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ABSTRACT

In this paper we attempt to quantify the “active” steganographic capacity - the maximum rate at which data
can be hidden, and correctly decoded, in a multimedia cover subject to noise/attack (hence - active), perceptual
distortion criteria, and statistical steganalysis. Though work has been done in studying the capacity of data
hiding as well as the rate of perfectly secure data hiding in noiseless channels, only very recently have all the
constraints been considered together. In this work, we seek to provide practical estimates of steganographic
capacity in natural images, undergoing realistic attacks, and using data hiding methods available today.

We focus here on the capacity of an image data hiding channel characterized by the use of statistical restoration
to satisfy the constraint of perfect security (under an i.i.d. assumption), as well as JPEG and JPEG-2000 attacks.
Specifically we provide experimental results of the statistically secure hiding capacity on a set of several hundred
images for hiding in a pre-selected band of frequencies, using the discrete cosine and wavelet transforms, where a
perturbation of the quantized transform domain terms by ±1 using the quantization index modulation scheme,
is considered to be perceptually transparent. Statistical security is with respect to the matching of marginal
statistics of the quantized transform domain terms.

Keywords: channel capacity, earth mover’s distance, statistical restoration, optimal hiding fraction, optimal
redundancy

1. INTRODUCTION

Steganography is the art of secure communication where the very existence of the communication cannot be
detected while steganalysis is the art of detecting the presence of the secret communication. The steganographer
has two conflicting requirements - he has to imperceptibly embed a certain amount of data in an innocuous
looking host signal (the cover), and also ensure that there is minimal statistical difference between the cover
and the stego (signal containing hidden data). For a practical steganographic system, the hiding has to satisfy
perceptual, statistical and attack constraints.

Of these various constraints, the statistical constraint is the most difficult to satisfy for a practical system -
there are excellent blind steganalysis methods1–4 that are able to detect most of the modern-day steganographic
schemes. To completely characterize the statistics of images is as yet an unsolved problem. To simplify our task,
we focus here on the statistical security under the commonly studied criteria of matching marginal distributions
(i.e. first-order histograms). In practice, a steganographic system should be able to withstand a variety of attacks
and our goal is to develop a general approach that allows for arbitrary attack channels. To demonstrate the
approach we provide here results for a specific attack. In this work, we provide an end-to-end framework where
given an image, an attack channel, and common measures on statistical security, its steganographic capacity can
be computed.
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The capacity of data hiding channels with respect to attack has been a well-studied theoretical problem;5

the rate of perfectly secure data hiding in noiseless channels6,7 has also been investigated. However, putting all
the constraints together as required by a practical steganographic scheme, has only been studied recently (e.g.
Wang et al8).

In our past work on statistical restoration,9,10 we presented a steganographic scheme where the first order
probability mass function (PMF) of the block-based quantized discrete cosine transform (DCT) coefficients, lying
in a certain frequency band and with magnitudes less than a certain threshold, was statistically restored. In,7 we
had obtained a secure hiding rate for the quantization index modulation (QIM) scheme,11 with the cover signals
being generated from arbitrary distributions. Recently, we developed an expression for the maximum allowable
hiding fraction12 for the statistical restoration of first and higher order of co-occurrence statistics. In this paper,
the statistical constraint is satisfied by using this hiding fraction in the statistical restoration framework.

2. PROBLEM FORMULATION

Fridrich et al6 have defined “steganographic capacity” as follows - for a host signal, it is the maximal message
length that can be embedded without producing perceptually or statistically detectable distortions. We consider
the problem of active steganography, in which the adversary can also attack the stego signal (JPEG and JPEG-
2000 based compression attacks for our case) - thus introducing an attack constraint. Let X denote the cover
signal, S the stego signal, and Y the received signal (all in the same transform domain) at the decoder after
attack. The problem of finding the capacity of such active warden stegosystems for an i.i.d. cover signal reduces
to maximizing the embedding rate with the following constraints:

Perceptual constraint. The perceptual distortion between the original and stego images in the transform
domain should not exceed a certain maximum amount, D1, for some perceptual distance measure d(·, ·). Thus,
we must have d(X, S) ≤ D1. Distortion constraints for limiting the perceptual distortion have long been used in
the information-theoretic analysis of the data hiding problem (5,11,13).

Statistical constraint. The embedding process should not modify the statistics of the host signal more than
a very small number, ε, for some statistical distance measure. Cachin14 proposed the use of Kullback-Leibler
(K-L) divergence for defining the statistical security of steganography. Thus, denoting the cover and stego
distributions by PX and PS , respectively, the statistical constraint can be given as, D(PX ||PS) ≤ ε, where
D(·, ·) is K-L distance measure. For perfect security, we aim at obtaining PX = PS . For the blind steganalysis
schemes1–4 , there are various other statistical features that are used for detection - e.g. second order features,
individual band histograms. In,12 analysis has been provided for finding the hiding fraction for second-order
co-occurrence statistics and for individual frequency bands. With the addition of more constraints, the system
will become statistically more secure and the capacity will decrease. However, in the context of this paper, only
the first order histogram for the entire hiding band is considered for statistical security.

Attack constraint. The embedded data must be recoverable after the stego signal has undergone an attack
distortion of at most D2, i.e. if d(S, Y ) ≤ D2.

Let us now present our interpretation of these constraints:

1) The perceptual distance constraint can be interpreted as the mean square error between the transform
domain feature matrices, before and after hiding. For DCT and discrete wavelet transform (DWT) domains, it is
assumed that a distortion of ±1 for the coefficients in the chosen frequency band ensures perceptual transparency
of the stego signal - with a proper choice of frequency domain terms for hiding, perceptual transparency for the
DCT domain is shown in our prior work.15,16 Instead of specifying a fixed value for the distortion constraint
D1, our aim is to minimize the perceptual distortion during hiding while ensuring that the other constraints are
maintained.



2) Statistical constraint can be interpreted as the K-L distance between the first order DCT histograms,
before and after hiding. Our aim is to ensure PX = PS , which ensures that the distance between the PMFs is
zero, irrespective of the distance metric (K-L or otherwise) used.

3) For varying the severity of the compression attack, the experiment is repeated for various combinations of
quality factors (for data embedding and for generating the compressed image) and compression rates, for JPEG
and JPEG-2000 based attacks, respectively. For the attack constraint, we do not fix D2 but our aim is to
maximize the hiding rate, by using the minimum redundancy during error correction coding, which ensures zero
bit error rate (BER) at the decoder, even after compression attacks. We assume the attack/distortion channel
is fixed, and thus the sender can simulate the exact attack and obtain the required redundancy.

2.1 Transform Domains used for Hiding

DCT domain: Hiding occurs in a select band of low and mid-frequency DCT coefficients, for every 8×8 block.
After selecting a design quality factor QFh for hiding, the DCT coefficients for the 8×8 block are divided element-
wise by the 8×8 quantization matrix, corresponding to QFh. The first 19 AC DCT terms, that occur during a
zigzag scan, are used for hiding.

DWT domain: For the wavelet domain based scheme, we use the Haar wavelet as the basis function and use
the periodic DWT mode, with 3 level decomposition, to obtain a 8×8 matrix of DWT coefficients, given a 8×8
pixel block. In17 and,18 a method is described to generate a 8×8 wavelet domain quantization matrix which
corresponds to a certain design quality factor. It ensures that the embedding bitrate for DWT based hiding using
the wavelet domain quantization matrix is similar to the embedding bitrate obtained using the corresponding
quality factor for DCT based hiding. For choosing the frequency band for hiding, a modified scanning procedure
is used, as described in17 . The first 19 DWT terms (leaving the top leftmost LLL coefficient) that occur during
the modified scanning procedure are used for embedding.

3. PROBLEM INTRODUCTION: STATISTICAL AND PERCEPTUAL
CONSTRAINTS

Let the input feature set available for hiding be X. As per the statistical restoration framework, X is decomposed
into two disjoint sets - H for hiding and C for compensation, as in (1). After hiding and compensation, the
feature set thus obtained is Y (1). We divide the feature set into bins of unity width and find their respective
bin-counts (number of terms per bin). Let BX(i) denote the number of elements in the ith bin of X. The
normalized bin-count is regarded as the probability mass function (PMF). H is changed to Ĥ after hiding and
the objective is to modify C to Ĉ to ensure that the 1-D PMFs of X and Y , denoted by PX and PY , respectively,
are equal, as in (3). Perfect restoration is possible only if the required number of terms in every bin of Ĉ exceeds
zero.

X = H ∪ C, Y = Ĥ ∪ Ĉ, H ∩ C = φ, Ĥ ∩ Ĉ = φ (1)

Ĥ ∩ Ĉ = φ ⇒ BY (i) = BĤ(i) + BĈ(i), ∀ i (2)
To obtain PY = PX , we need BY (i) = BX(i) ⇒ BĈ(i) = {BX(i)−BĤ(i)} ≥ 0, ∀ i (3)

Due to QIM based hiding, the perturbation of the quantized transform domain terms in H is limited to
[-1,1]. Our compensation framework also ensures that the perturbation to the compensation terms in C while
modifying C to Ĉ is limited to [-1,1], as discussed later in Sec. 3.1. Hence, we do not explicitly include the
d(X, S) ≤ D1 constraint in the formulation. For maximizing the embedded bitrate, under the perceptual and
statistical constraints, the two objectives are:

• find the optimal hiding fraction λ = |H|
|X| , where |X| denotes the cardinality of the set X

• find the optimal way to modify C to Ĉ, once the optimal hiding fraction is determined.



In7,12 we present an analysis for computing the optimum hiding fraction λ, which is briefly discussed in
Sec. 3.2. The optimal λ indicates how much embedding can occur so that the PMF based statistical restoration
can be performed. Once λ is known, we need an optimum way of obtaining Y (Y = Ĥ ∪ Ĉ) from X (X = H ∪C)
such that the perceptual distortion between X and Y , d(X, Y ), is minimized. The connection between the
Earth Mover’s Distance (EMD) and the statistical restoration framework where we wish to minimize d(X, Y ) is
explained in.19 Here, we present a brief overview of the use of EMD for statistical restoration.

3.1 Statistical Restoration and the Earth Mover’s Distance

The EMD20 between two PMFs is defined as the minimum “work” done in converting one PMF to the other.
Here, work refers to the redistribution of weights among the various bins in the discrete distribution. EMD
returns the optimal transportation flows among the bins. For statistical restoration, we have to convert the
histogram BC to BĈ , C and Ĉ being defined in (1), where the normalized histogram is the PMF.

Let S and T denote two signatures, each having M clusters. The weight of each cluster is the fraction of
points it contains. Let the center for the kth cluster of S be sk while the `th cluster center of T is denoted by t`
and the square Euclidean distance between them is called dk`.

dk` = (sk − t`)2 (4)

The EMD problem is “optimally” changing S (considered as the source) to make it as similar as possible to T
(the target). For our problem, the source S is the PMF PC of the compensation coefficients while the target T
is PĈ , the PMF of Ĉ. The weight of each bin is the PMF value for that bin. Our aim is to find a flow matrix
F = [fk`], where fk` is the flow from the kth bin of S to the `th bin of T that minimizes the total work done:

WORK(S, T, F ) =
M∑

k=1

M∑
`=1

dk`fk` (5)

Thus, EMD gives precisely the optimum flows from the bins of C to Ĉ so as to match PX to PY , where X and
Y are defined in (1), under the minimum mean-squared error (MMSE) criterion. It is assumed that the d(·, ·)
distance function, introduced in Sec. 2, under the perceptual distortion constraint, is the squared Euclidean
distance. It has been shown in21 that while matching of two 1-D signatures in the MMSE sense, the flows are
always between two consecutive bins (flow fk` > 0 iff |k − `| ≤ 1) - hence, while modifying C to Ĉ, as in (1),
the absolute distortion for a quantized element in C does not exceed one.

3.2 Computing the Optimal Hiding Fraction for 1-D Histogram based Compensation

While computing the 1-D histograms for the transform domain (DCT/DWT) coefficients, we only consider those
with magnitude less than a certain threshold T - the distribution of these coefficients is very peaky near zero and
is very low for larger values. For a given T , there are (2T + 1) bins from [−T, T ], and we optimally hide in all
the bins, except the two extreme ones. For an input message having equal 0’s and 1’s and using dithering based
scalar QIM for hiding, where the dither values are evenly spread in [−0.5, 0.5], the number of terms in the ith

bin of Ĥ, BĤ(i) can be approximated as follows,12 assuming knowledge of the BX values for the different bins:

BĤ(i) ≈ λBX(i)
2

+
λBX(i− 1)

4
+

λBX(i + 1)
4

(6)

for a hiding fraction of λ for all the bins. From (3) and (6), considering the ith bin, λ needs to satisfy:

BĤ(i) ≤ BX(i) ⇒ λ ≤

{
BX(i)

BX(i−1)
4 + BX(i)

2 + BX(i+1)
4

}
, − T < i < T (7)

For ease of notation, we define λi =

{
BX(i)

BX(i−1)
4 + BX(i)

2 + BX(i+1)
4

}
, − T < i < T (8)



For the ith bin, λi can be viewed as BX(i)
BĤ(i) where BĤ(i) is computed using λ=1 in (6). The effective hiding

fraction λ?(T ), for a given T , is the minimum of all these λi terms (since the hiding fraction λ ≤ λi,∀i, using
(7) and (8)).

λ?(T ) = min
−T<i<T

{λi : λi > 0}. (9)

The condition (λi > 0) in (9) ensures that the hiding fraction will not be reduced to zero for bins with no
elements. An extension of the 1-D case, for restoring higher order co-occurrence statistics in the transform
domain, is also explained in.12

4. ESTIMATING THE OPTIMAL EMBEDDING RATE - ACCOUNTING FOR
CHANNEL DISTORTIONS

In the proposed scheme, hiding is performed by modifying some image coefficients in a certain transform domain.
Once the optimum hiding fraction and optimum redundancy factor to be used in the error correction framework
are known, the maximum possible databits that can be embedded, while maintaining the perceptual, statistical
and attack constraints, can be determined - the sequence of steps involved is shown in Fig. 1.

The overall system flow for DCT based hiding is briefly outlined in Fig. 2. For a generalized framework,
the DCT coefficients can be replaced by any other transform domain suitable for hiding and the JPEG attack
block, denoted by the Z → Z ′ mapping, can be substituted by any other distortion channel. The maximum
allowable size of the message to be embedded, M , depends on λ? and qopt, the computation of which is shown
in Fig. 1. The message, M , is first encoded to R using the turbo-like repeat-accumulate code22 with redundancy
q (RA-q), the data being hidden in a band of low-frequency DCT coefficients, having n elements per 8×8 block.
Therefore, the effective number of embedded bits per block=n

q (we use n=19 in our experiments). At the time of
embedding, the code symbols corresponding to the DCT coefficients beyond a predetermined threshold (T=30
in our case), are erased at the encoder - erasures are denoted by e in Fig. 2 and in (10). It should be noted that
the erasure rate is high if DCT elements, which equal zero after rounding, are erased.15 Since DCT elements
> T are erased here, and DCT elements have a peaky PMF, peaking near zero, the erasure rate is small. The
DCT elements in the range [-0.5,0.5] are not erased for that would not allow the cover and stego image PMFs to
be exactly matched under the statistical restoration framework. Further errors are introduced due to the JPEG
compression attack. The embedded data can still be recovered because of the added redundancy using RA codes.

We experimentally obtain the transition probability matrices from R to Z (depends on the distribution
of the image transform domain coefficients and the hiding method) and from Z to Z ′ (depends on the attack
channel characteristics). The mutual information I(R,Z ′) between the input (R) and output (Z ′) terms in the
probabilistic part of the channel is maximized to compute the capacity Cchannel (10) for a given image and a
given attack channel, which is then used to compute the minimum redundancy factor needed for perfect data
recovery if an ideal channel code were used - it equals d1/Cchannele. This minimum redundancy factor is called
qmin (11).

Cchannel = max
p(r)

I(R,Z ′) = max
p(r)

∑
r∈{0,1}, z′∈{0,1,e}

p(r, z′) log
{

p(r|z′)
p(r)

}
(10)

qmin = 1/Cchannel (11)

The capacity estimation framework is general enough to be applied for hiding in any other transform domain
(affects mapping R → Z) and for any other attacks (affects mapping Z → Z ′).

There are two parameters to be optimally estimated to maximize the embedding rate for zero BER - the
hiding fraction λ and the code redundancy factor q. We separately optimize for λ and q - the estimation of the
optimal λ is explained in12 and in Sec. 3.2. Let the maximum embedding rate (of hidden data) obtained using an
ideal channel code be Rmax (12) while that practically obtained using the RA code, with optimal redundancy,
is Rprac (14), both computed assuming knowledge of the optimal hiding fraction λ? - the threshold T in (9) is
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Figure 1. The framework to hide the maximum number of databits, maintaining the statistical (use λ? as the hiding
fraction) and attack constraints (use minimum redundancy that ensures zero BER). The redundancy factor used in the
error correction code is denoted by q. The perceptual constraint is implicit in the QIM based hiding scheme. At first, λ? is
computed and then, after separating X into H and C based on λ?, C is converted to Ĉ using the EMD based formulation
to maintain the statistical constraint. Also, the EMD based method ensures minimum perturbations to maintain the
perceptual constraint. Then, data is embedded in H under varying q to obtain the optimum redundancy factor qopt.

fixed at 30. The minimum redundancy factor, using RA codes, that produces zero BER for a given image and a
given attack channel, called the optimum redundancy factor qopt, is experimentally obtained and 1

qopt
is regarded

as Rundetectable (13) - the rate achievable using a practical code without the statistical constraint. Using λ?% of
the available terms for hiding, Rprac can be obtained from Rundetectable (14).

Rmax = λ? · Cchannel (12)

Rundetectable =
1

qopt
(13)

Rprac = λ? · Rundetectable (14)

5. EXPERIMENTS AND RESULTS

We run the experiments for a variety of design quality factors and attack quality factors. The results are averaged
over 500 images for each case. The hiding parameters used for the DCT and DWT based domains are discussed
in Sec. 2.1.

The average value of the maximum embedding rate with an ideal channel code, Rmax (12), is compared with
the rate obtained using the RA code, Rprac (14), for the following transform domains and attack scenarios:

• DCT domain hiding, with JPEG attack

• DWT domain hiding, with JPEG attack

• DWT domain hiding, with JPEG-2000 attack

The hiding rates for both the DCT and DWT domains depend on the quality factor QFh for hiding. As
mentioned in Sec. 2.1, the quantization matrix of the DWT terms can be generated depending on QFh. It has
been shown15 that when hiding occurs at a certain quality factor, the embedded data can be recovered after
JPEG-based compression only if the attack quality factor, QFa is the same or higher (less severe quantization)



M
(data
bits)

R
(obtained 

after
applying

RA-q 
coding
on M)

R is 
used to
modify

quantized
DCT

coefficients
to embed

Z

Z
(data 

embedded
in modified

DCT
coefficients)

JPEG
compression

Channel
(attack)

Z’
(data extracted

from
DCT coefficients
obtained from 

JPEG 
compressed

frame)

Set initial
LLR values

using Z’
in RA-q
decoder;
decode
to get 

M’

M is
binary
message
sequence
of length
N

R is
binary RA
coded
sequence
obtained
from M;
of length
N*q

The 
embedded
data Z
consists
of 0,1 and e;
of length
N*q

The 
extracted
data Z’
consists
of 0,1 and e;
of length
N*q

Decoded 
output 
binary 
sequence 
M’ of 
length N

2 by 3 matrix
mapping 0,1 in R
to 0,1,e in Z

3 by 3 matrix
mapping 0,1,e in Z 
to 0,1,e in Z’

The probabilistic part of the channel is given by the product of these 2 matrices – 
capacity is computed by considering the effective transition from R to Z’

0

0

0

111

e e e

R Z Z’

Effective channel model from R to Z’
Figure 2. Computation of the data hiding capacity depends on the 2×3 transition probability matrix mapping R to Z′ -
shown here for DCT domain hiding and for JPEG compression attack (LLR = Log Likelihood Ratio)

than the design quality factor QFh. When the quantization at the attack stage is more severe than that used
while data embedding, the redundancy factor needed for successful data recovery is so high that it makes the
effective hiding rate very small. For JPEG-2000 based compression, the compression ratio (CR) is the ratio
between the number of bits needed to represent the compressed image and the number of bits that represent
the original image - higher CR denotes less severe compression. The compression based attack is repeated for
different values of CR.

Our numerical findings are summarized in the figures below. In Fig. 3, it is seen that as the design quality
factor for hiding, QFh, increases, the optimum hiding fraction, λ? (9) increases. As the design quality factor
QFh decreases, the JPEG quantization matrix consists of larger valued terms (coarser quantization) - hence, the
number of zero-valued DCT coefficients increases with a lower quality factor and coarser quantization. With
a lower quality factor, the DCT PMF becomes more peaky near 0 - e.g. BX(0) becomes much greater than
BX(1) and BX(−1). Using (8), the hiding fraction λi for i = {−1, 1} becomes smaller with lower QFh due to
the dominance of BX(0) over BX(1) and BX(−1). Hence, λ? (9), the minimum of the λi terms, decreases. λ?

depends on the PMF of the quantized DCT elements, which is determined by the JPEG quantization matrix
corresponding to QFh and not the severity of the attack (QFa).

The rate Rmax (12) is the product of λ? and Cchannel. For a fixed QFh, the variation of Rmax with different
attacks depends on Cchannel. In Fig. 4, it is seen that for DCT domain hiding, when the JPEG attack quality
factor QFa is varied, the rate is initially high at QFa = QFh, and then drops with increased QFa before rising
again. With increased QFa, the JPEG quantization becomes finer and hence, due to less severe attacks, the
channel capacity is expected to increase. This trend holds in general except when QFa equals QFh - i.e. the
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Figure 3. Variation of the optimum hiding fraction, λ? (%), with the design quality factor QFh, for DCT and DWT
domains.

attack is matched to the design quality factor for hiding. Hence, there is a valley in the Rmax vs QFa plots. The
plot of Rprac follows the same trend as Rmax.
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Figure 4. Variation of mean(Rmax) and mean(Rprac) with the attack quality factor (QF a) for JPEG attack, for different
design quality factor QFh, for DCT domain hiding.

However, when the hiding is in the DWT domain, the rate does not peak, even when QFa is matched with
QFh. As QFa is gradually increased from QFh, the rate also increases as shown in Fig. 5.

When the hiding is in the DWT domain and the attack is JPEG-2000 based compression, the rate increases
with less severe compression, as shown in Fig. 6. With increased CR, the JPEG-2000 based attack is less severe
and hence, the channel capacity and the rate increases.
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Figure 5. Variation of mean(Rmax) and mean(Rprac) with the attack quality factor (QF a) for JPEG attack, for different
design quality factor QFh, for DWT domain hiding.
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Figure 6. Variation of mean(Rmax) and mean(Rprac) with the compression ratio (CR) for JPEG-2000 based attack, for
different design quality factor QFh, for DWT domain hiding.

6. CONCLUSION

We have examined here the maximum rate in which a steganographer can embed data subject to three constraints:
visual inspection, statistical steganalysis, and error-free transmission despite distortions or attacks between sender
and receiver. We have taken an approach that practically satisfies these criteria for a given distortion channel,
statistical steganalysis constraint, and perceptual criteria.

Here we have focused on a pair of specific channels (JPEG and JPEG 2000 compression), Cachin’s ε-divergence
statistical steganalysis criteria,14 and a basic distortion measure, however our approach is not limited to these.
From experiments on a diverse set of natural images, we have calculated the maximum rate of zero-divergence



hiding subject to compression. Both the maximum theoretical rate and that achievable by modern error correcting
codes are found. In many practical cases, the rate is high enough to provide acceptable communication. From
these experiments on the compression channels we are able to determine the factors that effect the maximum
rate.

In our future work we seek to apply this approach to a broader set of attack channels, statistical criteria, and
perceptual distortion measures. Additionally we are interested in tradeoff between allowing an acceptable risk
of detection with the increase in embedding rate.
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