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ABSTRACT
“Seam carving” is a recently introduced content aware image re-
sizing algorithm. This method can also be used for image tamper-
ing. In this paper, we explore techniques to detect seam carving (or
seam insertion) without knowledge of the original image. We em-
ploy a machine learning based framework to distinguish between
seam-carved (or seam-inserted) and normal images. It is seen that
the 324-dimensional Markov feature, consisting of 2D difference
histograms in the block-based Discrete Cosine Transform domain,
is well-suited for the classification task. The feature yields a detec-
tion accuracy of 80% and 85% for seam carving and seam insertion,
respectively. For seam insertion, each new pixel that is introduced
is a linear combination of its neighboring pixels. We detect seam
insertions based on this linear relation, with a high detection accu-
racy of 94% even for very low seam insertion rates. We show that
the Markov feature is also useful for scaling and rotation detection.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Applications

General Terms
Algorithms, Design, Performance, Security, Theory

Keywords
Image forensics, Markov features, Seam carving, Seam insertion,
Steganalysis features, Tamper detection

1. INTRODUCTION
Digital image forensics is a recent field aimed at blindly detect-

ing tampering in digital images. When a doctored photograph is
created by digitally compositing individual images, it may be of-
ten required to re-sample (resize/rotate/stretch) the image to make
it look natural.Several techniques have been proposed to detect
changes in images due to re-sampling [11, 10, 4] , Color Filter
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Array (CFA) interpolation [9], region duplication [8], lighting arti-
facts [5] and JPEG compression artifacts [3].

Up-scaling or down-scaling is usually detected by re-sampling
artifacts. In most cases, it is assumed that re-sampling is done by bi-
linear/bicubic interpolation. In [10], Popescu et al discuss how re-
sampling introduces specific statistical correlations and show that
they can be automatically detected using an Expectation Maximiza-
tion (EM) algorithm. In [4], Gallagher showed a simpler method to
detect up-sampling based on the variance of the second difference
of image pixels. This was further improved by Mahadien et al [7]
to tackle other forms of re-sampling using a Radon transform based
approach. In [6], Kirchner presented techniques to improve upon
the re-sampling detector proposed in [10]. However, all the above
methods detect scaling by assuming that an interpolation kernel
was used to scale the entire image.

In the “content aware image resizing” technique [1], the “im-
portant content” in an image is left unaffected when the image is
resized. It is assumed that the “important content” is not character-
ized by the low energy pixels. For resizing, a series of optimal 8-
connected paths of pixels (each optimal path is called a “seam”) are
identified which traverse the entire image vertically or horizontally.
The optimality criterion is related to an energy function computed
for all points along the seam - the underlying theory is briefly ex-
plained in Sec. 2. The optimal choice of seams maintains the image
quality in this resizing process. Since the image content and/or its
dimensions are changed, we treat the seam carved/inserted image
as a tampered image. Hence, in this paper, we consider the problem
of detecting seam carving/insertion, which has not been considered
by current forensic techniques. Interpolation kernel based methods
for re-sampling detection will fail when the resizing in the doctored
image is done using seam carving/insertion. Another possible sce-
nario of using seam carving for image tampering is object removal
as shown in [1] - this provides another forensic application setting
in the context of seam carving detection.

We adopt a machine learning framework for the two-class (e.g.
seam carved and original images) classification problem. As can-
didate features, we have experimented with natural image statistics
based features that are extensively used in steganalysis. For ste-
ganalysis, the successful features correspond to consistent changes
in the image, that occur due to the same hiding method being used
for all images. Similarly, to detect seam-carving, the key is to iden-
tify common statistical changes - even though the seam locations
depend on the image content. The Markov features which depend
on first order differences in the quantized Discrete Cosine Trans-
form (DCT) domain, e.g. the 324-dimensional feature by Shi et
al [12] which is subsequently referred to as Shi-324, are seen to
perform better than other features experimented with for the detec-
tion task. The intuition behind using the Markov features is briefly



explained. The pixel neighbors change upon seam removal for the
pixels bordering the seams. When a sufficient number of seams
are removed, there is a significant change in adjoining pixel statis-
tics (pixel domain Markov features were discussed in [13]) as well
as in local block-based frequency domain statistics. We have ex-
perimented with first order difference based 2D histograms in both
pixel and frequency (quantized DCT) domains - it is seen that the
change in DCT domain is more consistent for proper classification.
The intra-class variability in the pixel domain Markov feature is
high enough to be useful for classification.

We use a Support Vector Machine (SVM) based model to train
the features. As the number of seams deleted (or inserted) in-
creases, the detection accuracy also increases. We also detect seam
insertions based on the linear relationship between the new pixels,
introduced by seam insertion. Experiments with Shi-324 feature
show that it can also detect geometric transformations, with SVM
models being trained for specific transformation parameters.

Contributions: Our contributions can be summarized as follows:
• using Shi-324 [12], a Markov feature successfully used for

JPEG steganalysis, for detecting seam carving and seam insertion,
using SVM for learning the appropriate model,
• using the linear relationship between the new pixels introduced

during seam insertion to detect the seam insertion locations,
• demonstrating that Shi-324 is also effective for rotation and

scaling detection.

The rest of the paper is organized as follows: Sec. 2 briefly de-
scribes seam carving and seam insertion. In Sec. 3, we describe
the Shi-324 feature, based mainly on [12], where it was originally
proposed. The experimental results for seam carving/insertion de-
tection using Shi-324 are presented in Sec. 4. Detecting and local-
izing the seam insertions exploiting the linear relationship between
seam-inserted pixels are shown in Sec. 5. Using a probability-map
based feature to detect seam-insertions, based on Popescu et al’s
EM-based algorithm [10], is presented in Sec. 5.3. The use of Shi-
324 for rotation and scaling detection is shown in Sec. 6.

2. INTRODUCTION TO SEAM CARVING
AND SEAM INSERTION

Seam carving was introduced in [1] for automatic content-based
image resizing. As more seams are removed, the image quality de-
grades gracefully. Two commonly used methods for changing the
image size are scaling and cropping. For cropping, it cannot be de-
tected using statistical image features as it does not modify the im-
age pixels which are retained. Cropping can however only remove
image pixels from the sides or the image ends. If there is some re-
dundant content in the image center and useful image content at the
ends, cropping cannot be used. Scaling is also oblivious to the im-
age content and is generally applied uniformly to the entire image
instead of an image sub-part. Since scaling is generally performed
using pixel interpolation over a certain window, it introduces some
correlation between the neighboring pixels (the correlation depends
on the scaling factor and the interpolation method used) which can
be exploited to detect scaling [4, 11, 10].

Seam carving uses an energy function based on the energy of
pixels that lie along a certain path (seam - set of connected pixels
that traverse the image horizontally or vertically). By successively
removing or inserting seams, one can reduce, or enlarge, the image
size in both directions. For image reduction, seam selection en-
sures that mainly the low energy pixels are removed which help to
preserve the image structure. The low energy pixels generally cor-

respond to the low-frequency (smooth) image regions where minor
changes are difficult to detect perceptually.

In this paper, we have considered mainly the deletion and inser-
tion of vertical seams (by default, “seam” refers to a vertical seam
in the paper). Seam-carving or seam-insertion fraction refers to the
number of deleted or inserted seams, expressed as a fraction of the
number of columns in the original image. We explain the seam
carving process below. For ease of understanding, we use the same
notations as in [1] - Table 1 contains some basic notations.

Table 1: Table of Notations
Notation Definition

I image intensity matrix
(a, b) pixel corresponding to the ath row and bth column

in the image
s the set of pixels constituting a certain seam, e.g. if

there are N pixels in a seam, with locations given by
{ai, bi}N

i=1, then s = {ai, bi}N
i=1

To maintain perceptual transparency, the pixels to be removed
should blend very well with their surroundings, as is the case for
smooth low-frequency regions. The cost function e1(·) (1) associ-
ated with a pixel (other cost functions, e.g. using the Histogram of
Gradients, have been suggested in [1]) is

e1(I) = | ∂

∂x
I|+ | ∂

∂y
I| (1)

The following part is based on the discussion in [1] where it is
explained why the “optimal” seam corresponds to the minimum
energy path and why a seam consists of D8 connected pixels. An
optimal method to remove the “unnoticeable” pixels would be to
remove the pixels with the lowest energy values, after arranging
the pixels in ascending order. For a N1 × N2 image, if we remove
the first N1 pixels (N1 pixels constitute a column) having the low-
est energy, we may end up removing a different number of pixels
from each row. To retain the rectangular structure of the image,
the removed seam of N1 pixels should have one pixel from each
row. If these N1 pixels are not connected with each other (vertical
or diagonal neighbors), it would greatly distort the image content
by introducing a zigzag effect. An easy solution would be to re-
move the seam having the least overall energy (computed over the
N1 pixels in the seam). In the proposed cost function, the pixels
constituting a seam are chosen so that they constitute a connected
path from top-to-bottom (2), one pixel is removed per row and the
seam removed corresponds to the lowest energy path (3).

For a N1 × N2 image I, a vertical seam is defined as:

sx = {sx
i }N1

i=1 = {i, x(i)}N1
i=1, s.t. ∀i, |x(i)−x(i−1)| ≤ 1 (2)

where x(i) maps the ith pixel in the seam to one of the N2 columns.
The pixels in a seam s will be Is = {I(si)}N1

i=1 = {I(i, x(i))}N1
i=1.

After removing a vertical seam, the adjoining pixels in each row are
moved left or right to compensate for the removed pixels.

The optimal seam s∗ is defined as follows:

s∗ = min
s
{E(s)} = min

s, s={si}
N1
i=1

{
N1X
i=1

e1(I(si))} (3)

The optimal seam is computed using dynamic programming (4).
The image is traversed from the second row to the last row and
the cumulative minimum energy M is computed for all possible
connected seams for a given row (i) and column index (j).

M(i, j) = e1(i, j) +

min(M(i − 1, j − 1), M(i − 1, j), M(i − 1, j + 1)) (4)



The minimum value of the last row in M indicates the ending lo-
cation of the optimal vertical seam. We then back-track from this
minimum entry to find the other points in the optimal seam.

The seam selection process is identical for seam carving and
seam insertion. For seam insertion, for every selected seam, the
corresponding pixel is removed and is replaced by two pixels, whose
values are computed as in (5). E.g. consider three pixels {a, b, c},
which are consecutive pixels on the same row. The selected seam
passes through b. After seam-insertion, {a, b, c} is replaced by
{a, b1, b2, c}, where the values of the new pixels (b1 and b2) are:

Seam insertion: b1 = round(
a + b

2
), b2 = round(

b + c

2
) (5)

When the selected seam lies along the border, the pixel lying on the
seam is retained and only one new pixel value is introduced. E.g.
when {a, b} is replaced by {a, b1, b} after seam-insertion, with a
(or b) being the border pixel through which the seam passes, then
the new pixel value introduced, b1, equals round(a+b

2
).

3. MARKOV FEATURE TO DETECT SEAM
CARVING AND SEAM INSERTION

Seam-carving does not introduce new pixel values in the image.
However, the pixels next to the seam change and hence, when suf-
ficient seams are removed, the neighborhood change can be quite
significant. This change can show up in features like inter-pixel
correlation and co-occurrence matrix in the pixel and frequency do-
main. Local block-based DCT coefficients are also expected to re-
flect the change. Even if we remove only vertical seams, the neigh-
borhood change can affect horizontal, vertical and diagonal neigh-
bors. For seam insertion, new pixel values are introduced (5) and
the pixel neighborhood also changes for the pixels lying on/near the
seams - hence, similar features may be effective for seam-carving
and seam insertion detection.

We briefly explain the Shi-324 feature. It assumes a JPEG image
as input. Following the notation in [12], the JPEG 2D array (set of
8×8 quantized DCT magnitudes, where the DCT is computed for
every 8×8 image block) obtained from a given image is denoted
by F (u, v), u ∈ [0, Su − 1] and v ∈ [0, Sv − 1], where Su and
Sv denote the size of the JPEG 2D array along the horizontal and
vertical directions. The first order difference arrays are expressed
as:

horizontal: Fh(u, v) = F (u, v)− F (u + 1, v),

vertical: Fv(u, v) = F (u, v)− F (u, v + 1), (6)
diagonal: Fd(u, v) = F (u, v)− F (u + 1, v + 1),

minor diagonal: Fm(u, v) = F (u + 1, v)− F (u, v + 1)

where Fh(u, v), Fv(u, v), Fd(u, v) and Fm(u, v) denote the dif-
ference arrays in the horizontal, vertical, main diagonal and minor
diagonal directions, respectively.

Since the distribution of the elements in the difference 2D arrays
is similar to a Laplacian, with a highly peaky nature near 0, the
difference values are considered in the range [−T, T ]. When dif-
ference values are greater than T or less than −T , they are mapped
to T and −T , respectively. In [12], T =4 is used; hence, the num-
ber of histogram bins equals (2T + 1)2 =81 along each direction.

Each of the difference 2-D arrays is modeled using Markov ran-
dom process - a transition probability matrix is used to represent the
Markov process. Each of the probability matrices (ph, pv, pd and
pm) (7) used to represent the 2-D difference arrays (Fh, Fv, Fd and
Fm, respectively) have (2T + 1)2 bins. Therefore, the total feature
vector size for Shi-324 is 81×4=324 (after converting each prob-
ability matrix to an 81-dim vector and concatenating the 4 vectors).

The elements of these 4 matrices are given by:

ph(m, n) =

P
u,v δ(Fh(u, v) = m, Fh(u + 1, v) = n)P

u,v δ(Fh(u, v) = m)

pv(m, n) =

P
u,v δ(Fv(u, v) = m, Fv(u, v + 1) = n)P

u,v δ(Fv(u, v) = m)
(7)

pd(m, n) =

P
u,v δ(Fd(u, v) = m, Fd(u + 1, v + 1) = n)P

u,v δ(Fd(u, v) = m)

pm(m, n) =

P
u,v δ(Fm(u + 1, v) = m, Fm(u, v + 1) = n)P

u,v δ(Fm(u + 1, v) = m)

where m, n ∈ {−T, · · · , 0, · · · , T}, the summation range for u is
from 0 to Su − 2, and for v from 0 to Sv − 2, and

δ(A = m, B = n) =

�
1 if A = m & B = n
0 otherwise

For uncompressed images, we initially compress them (for both
original and seam carved/seam inserted images) at a quality factor
(QF ) of 100, as the features are defined only for JPEG images.

4. DETECTION RESULTS USING MARKOV
FEATURE BASED MODELS

We vary the fraction of seams that is removed from (or inserted
to) the image. For example, consider 20% seam carving (20% of
the columns in the original image are removed) as our positive ex-
amples. We now divide the entire dataset into an equal number of
training and testing images. For each set, we perform seam-carving
on half of the images and keep the rest unmodified. An SVM-based
model is learnt from the training images. We also investigate the
generality of the trained model as a seam-carved test image can
have a seam carving percentage different from 20%.

Table 2: Seam-carving detection accuracy for different
training-testing combinations: “test”/“train” refers to the
seam-carving percent for the testing/training images, “mixed”
refers to that case where the dataset used for training/testing
consists of images with varying seam-carving percentages (im-
ages with seam-carving percentages of 10%, 20%, 30% and
50% are uniformly distributed in the “mixed” set).

PPPPPPPtest
train 10% 20% 30% 50% mixed

10% 65.75 66.54 66.26 64.91 70.60
20% 69.11 70.36 70.50 69.11 75.72
30% 74.00 75.54 77.31 77.63 83.88
50% 78.24 80.99 84.67 86.72 91.29

mixed 71.77 73.36 74.69 74.59 80.37

Table 2 (or 3) presents the detection accuracy where train and test
sets can contain same/different percentages of seam carving (or in-
sertion). For the experiments, the dataset consists of 4500 natural
images from the MM270K database1. We have worked with gray-
scale images for all our experiments. The original images are in
JPEG format at a QF of 75. The images are first decompressed,
then seam-carving/insertion occurs (optimal seams are computed
in the pixel domain) to create the positive training examples, and
finally, images from both classes are JPEG compressed at a QF of
100. Since the Shi-324 feature works in the quantized DCT do-
main, the input image has to be in JPEG format. We have also
experimented with uncompressed (TIFF) images from the UCID
1downloaded from http://www-2.cs.cmu.edu/yke/retrieval



Table 3: Seam insertion detection accuracy for different
training-testing combinations: the meaning of “test”, “train”
and “mixed” are same as in Table 2.

PPPPPPPtest
train 10% 20% 30% 50% mixed

10% 68.55 70.47 68.53 63.59 76.95
20% 76.36 81.88 84.64 81.38 84.63
30% 80.09 84.65 88.49 93.04 85.71
50% 82.01 87.41 91.49 95.32 88.84

mixed 76.74 81.09 83.28 83.34 84.03

database 2, which are subsequently JPEG compressed at a QF of
100, and the detection results are similar to that obtained using
JPEG images as the starting images.

For seam-carving detection, the “mixed” model (trained using
images having different seam-carving fractions) results in the high-
est detection accuracy (Table 2). For seam-insertion detection, the
‘mixed” model works better than more specific models (trained us-
ing positive examples having a fixed seam-insertion fraction) for
test-cases involving 10%-20% of seam-insertions (Table 3).

5. DETECTING SEAM INSERTIONS BASED
ON THE LINEAR RELATIONSHIP BE-
TWEEN NEWLY INTRODUCED PIXELS

In Sec. 2, we have described how seam insertion removes a pixel
along the seam and replaces it by two pixels, which are averages of
pixels lying on/near the seam, as shown in (5). In Fig. 1, the 4 × 5
input matrix a is converted to the 4 × 6 matrix b after inserting an
extra seam. The seam consists of {a1,3, a2,4, a3,3, a4,2}, as shown
in Fig. 1(a). After seam insertion, a seam pixel ai,j is replaced by
2 pixels - bi,j and bi,j+1, as shown in Fig. 1(b). In (8), we show
that a simple relation exists between the pixels bordering a seam.
We create a binary matrix P where the likely seam pixels are set to
1 (or 0) if the condition in (8) is (or is not) satisfied.

Consider the image matrix b after seam insertion. For the new
pixel values introduced after seam insertion,

bi,j = round(
ai,j−1 + ai,j

2
)

bi,j+1 = round(
ai,j + ai,j+1

2
),

without rounding, and using ai,j+1 = bi,j+2, and ai,j−1 = bi,j−1,

bi,j+1 − bi,j =
(ai,j+1 − ai,j−1)

2
=

bi,j+2 − bi,j−1

2
,

due to rounding, the modified condition is
|(2.bi,j − bi,j−1)− (2.bi,j+1 − bi,j+2)| = 0, or 1, (8)

we set

Pi,j
=1 if |(2.bi,j−bi,j−1)−(2.bi,j+1−bi,j+2)| = 0, or 1
=0 otherwise (9)

When the seam passes through the image border, {ai,j , ai,j+1}
(ai,j or ai,j+1 is a seam pixel) gets modified to {bi,j , bi,j+1, bi,j+2},
where bi,j =ai,j , bi,j+1 = round(

ai,j+ai,j+1
2

) and bi,j+2 =ai,j+1.
For a pixel one pixel away from a bordering column,

we set Pi,j
= 1 if (2.bi,j−(bi,j−1−bi,j+1)) = 0, or 1
= 0 otherwise (10)

Once we have this binary matrix P , the next issue is to convert
2http://vision.cs.aston.ac.uk/datasets/UCID/ucid.html

this matrix into an useful signature. A vertical seam traverses the
entire image from top-to-bottom. Hence, for points lying along the
same seam, a ‘1’ in a certain row should be preceded by a ‘1’ in
one of its three nearest-neighbors (NN) in the upper row (i.e. it has
a parent node valued ‘1’) and also by a ‘1’ in one of the three NN in
the lower row (i.e. it has a child node valued ‘1’). E.g. in Fig. 1(b),
{b1,1, b1,2, b1,3} are parent nodes and {b3,1, b3,2, b3,3} are child
nodes for b2,2. By tracking points which have a ‘1’-valued parent
(except pixels in the first row) and child node (except pixels in the
last row) using (11), we obtain the binary matrix PB from P .

PB(i, j) = 1 if Pi,j = 1

and max {Pi−1,j−1, Pi−1,j , Pi−1,j+1} = 1,

and max {Pi+1,j−1, Pi+1,j , Pi+1,j+1} = 1

= 0, otherwise (11)

When we use (9) or (10), we may obtain ‘1’ in locations other
than the image seams due to the inherent smoothness in many im-
age regions. E.g. if the pixels in {bi,j−1, bi,j , bi,j+1, bi,j+2} are
all equal-valued, then (9) (or (10)) is satisfied. In the absence of
any noise or compression attacks, are we always guaranteed to re-
cover all the inserted seams? The answer is no - when two or more
seams intersect, the linear relationship between the pixels adjoining
the seams gets modified at the point of intersection. Also, in many
cases, there are multiple possible paths for a seam, where some op-
tions correspond to smooth regions and not the actual seam. Our al-
gorithm can identify likely seam points (‘1’-valued elements in P )
- due to intersections, the parent-child relationship may not hold for
all seams (‘1’-valued elements in PB may not include all the seam
points) and hence, we may fail to recover some of the initially in-
serted seams. In subsequent figures in Sec. 5.1, we have shown the
likely positions of the recovered seams based on the ‘1’-valued el-
ements in PB , but these points could not be separated into distinct
individual seams, due to the multiple path problem.

The possible detection (and error) scenarios are as follows:
• One/more seams detected for seam-inserted images: the

matrix PB should be non-zero for seam-inserted images as ‘1’s are
present only for likely seam points in PB . Due to many seam inter-
sections or due to noise (e.g. compression attack), seams may not
be detected leading to missed detections. A possible solution is to
relax the conditions for finding a seam point (discussed in Sec. 5.2).
• No seams detected for original images: there should not be

false detections, i.e. PB should be an all-zero matrix for a nor-
mal image. However, due to presence of smooth regions, even
un-tampered images may demonstrate the presence of seams by
satisfying (9) (or (10)). In Sec. 5.1, we discuss methods where
we reduce the false alarm by discarding the smooth regions before
computing P and PB .

5.1 Visual Illustrations of Seam Insertion De-
tection

Fig. 2 shows the original images used as examples in this section.

Identifying Seam Locations from a Given Image
We explain the computation of PB from P using Fig. 3. For

displaying binary images, the color convention used is “red” = 1
and “blue” = 0. The P matrix (Fig. 3(b)) is pruned to obtain PB

(Fig. 3(e)), which is the intersection of ‘1’-valued elements in parts
(c) (is ‘1’ for elements with valid parents) and (d) (is ‘1’ for ele-
ments with valid child nodes).

Seam Localization for Varying Seam Insertion Fractions
In Fig. 4, we demonstrate the localization accuracy of inserted

seams for various seam-insertion fractions, for 2 images. In Fig. 4,
we have experimented with different seam-insertion fractions of



1% ((a)-(d) and ((m)-(p)), 5% ((e)-(h) and (q)-(t)), 10% ((i)-(l) and
(u)-(x)). The first column shows the seam-inserted image while the
second column shows the same image, with the inserted seam lo-
cations marked. From the seam locations and comparing the seam
inserted image (1st column) with the original (Fig. 2), it is seen
that seam insertion introduces minimal perceptual distortions, in
general. The third column shows the inserted seam locations in
a binary image where the image pixels are ‘1’ (red) at the actual
seam locations. The last column shows the seams detected by our
algorithm (based on PB (11)) and the computed seams are seen to
correspond very closely with the inserted seams. However, we have
not separated its ‘1’-valued elements into individual seams.

Reducing False Positives by Discarding Smooth Regions
In some images, due to presence of very smooth regions, the

conditions (9),(10) are satisfied even where seams are not inserted.
As a possible solution, we discard columns pertaining to smooth
regions so that they are not involved in the computation of P and
PB . For “smooth region” detection, we obtain the Canny edge-map
[2] and discard columns for which the spacing between two consec-
utive edge-points along a certain column is quite high (or when the
column has no edge point). E.g. let there be m edge points for the
jth column in a N1×N2 image, denoted by {ei,j}m

i=1. The succes-
sive difference values are {di,j}m−1

i=1 , where di,j = ei+1,j−ei,j . If
max

i
di,j > sfrac.N1, we remove the jth column, where sfrac is a

tunable parameter. A very high value of sfrac may result in smooth
columns still being retained in the original image (leading to false
detection of seams) while a very low value will remove so many
columns that seams cannot be detected even in the seam-inserted
image. This trade-off is studied in Sec. 5.2.

The P matrix is then computed on the new image (after discard-
ing smooth columns). For two sample images (Fig. 5 and 6), it
is seen that this helps in reducing false positives - i.e. even af-
ter removing the smooth columns, PB for the seam-inserted image
contains ‘1’ (shows presence of seams) while PB for the original
image consists of ‘0’s only (the colormap used for plotting is such
that an all-zero matrix is shown as an all-green image).

A 3% seam-inserted image is shown in Fig. 5(a). The P ma-
trix for the seam-inserted image (without smoothing) is shown in
(b) and the pruned P matrix with valid parent nodes is shown in
(c). The PB matrices for the seam-inserted and original images are
shown in (d) and (e), respectively. The spurious seams detected for
the original image correspond to the smooth regions in the leftmost
part of the original image. Using sfrac of 0.98, the columns per-
taining to the smooth region are discarded, as shown in (f). The
corresponding P matrix is shown in (g), and (h) and (i) display the
matrix after parent and (parent + child node) based pruning. After
smoothing, PB for the original image is an all-zero matrix (j).

In Fig. 6, 8% seam insertion is done, and (a) and (b) show the
Canny edge maps for the original and the seam-inserted images.
The smooth columns identified using sfrac of 0.65 are shown as
vertical red lines in (c). The PB matrices for the seam-inserted
and original images (for sfrac of 0.65) are shown in (d) and (e),
respectively. The seam-inserted image is shown in (f), with the
seams marked in red. The smooth columns obtained using sfrac

of 0.45 for the seam-inserted and original images are shown in (g)
and (h), respectively. It is to be noted that for the same value of
sfrac (0.45), more columns are removed form the original image
than from the seam-inserted image, which suppresses the detection
of spurious seams from the original image. The PB matrices for the
seam-inserted and original images are shown in (i) and (j), respec-
tively. From these two examples, we see that the smoothing factor
needed to reduce the false detections varies for different images.

5.2 Detection Accuracy for Varying Seam In-
sertion Fractions and Smoothing Factors

We compute the seam-insertion detection accuracy over 1338
images from the UCID database. In Fig. 7, PMD and PFA re-
fer to the probability of missed detection (failing to detect seams
in positive examples) and false alarm (detecting seams in original
images), respectively. For every set of experimental parameters
(seam-insertion percent and sfrac), we use half of the images for
seam-insertion and keep the rest unchanged, so that both errors are
equally weighted. Fig. 7(a) shows the two types of detection errors
for TIFF images, (b) shows the errors after JPEG compressing the
images at QF of 100, (c) shows the errors after JPEG compres-
sion but relaxing the conditions for obtaining ‘1’s in P . The total
detection error for TIFF images, JPEG images, and JPEG with “re-
laxed conditions” is shown in (d), (e) and (f), respectively. As sfrac

increases, PFA increases as due to reduced pruning of smooth re-
gions, more original images show presence of seams. However,
with increase in sfrac, PMD decreases significantly, specially for
low seam-insertion fractions. Hence, overall, the detection error
decreases as sfrac increases from 0.4 to 0.8 (the decrease in PMD

is dominant over the increase in PFA with increase in sfrac).
The “relaxed conditions” for computing Pi,j , for non-border pix-

els, are as follows (similar to (9)):

Pi,j
=1 if |(2.bi,j−bi,j−1)− (2.bi,j+1−bi,j+2)| ≤ δ1

=0 otherwise (12)

where δ1 is increased to allow more pixels to be labeled as ‘1’. For
a pixel one pixel away from a bordering column (similar to (10)),

Pi,j
= 1 if |(bi,j − (bi,j−1−bi,j+1)

2
)| ≤ δ2

= 0 otherwise
(13)

where the number of ‘1’s increases by increasing δ2.
For JPEG QF=100, we have used the cutoff values δ1 = 3 and

δ2 = 1.5. For more severe compression, we may have to increase
the cutoff values. By comparing Fig. 7(b)-(c) and (e)-(f), we ob-
serve that the false alarm rate increases with the “relaxed condi-
tions”; however, the decrease in the missed detection rate is higher
compared to the increase in the false alarm rate. Hence, the overall
detection error is lower for the “relaxed conditions”.

5.3 Probabilistic Approach for Detecting Seam
Insertions

We provide a brief introduction to Popescu and Farid’s proba-
bilistic approach [10] for re-sampling detection, and then show how
it can be used to detect seam insertions. Re-sampling introduces
periodic correlations among pixels due to interpolation. To detect
these correlations, they use a linear model in which each pixel is
assumed to belong to two classes- re-sampled class M1 and non re-
sampled class M2, with equal prior probability. To simultaneously
estimate a pixel’s probability of being a linear combination of its
neighboring pixels and the weights of the combination, an Expec-
tation Maximization (EM) algorithm is used. In the Expectation
step, the probability of a pixel belonging to class M1 is calculated.
This is used in the Maximization step to estimate the weights. The
stopping condition is when the difference in weights between two
consecutive iterations is very small. At this stage, the probabil-
ity matrix obtained in the Expectation step for every pixel of the
image is called the “Probability map (p-map)”. For a re-sampled
image, this p-map is periodic and peaks in the 2D Fourier spectrum
of the p-map indicate re-sampling. A probability value close to 1
indicates that a pixel is re-sampled.

We use the above method with small modifications to detect
seam insertion. During seam insertion, the seam pixel is removed



and then replaced by two pixels whose values are the average of
the seam pixel’s left and right neighbors, as shown in (5). This is
similar to re-sampling and the pixels that are inserted are correlated
with its neighbors. To detect seam insertions, we first find the p-
map as described above. Since there is no periodic re-sampling,
most pixels in a natural image usually have a high value in the p-
map. We find a pattern to detect inserted seams by exploiting the
fact that the seams form an 8-connected path.

Similar to the P matrix (9), we threshold the p-map to obtain a
binary matrix (points greater than the threshold δth are set to 1).
The 1’s in the binary matrix correspond to our initial estimate of
the likely seam locations. Our initial experiments suggest that if
δth is properly chosen, then the pruned binary matrix (similar to
obtaining PB (11) from P ) will show presence/absence of seams
depending on whether it is a seam inserted/original image. A 5× 1
window is taken and the current pixel is assumed to be linearly
related to its four neighbors. Since the pixels in a smooth region
are highly correlated, they have a high value in the p-map while for
edges, the p-map value will be low.

For 10% seam insertion, for the best choice of the threshold, the
accuracy obtained is 63%. It is to be emphasized that the knowl-
edge of the exact weights (0.5 and 0.5, as in (5)) for the newly
introduced pixels during seam insertion is not utilized in this prob-
abilistic framework. In Fig. 8, we show that for a carefully chosen
value of δth, the binary matrix obtained by thresholding the p-map
can return the seams for the seam-inserted image and an all-zero
matrix for the normal image.

6. ROTATION/SCALE DETECTION
The rotation and scaling detection experiments use the same dataset

of 4500 images, as used for seam-carving detection in Sec. 4. For
the scaling detection (Table 4), the positive examples involve scal-
ing by a certain fraction (0.25-2) along both dimensions. From the
detection results using Shi-324 and SVM-based trained models, we
observe that when the scale factor is either much less than 1(0.25
or 0.50) or much greater than 1(1.50, 2), the detection accuracy is
quite high. For scaling factors of 0.95 and 1.05 (close to 1), the de-
tection accuracy is 60% and 75%, respectively. Also, the detection
rate is high when the scaling factor for the test images is close to the
scale factor based on which the SVM model was trained. Only for
very high scaling factors (2), the detection rate is high even when
the model was trained based on a much lower scale factor (1.05).

We perform similar experiments for determining the rotation an-
gle of a given image (Table 5). The positive examples consist of
images which are first rotated and then cropped. It is observed that
the detection rate is higher for rotation angles much greater than 0◦.
The detection rate is 73%, 88%, 94% and 95% for rotation angles
of 10◦, 20◦, 30◦ and 40◦, respectively (when 60% of the image is
retained per dimension).

For a practical setting, a variety of SVM models, based on dif-
ferent rotation and scale factors, can be used to detect whether an
image is rotated or scaled. Thus, we have shown that the Shi-324
feature is generalizable for a variety of tamper operations - seam
carving/insertion, rotation and scaling.

7. CONCLUSIONS
We have presented a machine learning based approach where

Markov features in the quantized DCT domain have been shown
to be useful for detecting seam carving and seam insertions. We
have also proposed an algorithm which exploits the linear relation-
ship between pixels located on/near the seam to detect seam inser-
tions. Assuming prior knowledge of the seam insertion algorithm,

we obtain highly accurate localization of the inserted seams. The
Expectation-Maximization based probabilistic framework, which
does not use explicit knowledge of the seam insertion algorithm,
has a much reduced accuracy. Future work shall involve making
the seam insertion framework more general so that the newly in-
troduced pixels can be any arbitrary combination of neighboring
pixels (and not just the average). Also, the machine learning based
approach needs to be further improved upon to increase the detec-
tion rate when the seam carving/insertion percentage is low enough.

We have done some preliminary work on detecting object re-
moval by running the seam carving detection algorithm in local
image blocks. For well trained models using suitable features, the
relevant block, where the object has been removed using seam carv-
ing, should be detected. Initial results using a 128×128-sized local
block have been encouraging.
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Figure 1: Example of seam insertion: (a) {ai,j}i=4,j=5
i=1,j=1 and (b) {bi,j}i=4,j=6

i=1,j=1 are the image matrices before and after seam inser-
tion, respectively. For points along the seam, the values are modified as shown for the first row: b1,1 = a1,1, b1,2 = a1,2, b1,3 =

round(
a1,2+a1,3

2
), b1,4 =round(

a1,3+a1,4
2

), b1,5 =a1,4, b1,6 =a1,5.

(a) (b) (c) (d) (e)

Figure 2: The five images shown here are gray-scale versions of color images obtained from the UCID database - we have used
gray-scale images for all our experiments. The visual examples in Sec. 5.1 are based on these images.

(a) (b) (c) (d) (e)

Figure 3: (a) the image, after 3% seam insertion, with seams marked in red, (b) P matrix for the seam inserted image, (c)/(d) pruned
P matrix with points having valid parent/child nodes marked in red, (e) PB matrix, with retained points (marked in red) having
valid parent and child nodes. Comparing (a) and (e), we see that the detected seams are very similar to the actual inserted seams.

Table 4: Detection of scaling using Shi-324 feature and SVM models for different train-test combinations: “test” refers to the scale-
factor for the positive examples in the test set, while “train” refers to the scale-factor for the positive examples in the training set.

PPPPPPPtest
train 0.25 0.50 0.75 0.95 1.05 1.25 1.50 2.00

0.25 95.20 92.08 80.89 40.31 39.05 49.11 49.67 48.70
0.50 87.93 92.50 87.47 38.58 37.05 46.69 48.09 46.97
0.75 63.56 68.45 73.53 44.08 44.92 46.69 48.60 47.76
0.95 49.81 48.88 51.16 60.81 56.10 49.72 50.37 50.28
1.05 38.77 40.63 46.41 65.24 74.98 60.07 56.48 55.92
1.25 47.02 44.69 39.42 60.02 66.36 88.96 69.25 60.90
1.50 31.83 26.37 21.11 77.68 86.11 91.52 96.41 88.49
2.00 26.93 21.71 16.17 81.92 90.35 93.10 98.70 98.23
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Figure 4: Localizing seam insertions for two images: parts (a)-(d)/(m)-(p), (e)-(h)/(q)-(t) and (i)-(l)/(u)-(x) correspond to 1%, 5% and
10% seam insertions. The seams are marked with thicker red lines in 2nd column for ease of visualization. The 3rd and 4th columns
display the actual and the detected seams, respectively.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 5: (a) 3% seam-inserted image (b) P matrix for seam inserted image (no smoothing) (c) P matrix after parent based pruning
(d)/(e) PB for seam-inserted/original image (f) seam-inserted image after smoothing using sfrac of 0.98 (g) P matrix after smoothing
(h) corresponding P matrix after parent based pruning (i)/(j) PB for seam-inserted/original image (using sfrac of 0.98)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 6: (a) Original image’s Canny edge-map (b) 8% seam-inserted image’s Canny edge-map (c) original image after smoothing
using sfrac of 0.65, (d)/(e) PB for seam inserted/original image (sfrac of 0.65) (f) 8% seam-inserted image (g)/(h) smoothing on seam-
inserted/original image (sfrac of 0.45) (i)/(j) PB for seam-inserted/original image (sfrac of 0.45). The columns discarded from the
seam-inserted image are similar to the original for sfrac of 0.65 (hence, only 1 figure (c) is shown) - however, the columns removed
from the seam-inserted and original images differ significantly for sfrac of 0.45, as shown in (g) and (h).

Table 5: Rotation detection using Shi-324 and trained SVM models: “test” refers to the (crop fraction + rotation angle combination)
for the positive examples in the test set, while “train” refers to the combination for the positive examples in the training set. E.g.
(60%, 10◦) refers to positive examples which are first rotated by 10◦ and then 60% of the image is retained per dimension.

PPPPPPPtest
train 60%, 10◦ 60%, 20◦ 60%, 30◦ 60%, 40◦ 80%, 10◦ 80%, 20◦ 80%, 30◦ 80%, 40◦

60%, 10◦ 73.67 71.48 59.65 58.71 72.74 66.64 57.08 54.33
60%, 20◦ 68.31 88.12 87.56 87.05 67.94 83.50 75.49 65.10
60%, 30◦ 64.82 89.93 94.04 94.55 64.77 87.98 86.53 75.68
60%, 40◦ 63.89 90.31 94.45 95.39 63.65 89.14 88.21 79.36
80%, 10◦ 73.21 71.81 59.37 58.90 72.93 69.71 58.53 55.87
80%, 20◦ 69.52 87.88 87.14 87.47 70.08 89.05 87.56 78.19
80%, 30◦ 65.94 89.19 93.43 93.94 67.05 94.04 95.71 94.69
80%, 40◦ 64.12 89.61 94.64 95.29 66.08 95.25 96.51 96.09
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Figure 7: (a)/(b)/(c) False alarm (PFA) and missed detection (PMD) rates are computed for TIFF images/ JPEG images/ JPEG
images with “relaxed conditions for obtaining positive elements in P”. Similarly, (d)/(e)/(f) show the detection error rates for these
three cases. The number in parentheses denotes the seam-insertion percent, e.g. in (a), PMD(40%) denotes the probability of missed
detection for 40% seam insertion.
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Figure 8: (a) image with 25% seams inserted, (b) p-map matrix for seam inserted image, (c) binary matrix obtained after using δth

of 0.98 for p-map, (d) only the pixels in (c) with valid parent nodes are retained, (e) the pixels in (c) with valid parent and child nodes
are shown - these indicate the seams detected, (f) original image, (g) p-map for original image, (h) corresponding binary matrix using
δth of 0.98, (i) the binary matrix with parent node based pruning, (j) after (parent+child) node based pruning, the resultant binary
matrix has all zeros.


