
90 1309.6 18 7.79s 0.97s 13.13s
100 1545.9 20 9.03s 1.19s 16.82s

Table 1. Running times for calculating pairwise similarities.
Benchmarks are run on the bear image in Fig. 4(a). Fast
Marching-based (FMM) similarities, simple gray-scale based
(WI = e−|Ii−Ij |) similarities, and similarities based on interven-
ing contours (WC ) are given.

ilarities based on gray scale values (WI ) are calculated us-
ing our hand optimized code. We avoid the spatial term

e
−
‖pi−pj‖

2

σp since its complexity is negligible. Symmetry is
not exploited for any of the similarities calculated here.

As can be seen in Fig. 4, generating WI is quite fast.
On the other hand, note that these timings are for gray scale
values and Euclidean distance. Higher dimensional features
such as color or texture and more complicated distance mea-
sures such as earth mover’s distance [5] may increase the
time to create WI significantly. For geodesic similarities
this is not an issue. In our case we only need to create the
edge function once. FMM is independent of the dimension-
ality of the feature vectors and the distance measure used.
Similarly, WC is also independent of the feature vectors or
distance measures used and just require an edge function as
its input. Fig. 4(b) shows that calculating WC is slower than
FMM-based method and time increases much faster when
radius is increased. Note that, in [2] the suggested way
of calculating pairwise similarities is a combination of WC

and WI and formulated as: W =
√

WI ×WC + 0.1WC .
Another observation is that the running times and the

number of iterations required for the eigensolver is less
for FMM-based pairwise similarities than the intervening
contour-based pairwise similarities. Fig. 5(b) shows that,
for the sea star image of Fig. 5(a) even though FMM-based
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Figure 4. Comparison of computation times of the pairwise sim-
ilarities. a) An image of bear of size 112 × 72. b) Corre-
sponding plots of pairwise similarity calculation time with re-
spect to increasing radius (increasing density) for Fast Marching-
based (FMM) similarities, simple gray-scale based (WI =

e−‖Ii−Ij‖2/σI ) similarities, and similarities based on intervening
contours (WC ).

similarity matrix is 100 times more dense, it takes less time
to find the eigenvectors. This is mainly because our method
creates better connections on the graph and diffusion on the
graph converges quicker with less iterations as seen in Fig.
5(c).

Fig. 6 shows some experimental results. We
used normalized cuts-based clustering software from
http://www.cis.upenn.edu/∼jshi/software/ to obtain our
similarities that are used to generate the results. Results
are obtained on a set of images of size 128 × 192, with var-
ious parameter configurations. The edge strength function,
which is the input of the FMM, is computed in the CIE-
L*a*b* color space. We used the algorithm from [10] to
calculate color gradients of the smoothed image. The seg-
mentation results are somewhat better but very similar to the
intervening countours based approach in terms of accuracy
of capturing the region boundaries. In the next section we
will show that a multi-resolution approach based on FMM
will significantly improve the efficiency and effectiveness
of the segmentations.

5. Multi-scale Geodesic Similarities
It is well known that storing and processing large number

of pairwise similarities is expensive. It is also known that
segmentation results improve with increasing radius (de-
creasing sparsity). On the bear image of size 112 × 72,
eigensolver goes out of memory if we increase α more than
100 (equivalent radius is 20). Multi-scale approaches [7, 2]
are proposed in the past to address this issue.

In our case we generate an adaptive grid around each
pixel so that similarities are sampled with increasing spar-
sity as the geodesic radius increases. Again we stop at α but
we are able to increase alpha much further with high spar-

(a) (b)

Figure 7. a) A synthetic image of size 208 × 195, b) multi-scale
geodesic similarities for pixel (10, 10).

sity. Our algorithm is as follows. The inputs to the algo-
rithm are α0 and α, where α0 � α. Given a pixel at (x, y),
FMM is run up until α0 at which point k pairwise similari-
ties are generated on the dense grid. We reduce the grid res-
olution by two and evolve FMM by k point on the coarser
grid. We repeat this process and continuously coarsen the
grid. Values from the fine grid are reused for the coarser
grid so that there is no computational overhead. We stop
either when we reach geodesic radius α or when we reach
the image boundary. Fig 9 shows a comparison of single
and multi scale approaches. Fig 7, 8, and 10 show some
examples of the multi-scale grid and segmentation results.

In [2], three characteristics of pairwise similarities are
observed:

• Similarities decrease as the distance between pixels
are increasing. Our method automatically handles this
as we have a minimum cost of traveling the grid.

• There is less variance for short and long range connec-
tions among themselves but a large variance in mid-
range connections.. Consider a binary black rectan-
gle (size 20 by 50) image on a white background. For
a pixel at the center, short connection (less than 10)
and long connection (more than 25) won’t have much
variance, but mid range connections vary for euclidean
radii. Geodesic radii handle this case naturally.

• Variance in similarities between pixels in one small
neighborhood to pixels in another small neighborhood
decreases as the two neighborhoods are further apart
from each other. It should be noted that our coarsening
strategy fits into this observation.

6. Discussion and Conclusion
In this paper we introduced the use of geodesic dis-

tances and geodesic radius for pairwise similarity calcula-
tion. The computation of these distances between pixels is
based upon a variation of the Fast Marching Method. An
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Figure 5. Efficiency of the eigensolver is compared for similarities calculated using FMM and using intervening contours (WC ) a) An
image of a sea star of size 96× 144. b) Running time of the Matlab’s sparse eigensolver with increasing radius (descreasing sparsity). 10
eigenvectors are returned. c) Number of iterations needed for the eigensolver with increasing radius (descreasing sparsity).

(a) α = 20, 15 segments (b) α = 30, 5 segments (c) α = 30, 10 segments (d) α = 30, 25 segments

Figure 6. Segmentation results using geodesic pairwise similarities within normalized cut framework. (Images are best viewed in color)

Figure 8. Multi-scale geodesic similarities for the bird image in
Fig. 1a) on the coarse grid.

edge strength function, representing the cost of crossing a
pixel, is the input of the FMM which allows us to compute
pairwise similarity as a monotonically decreasing function
with respect to the geodesics distances. Applying then a
graph partitioning method on the similarity matrix we get
the desired image segmentation.

As shown in Section 4 the calculation of Fast Marching-
based similarities is faster compared to Intervening
Contours-based, and independent of the dimensionality of
the feature vector or the distance measure used. It also re-

duces the running time and the number of iterations of the
graph partitioning eigensolver. Our multi-scale approach
offered further speed and adaptivity in similarity calcula-
tions. In conclusion we showed that our technique improves
speed and flexibility of similarity calculation.
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