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ABSTRACT
Information technology research has played a significant
role in the genomics revolution over the past decade,
from aiding with large-scale sequence assembly to au-
tomating gene identification to efficiently searching data-
bases by sequence similarity. The tremendous amount
of information gathered from genomics will be dwarfed
in the next decade by the knowledge to be gained from
comprehensive, systematic studies of the properties and
behaviors of all proteins and other biomolecules. High-
resolution imaging of molecules and cells will be critical
for understanding complex systems such as the nervous
system, whether it be for the localization of specific neu-
ron types within a region of the central nervous system,
the branching pattern of dendritic trees, or the localiza-
tion of molecules at the subcellular level. Furthermore,
knowing how these distribution patterns and subcellu-
lar locations change as a function of time is critical to
understanding how cells respond to stress, injury, ag-
ing, and disease. We are developing sophisticated infor-
mation technologies for collecting and interpreting the
enormous volume of biological image data. A major
outcome of the research will be a unique, fully opera-
tional, distributed digital library of biomolecular image
data accessible to researchers around the world. Such
searchable databases will make it possible to optimally
understand and interpret the data, leading to a more
complete and integrated understanding of cellular struc-
ture, function and regulation.

1. INTRODUCTION
Significant progress in our understanding of cellular and
sub-cellular events can be made if we can couple ad-
vances in information technologies, such as image pro-
cessing, pattern recognition, and databases, with the
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enormous volume of biomolecular images that are be-
ing generated. For example, biologists make extensive
use of fluorescence microscopy to achieve high sensitiv-
ity and subcellular resolution. One strategy makes use
of fluorescently labeled antibody probes to visualize al-
most any molecule(s) of interest in any cell or tissue
that has been tagged. Viewing these samples with a
confocal microscope yields thin optical sections of each
sample. Generation of a z-series composed of numerous
sequential sections allows precise reconstruction of the
entire cell. The resulting data are often complex and
full of subtleties. The data become even more complex
when imaging multiple proteins through multiple, inde-
pendent channels. Two to four channels are common,
but this number will increase with advances in multi-
spectral imaging and fluorescent dye technology.

A second strategy developed in the past decade makes
use of fusions of green fluorescent protein (GFP) to pro-
teins of interest. It has made it possible to simultane-
ously visualize multiple molecules of interest in living
cells in real time, providing unprecedented insights into
the in vivo action of these proteins and the relation-
ships among them. In addition, atomic force microscopy
(AFM) has recently become an important tool for imag-
ing of biological molecules. With AFM, a sample is
analyzed by probing the surface with a tip, and the in-
teraction between tip and sample is measured. Physical
topography, charge density, magnetic field, temperature
and other surface properties can be discerned. Given
its high resolution and multi-dimensional capabilities,
its application to biological issues is certain to increase
dramatically, carrying with it the generation of volumi-
nous data requiring precise analysis.

Each of the strategies described above is applicable
to an enormous number of molecular and cell biology
questions and investigations. Antibody probes specific
to thousands of different proteins are available commer-
cially. In addition to identifying particular molecules,
a subset of these antibody probes recognize particular
conformational (i.e., functional) molecular states [13,
26]. With respect to the GFP approach, recombinant
DNA technology makes it straightforward to fuse GFP
to any protein of interest [18, 21, 29]. The immense
increase in the number of antibody probes that can be
used for immunolocalization, along with the ease of im-
age capture by techniques such as laser-scanning con-
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Figure 1: An array of photoreceptors labeled with specific antibodies to the long-wavelength cones
(red), short-wavelength cones (green), and rods (blue). The three channels are normally combined in
one psudocolored image, but are separated here.

focal microscopy and atomic force microscopy have re-
sulted in an explosion of the amount of biological infor-
mation available in the form of digital images. However,
there is currently no central home for this vast amount
of data, and no method readily available to discover
knowledge in such a database were it available. The
primary goal of this project is to develop new informa-
tion processing technologies that enable the scientific
community to take full advantage of the knowledge em-
bedded in these large data sets.

2. CENTRAL NERVOUS SYSTEM
The central nervous system (CNS) is a major focus of
the project. Our goal is to provide tools that may help
unravel the functional secrets of this immensely com-
plex system. In the following, we give some examples of
database problems that, if successfully integrated with
the appropriate smart imaging and information process-
ing technologies, will radically advance our understand-
ing of some of the fundamental processes at the cellular
and subcellular level.

The vertebrate retina has been widely studied at the
cellular level for over 150 years. It is the initial site of
both optical image formation and the neural processing
that leads to the formation of an image within the higher
visual centers. Because different neurons express differ-
ent sets of proteins, different antibodies can be used
as probes to examine the distribution pattern of cells
within a tissue [7] The example in Figure 1 shows the
array of photoreceptors labeled with specific molecular
probes to the short-wavelength cone, long-wavelength
cone, and rod photoreceptors. This array of receptor
types varies with retinal region as well as across species.
It will change during development, and in response to
trauma or an inherited disease. Understanding if the
patterns are maintained across species, how and when
they emerge in development, and whether or not they
change after injury, during specific diseases, or during

(a) normal (b) injured

Figure 2: An example of the distribution of a
filamentous protein in (a) a normal retina and
(b) a detached retina. The protein’s pattern of
localization shifts dramatically as a result of the
injury.
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Figure 3: A retinal section labeled with an anti-
body to an intermediate filament protein (green)
and a probe that recognizes dying cells (red).

aging is a problem of immense importance but also of
immense complexity.

Proteins can be localized in many different patterns
within a specific cell. But the exact pattern of intra-
cellular localization of a “vesicular” or “filamentous”
pattern may vary tremendously depending upon the
molecule being studied, the cell type, or the develop-
mental or metabolic state of the cell. Figure 2 shows
an example of a filamentous protein that is localized
to a specific domain in normal cells. The amount of
the protein and the pattern of its localization shift dra-
matically when the retina is injured or in response to
specific disease states [23, 24]. Populations of different
vesicles, each carrying a unique set of protein molecules
will shift in localization depending upon, for example,
their target. Some may remain within the cell body,
others may be transported specifically into dendrites,
while still others may be transported into axons. Thus,
the subcellular pattern of localization of these proteins is
fundamental to unraveling their functional significance.

During development of the nervous system, many more
neurons are produced than are ultimately used. These
“overproduced” neurons die by programmed cell death
(apoptosis), and this cell death is thought to occur by
specific spatial or temporal patterns within a given tis-
sue or region of the CNS. Cell death also occurs during
specific diseases. There are now over 100 gene muta-
tions in several different photoreceptor molecules that
each lead to the disease phenotype known as “retinitis
pigmentosa.” In all cases, photoreceptor cells die by

apoptosis. There are specific markers that can be used
to image apoptotic cells (Figure 3). Knowing the spa-
tial pattern of cell death along a temporal dimension
for each of these mutations may reveal the functional-
ity of the gene product or the mechanism resulting in
cell death. For example, do photoreceptor cells die as
a “wave” across their specific layer? Do they die in
patches? Do subtypes die together, or is there a rela-
tionship between two or more of the multiple photore-
ceptor cell types? These questions can be answered by
using two labels: one marker for the cell type of interest,
and one for apoptotic cells.

Patterns of cell birth (mitosis) also occur within neu-
ral tissues. Neurons are not born randomly, and neu-
ronal precursor cells do not divide randomly. Glial and
other accessory cells divide during certain diseases or
in cases of injury or trauma to the CNS, and markers
for dividing cells can be used to image these patterns.
Although difficult, it is possible to use multiple specific
labels to determine patterns of birth and death for spe-
cific subtypes of cells.

The above examples illustrate a clear and urgent need
for data management and information discovery tools in
the context of biomolecular images. The imaging pro-
cedures produce an enormous number of images that
are generally analyzed visually, image by image, one by
one. A full understanding of the observed behaviors and
interrelationships among the proteins is severely lim-
ited by the manual mode of data analysis, especially
with respect to detecting spatial or temporal patterns
of behavior among the many imaged molecules. Rig-
orous quantitative analyses will surely provide mech-
anistic insights into normal cell behavior and various
neurodegenerative disease processes. This understand-
ing will drive the development of in silico models which
in turn will direct the in vivo experiments. Significant
progress toward automating fluorescence image analy-
sis of subcellular patterns has already been made. Sets
of subcellular location features that can be used to dis-
tinguish all major subcellular structures in both 2D [3,
27] and 3D images [34] have been developed. A critical
finding is that automated methods are able to discrim-
inate images of two Golgi proteins that cannot be dis-
tinguished by human observers [28]. The work clearly
demonstrates the promise of pattern recognition tech-
niques to this domain. The future challenges are to
apply these methods to much larger sets of images, im-
proving them as necessary, and to extend them to time
series, multispectral and multimodal images.

The specific information processing and data man-
agement challenges in the development of the above
biomolecular image libraries include:

• Supporting complex queries on new types of data.
This implies the development of appropriate data
models, query primitives, and index structures.

• Integrating heterogeneous distributed data. The
data integration needs to happen over distributed,
heterogenenous databases and also over different
image modalities such as AFM and fluorescence
imaging.



• Supporting interpreted information. A flexible and
extensible system that can support biological tools
and different layers of interpretation is needed.
This is true for biological data in general and for
bioimages in particular.

3. MODELS AND QUERIES
Biomolecular images have a high processing and storage
cost. A 2D protein localization image from confocal mi-
croscopy can require 4 MB (1M pixels recorded in two
channels) of storage. A 3D localization image can be
200MB (50 z-slices). A time series of 50 such 3D local-
izations that record dynamic information can be 10 GB.
This is the result of acquisition from a single sample,
and typical experiments involve dozens of samples for
different proteins or under different conditions. AFM
images require even larger amounts of storage capac-
ity. But it is not just the needed storage that makes
the problem of designing bioimage databases daunting.
The images have to be analyzed, and visual descriptions
extracted using image processing tools (manually or au-
tomatically), and these extracted metadata have to be
associated with other sources of biological data such as
genomics and proteomics [4, 19]. This analysis can lead
to a multifold increase in the amount of storage and
complexity. Clearly, the amount of information to be
maintained and accessed in such a bioimage database is
enormous.

Effective description and management of high-through-
put experimental data and their relationship to other bi-
ological data is critical in the post-genomic era. As com-
pared to traditional scientific databases, typical analy-
ses in biology are much more complex as value is added
through the close association of specific data resources.
Clear and intuitive models for biological data, particu-
larly for those derived from image data, can be surpris-
ingly challenging. However, a good data model that is
sensitive to the novel characteristics, semantics, and di-
versity will allow the information to be stored, queried,
mined, and used effectively. This will not only allow in-
formation discovery to happen through a combination of
descriptive sources with experimental observations but
also the development of mathematical models based on
in vivo experiments. Such models will in turn permit
important questions regarding biological processes to be
investigated in silico and through more effective in vivo
experiments.

Queries in a bioimage database can be divided into
four classes based on the degree of semantics and inter-
pretation.

• Metadata queries. These are basic queries on the
metadata associated with the bioimages.

• Spatial queries. These are queries on the spatial
features extracted from the bioimages. For exam-
ple, images with a subcellular pattern similar to
a query image can be found by extracting texture
features and using a suitable distance metric.

• Semantic queries. These queries are based on high-
level semantic objects, such as cell types, that are

extracted from the bioimages manually or auto-
matically.

• Spatio-temporal queries. These queries consider
the spatio-temporal changes of features and high-
level objects such as protein localization or cy-
toskeleton growth.

Next, we give more details on each kind of query.

3.1 Metadata queries
Typical metadata fields from the experiments will be
date, scientist, lab, experimental setup, microscope, light
sources, filters, camera, experiment, species, antibod-
ies for each channel, and experimental conditions (e.g.,
normal retina, retina detached for N days, retina reat-
tached for N days, retina under increased oxygen con-
centration). Some specific queries in this class are as
follows.

• Find all images from the same experiment as a
given image ID.

• Find all experiments that contain normal cat im-
ages that have been labeled with calretinin (a calcium-
binding protein) both under normal conditions and
after 3 days of retinal detachment.

Answering this class of queries is relatively straight-
forward using current database engines once an appro-
priate database schema has been developed.

3.2 Spatial queries
Simple spatial features based on texture and shape can
be extracted from the images. This can be done at
multiple spatial resolutions to provide more flexibility
for querying and browsing. The most important task
will be to define the right metrics for comparing im-
ages based on the extracted features, especially since
the images will be produced under different experimen-
tal conditions and will be of different subjects. The
distance metrics will also need to be supplemented with
a statistical model that defines the distribution of the
distances. Finally, the extracted features will be high-
dimensional and one is faced with the usual challenges
of content-based search in such spaces [11, 20, 22].

Some typical queries in this class are as follows:

• Find all images in which vimentin (a filament pro-
tein) has a spatial distribution similar to that in
a given image.

• Find all pairs of images from the same experiment
in which the distribution of vimentin changes as a
result of detachment.

• Find all pairs of AFM images that contain a sim-
ilar texture.

• Find all AFM images that contain patterns simi-
lar to a user-specified AFM image illustrating the
binding of annexin VI (a calcium-binding protein)
to a membrane.



3.3 Semantic queries
Queries in this class are based on semantics extracted
from the images. Typical examples of such semantics
are the types of cells, their shapes, and their relative
location. Semantics can be extracted manually or auto-
matically. This process will be eased through an atlas
that define the expected distribution of cells under dif-
ferent experimental conditions.

Some examples of queries in this class are as follows:

• Find all normal retinal cell images that contain
horizontal cells.

• Find all retinal images of Muller cells labeled by
vimentin and GFAP (Glial Fibrillary Acidic Pro-
tein).

• Find all images that show Muller cells in which
the distribution of CD44 protein is abnormal.

The addition of semantics or interpretations to the
content of databases raises a number of issues. How are
the interpretations stored and queried? How is the hier-
archy of interpretations structured? How is information
regarding the accuracy of the interpretations stored and
used? How is provenance tracked? These are some of
the database design questions that need to be answered.

3.4 Spatio-temporal queries
Spatio-temporal queries consider the time-based evo-
lution of cells and disease processes. Supporting such
queries in a meaningful manner requires the extraction
of appropriate temporal information from a set of im-
ages. The system should provide tools for the modeling
of cell behaviors, changes in protein localizations, and
disease processes. Queries will typically examine cor-
relations between sets of images or across images and
cell/disease models.

The temporal aspect can be observed either by con-
ducting an experiment at different time intervals (e.g.,
studying retinal images detached for different lengths of
time), or by directly observing a change (e.g., movement
of a microtubule). In the latter case, temporal features
will be useful for an individual microtubule and also
for groups of microtubules in order to understand their
collective behavior.

Some examples of spatio-temporal queries are as fol-
lows:

• Find all image datasets in which the change of
vimentin within Muller cells is similar to that ob-
served in the change of GFAP.

• Find patterns of apoptotic cell death within cell
populations for a given set of images, and then
search for similar patterns.

4. EXTRACTION OF FEATURES
Similarity queries on images has been an active area of
research in recent years. Typically, the database images
are processed to extract “interesting” descriptors that
characterize visual features such as texture and shape.

A distance metric is defined that allows similarity com-
parisons. Nearest neighbors in the feature space using
such a metric are expected to match the visual simi-
larity of the corresponding images. Past research on
texture features [14, 25] for similarity based search and
retrieval, initially developed for aerial images, can be
adapted to molecular image databases. Whereas tex-
ture features can characterize region properties, statis-
tical shape features can help in the analysis of more
structured patterns [8, 10]. Specific challenges facing
the extraction of the visual features are in recognizing
patterns formed by proteins in varying distribution of
proteins within cells with high degree of variability in
size, shape and orientation. Previously, sets of Subcellu-
lar Location Features have been defined that are insen-
sitive to these sources of variation but are still capable
of capturing the essence of protein patterns [3, 27, 34].
This has been demonstrated by using them to build im-
age classifiers that can recognize all major subcellular
patterns in single cultured cells, both in 2D images [3]
and 3D images [34]. Future challenges include applying
these approaches to more complex images of multiple
cells or tissues in which determination of cell bound-
aries (segmentation) is required. Automated and semi-
automated image segmentation techniques [30, 31] will
also be useful in this context.

Low-level visual features are useful in similarity-based
retrieval tasks, but cannot answer queries about spe-
cific objects or events in images such as the presence
of certain proteins. This so-called semantic gap is due
to the simple fact that the descriptors in the feature
space and their nearest neighbors in that space may not
correspond well to the perceived visual similarity of the
objects. Learning algorithms can help in bridging the
semantic gap between low-level features and the associ-
ated high-level semantics.

Since in many cases the number of distinct patterns
expected may not be known, an important pattern recog-
nition problem that needs to be addressed is that of
high-dimensional clustering. Typical image descriptors,
such as the Subcellular Location Features mentioned above,
are high-dimensional feature vectors with dimensional-
ity ranging from a few tens to a few hundreds. Develop-
ing efficient clustering methods for such feature vectors
is important for information discovery in biomolecular
image databases. An example is in grouping proteins
by high-resolution location pattern for cataloging pur-
poses [6]. The problem of clustering is well studied in
the pattern recognition literature [9]. The research in
this area has four major thrusts: (1) raw data clus-
tering; (2) discriminative classification, regression, and
detection methods; (3) interactive analysis; and (4) hi-
erarchical techniques for the analysis of the large, high-
dimensional datasets that arise from high-dimensional
visual features.

The high-dimensional aspect of visual features is chal-
lenging because conventional data clustering techniques
do not scale well with data size and dimensionality. It
also poses challenges for indexing: As the dimension-
ality of the data increases, the cost of searching the
database becomes linear even with sophisticated tree-



structured indexes. In the context of database search,
new techniques have been developed to support search
in high-dimensional datasets specifically when relevance
feedback is used [17, 33]. Furthermore, the underlying
feature extraction methods can be statistically modeled
to provide dimensionality reduction, such as modify-
ing the conventional Gabor texture descriptor to nearly
half the size and retaining comparable retrieval perfor-
mance [2]. Alternative dimensionality reduction tech-
niques include linear transformations as in FastMap [12]
and non-linear transformations such as non-linear axis
scaling [35]. Application of a number of dimensional-
ity reduction methods to the Subcellular Location Fea-
tures led to the identification of a set of only eight fea-
tures (out of over 80) that can be used to recognize
all major subcellular patterns with over 86 % accuracy
on single cells [16]. While better performance can be
achieved with more features, the smaller set is suitable
for database search and indexing.

5. CONCLUDING REMARKS
Two significant problems encountered in initial efforts
to create biological image databases were the absence of
standards for describing samples and image acquisition
settings and the diversity of image formats used by mi-
croscope manufacturers. The earliest published work on
the subject was the initial description of the BioImage
database [5], but little progress was made on the goals
of the project until recently. Other efforts include the
OME project [1] and the PSLID database [15]. There
has been some convergence on the desired characteris-
tics of a microscope image database schema, and exten-
sive work on image import has been done for OME. The
most recent version of OME [32] addresses a number of
problems with the initial release, and is an excellent
base for microscopy image informatics efforts.

The focus of this article has been on describing the
growing importance of terabyte-scale image collections
in cell and molecular biology research and on identifying
information technology and machine learning challenges
that must be addressed in order to maximize knowl-
edge creation from these collections. We have described
relevant preliminary work that shows the feasibility of
creating tools to address these challenges in order to
advance microscopy from a subjective, descriptive prac-
tice based on visual interpretation to an objective, sys-
tematic science that can provide critical knowledge on
the spatial and temporal patterns of biological macro-
molecules. It is anticipated that these tools will provide
a critical capability for systems biology efforts whose
goal is to understand the mechanisms by which all bi-
ologically important molecules interact to accomplish
their roles at the cell, tissue and organism level.
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