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ABSTRACT

Quantization index modulation (QIM) is a commonly used
data hiding technique where a single bit is embedded per co-
efficient. Here, we propose the use of double embedding in the
QIM framework where a single coefficient is modified twice,
using two quantizers, to embed two bits. The motivation be-
hind substituting single embedding with double embedding
in the QIM framework for a certain steganographic scheme
is to increase its hiding rate without significantly increasing
the embedding distortion and the stego scheme’s detectability
against steganalysis. We empirically determine the best way
to couple the double embedding framework with a repeat ac-
cumulate code based error correction scheme. For moderate
noise levels, the use of double embedding is seen to be signif-
icantly advantageous over single embedding.

Index Terms— double embedding, quantization index
modulation, repeat-accumulate code, embedding distortion

1. INTRODUCTION

A common embedding technique used for data hiding is quan-
tization index modulation (QIM) [1, 2]. In QIM, data em-
bedding is performed through a choice of the quantizer and
an element is quantized once to embed a certain bit. Here,
we look at incorporating “double embedding” in QIM-based
steganographic schemes, where the same element is modi-
fied twice to embed 2 bits. The aim is to increase the hiding
rate without compromising on the embedding distortion intro-
duced as well as the robustness of the steganographic scheme
against the same steganalysis methods. As a secure hiding
framework in which to compare the detectability of single
and double embedding, we have used our recently proposed
secure steganographic scheme, Yet Another Steganographic
Scheme (YASS) [3], which achieves security based on hiding
in randomized blocks. In YASS, hiding occurs in a selected
band of quantized discrete cosine transform (DCT) elements
computed per 8×8 block, chosen randomly out of a B × B
(B > 8) big-block. To compensate for the errors introduced
by the JPEG compression step in YASS, it is coupled with a
repeat-accumulate (RA) [4] coding framework.
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1.1. Single and Double Embedding Using QIM

We compare the single and double embedding schemes,
within the QIM framework, using Fig. 1.

0 ∆ 2∆ 3∆

0 ∆ 2∆ 3∆

(∆

 

–

 

∆/4)

(∆

 

+ ∆/4)

(2∆

 

–

 

∆/4)

(2∆

 

+ ∆/4)

(3∆

 

–

 

∆/4)

(3∆

 

+ ∆/4)

erasure

zone embed 1 embed 0 embed 1

erasure

zone

(1,1) ( 0,1)

(1,0) (0,0) (1,0)

(1,1)

QIM: single embedding  (a)

QIM: double embedding (b)

01

1,1

1,0
0,1

0,0

∆/2

∆/2

P

P

Here, P = 1.4∆

Fig. 1. QIM-based hiding is shown for single and double em-
bedding schemes.

For the single embedding case (Fig. 1(a)), let the QIM
embedding logic be converting an element to the nearest
even/odd multiple of the quantization interval, ∆, to embed
0/1, respectively. For hiding, we use quantized discrete cosine
transform (DCT) coefficients. For perceptual transparency,
we do not modify coefficients that are too close to zero; hence,
all coefficients in the range [-0.5,0.5] are mapped to zero and
are regarded as erasures.

The two quantizers used for double embedding (Fig. 1(b))
have quantization intervals of ∆ and ∆/2, respectively. In
the example (Fig. 1(b)), ∆ = 1 and the DCT coefficient (P)
equals 1.4. Let the first bit to be embedded be 1 (using the
coarser quantizer) and the second bit be 0 (using the finer
quantizer). To embed 1, the coefficient (1.4) is changed to
the nearest odd multiple of ∆ (1). For the second bit, the
coefficient is decreased/increased by ∆/4 to embed 0/1 re-
spectively. To embed 0, the coefficient is changed from 1 to
0.75. The double embedding scheme can also be thought of as
modifying the coefficient once to one of 4 nearest codewords
to embed 2 bits. E.g. a coefficient of 1.4 can be changed to



0.75/1.25/1.75/2.25 to embed 10/11/00/01, respectively.
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Fig. 2. Double embedding is shown for two codeword alloca-
tion schemes: in (a) (or (b)), the quantization level (1.25∆)
(or (0.75∆)) corresponds to 1 and 0 being embedded for the
coarser and finer quantizers, respectively. Here, h1 (or h2) is
the probability of mistaking a coefficient, originally mapped
to 1.75∆ after embedding, as being mapped to 2.75∆ (or
2.25∆) due to JPEG compression induced noise.

2. DISTORTION AND ERROR ANALYSIS FOR THE
QIM EMBEDDING SCHEMES

Better Allocation of Codewords for Double Embedding
In Fig. 2(a) and (b), two different methods of allocation

of quantizer levels are shown for double embedding. For the
former, there is always a change of 1 bit between successive
quantization levels. For the latter, a maximum change of 2
bits is involved for successive quantization levels. Let Q(x)
denote the quantized value of the DCT coefficient x, while x̂
is the nearest quantizer level to which Q(x) gets mapped due
to JPEG compression noise. The probability terms h1 and h2

(shown in Fig. 2) are expressed as:

h1 = Pr(x̂ = 2.75∆|Q(x) = 1.75∆)
= Pr(n > 0.75∆, n < 1.25∆)

h2 = Pr(x̂ = 2.25∆|Q(x) = 1.75∆)
= Pr(n > 0.25∆, n < 0.75∆)

where n = x̂−Q(x) is the JPEG compression induced noise.
Based on the level allocation in Fig. 2(a) and (b), the prob-

ability of error pe,a and pe,b are computed, assuming that the
original coefficient, after QIM-based embedding, Q(x) =
1.75∆. When Q(x) gets mapped to 0.75∆ (or 1.25∆) in
method (a), the number of bit errors introduced as ‘00’ is
wrongly decoded as ‘11’ (or ‘10’) is 2 (or 1).

pe,a = 2Pr(x̂ = 0.75∆) + Pr(x̂ = 1.25∆)+
Pr(x̂ = 2.25∆) + 2Pr(x̂ = 2.75∆)
= 2h1 + h2 + h2 + 2h1 = 4h1 + 2h2

Similarly pe,b = h1 + 2h2 + h2 + h1 = 2h1 + 3h2

All the probability terms are conditioned on Q(x) = 1.75∆.
Here, we consider the 4 quantization levels nearest toQ(x)

as possible quantization levels whereQ(x) can get mapped to
due to noise. The noise distribution is symmetrical and falls
off sharply on either side of 0 - this assumption has been ex-
perimentally verified. Therefore, the probability of Q(x) get-
ting mapped to levels that are more than ∆ away from Q(x)
(Pr(|n| > ∆)) will be very small. Due to the highly tapered
distribution of the noise, h1 � h2, and hence, pe,a < pe,b.
Due to the lower error probability, the quantizer level alloca-
tion in Fig. 2(a) is preferred.

Embedding Distortion for Double Embedding
For double embedding, the embedding and decoding can

occur on a “bit-by-bit” basis, or on a “2-bit tuple” basis. E.g.
let us embed ‘00’ using an image coefficient of 2.9 (∆ = 1).
In the “bit-by-bit” approach using codeword allocation (a), we
embed the first ‘0’ by converting it to the nearest even integer,
2. Then we embed the second ‘0’ by changing the term to
(7/4). If ‘00’ was considered as a 2-tuple and we wanted to
modify it to the nearest element in {(7/4)∆± 2n∆, n ∈ Z},
that element would have been (15/4). The effective distortion
is 1.15 (2.90 - 1.75) and 0.85 (3.75 - 2.90), using 1-bit and
2-bit tuples, respectively. Embedding the bits as 2-bit tuples
lowers the squared distortion, as shown later using (1) and (2).

The distortion for “bit-by-bit” embedding is expressed in
(1). Here, p01 is the probability that the bit to be embed-
ded using the coarser and finer quantizer equals 0 and 1, re-
spectively. By symmetry, p00, p01, p10 and p11 all equal 0.25.
Though the distribution of the DCT coefficients is not uni-
form (the distribution of the AC DCT coefficients has been
approximated as Laplacian [5]), we assume a uniform distri-
bution f(x) in (1) and (2) to simplify computations. The aver-
age squared distortionD1 for a non-erasure zone of length 2∆
(the effective distortion is the same over any non-erasure zone
of the same length under the uniform distribution assumption)
using codeword allocation method (a) is:

D1 =
∫ 4.25∆

2.25∆

{x−Q(x)}2
f(x)dx (1)

where we assume f(x) = (1/2∆), x ∈ [2.25∆, 4.25∆]

=
p00

2∆

∫ 3∆

2.25∆

{x− 1.75∆}2
dx +

p00

2∆

∫ 4.25∆

3∆

{x− 3.75∆}2
dx

+
p01

2∆

∫ 3∆

2.25∆

{x− 2.25∆}2
dx +

p01

2∆

∫ 4.25∆

3∆

{x− 4.25∆}2
dx

+
p11

2∆

∫ 4∆

2.25∆

{x− 2.75∆}2
dx +

p11

2∆

∫ 4.25∆

4∆

{x− 4.75∆}2
dx

+
p10

2∆

∫ 4∆

2.25∆

{x− 3.25∆}2
dx +

p10

2∆

∫ 4.25∆

4∆

{x− 5.25∆}2
dx

= (19/48)∆2

The distortion for the “2-bit tuple” based embedding is ex-
pressed in (2). Considering the zone [2.25∆, 4.25∆] and us-



Table 1. The average bpnc and PSNR values are reported for 500 images, obtained using single embedding and the variants of
double embedding, in the QIM-based YASS framework. We use B = 9, λ (size of hiding band) =5 and QFa = 75.

Single Embedding Method 1 Method 2 Method 3 Method 4
QFh ∆ bpnc PSNR bpnc PSNR bpnc PSNR bpnc PSNR bpnc PSNR

50 1 0.0998 45.45 0.0928 45.16 0.1256 44.94 0.1236 44.94 0.1298 45.22
60 1 0.0984 47.08 0.0661 46.75 0.0899 46.55 0.0942 46.55 0.0987 46.85
70 1 0.0743 48.71 0.0382 48.38 0.0415 48.17 0.0368 48.17 0.0425 48.49
75 1 0.0475 49.61 0.0230 49.29 0.0225 49.07 0.0146 49.07 0.0219 49.41
50 1.5 0.0967 42.67 0.1501 41.99 0.1551 42.14 0.1431 42.14 0.1626 42.37
60 1.5 0.1094 44.23 0.1208 43.55 0.1423 43.68 0.1344 43.68 0.1586 43.93
70 1.5 0.1171 45.83 0.0797 45.18 0.1060 45.28 0.1043 45.28 0.1327 45.56
75 1.5 0.1116 46.74 0.0598 46.11 0.0808 46.18 0.0802 46.18 0.1131 46.47
50 2 0.0926 40.47 0.1577 39.48 0.1593 39.94 0.1451 39.94 0.1698 40.13
60 2 0.1071 41.98 0.1531 41.02 0.1571 41.45 0.1417 41.45 0.1758 41.66
70 2 0.1206 43.58 0.1306 42.66 0.1344 43.03 0.1224 43.03 0.1644 43.27
75 2 0.1265 44.50 0.1078 43.60 0.1135 43.94 0.1046 43.94 0.1509 44.19

ing codeword allocation method (a), the average squared dis-
tortion D2 is computed as:

D2 =
p10

2∆

∫ 4.25∆

2.25∆

{x− 3.25∆}2
dx (2)

+
p00

2∆

∫ 2.75∆

2.25∆

{x− 1.75∆}2
dx +

p00

2∆

∫ 4.25∆

2.75∆

{x− 3.75∆}2
dx

+
p01

2∆

∫ 3.25∆

2.25∆

{x− 2.25∆}2
dx +

p01

2∆

∫ 4.25∆

3.25∆

{x− 4.25∆}2
dx

+
p11

2∆

∫ 3.75∆

2.25∆

{x− 2.75∆}2
dx +

p11

2∆

∫ 4.25∆

3.75∆

{x− 4.75∆}2
dx

= ∆2/3 = (16/48)∆2,

which equals the average squared distortion over a non-
erasure zone of length 2∆ for the single embedding case.

It can be further shown that the average distortion over the
erasure region is (40∆2/192) and (43∆2/192) for single and
double embedding cases, respectively. There is a high distri-
bution of DCT coefficients in the erasure zone. Hence, for the
same ∆ and similar hiding conditions, the embedding distor-
tion is slightly higher when double embedding is used.

3. USING QIM-BASED DOUBLE EMBEDDING
WITH RA CODING FRAMEWORK

Assume that there are N embeddable coefficients. For the sin-
gle embedding case, the RA-encoded sequence has N bits and
assuming that the minimum redundancy factor which allows
perfect data recovery is qopt, the number of databits equals
bN/qoptc. For the double embedding case, the RA-encoded
sequence accommodates 2N bits.

From Fig. 1(a) and (b), it is seen that the nearest quantiza-
tion levels are ∆ and ∆/2 apart, for single and double em-
bedding, respectively. Hence, though a coefficient can embed
2 bits, the noise robustness will always be lower for double

embedding. Let qopt equal q1 and q2 for single and double
embedding, respectively, where q2 ≥ q1. Hence, the effec-
tive number of databits equals bN/q1c and b2N/q2c, respec-
tively. Double embedding achieves a higher data-rate than
single embedding if b2N/q2c > bN/q1c.

The following variants of double embedding have been ex-
perimented with:
• Method 1 (M1): It embeds an RA-encoded sequence of

N bits using each of the two quantizers. Let the optimum q
factor for the two quantizers be qa and qb, respectively. The
total number of databits equals (bN/qac+ bN/qbc).
• Method 2 (M2): Let {b1, b2, · · · , b2N} be the sequence

of 2N bits. The first half ({b1, · · · , bN}) is embedded using
the coarser quantizer and {bN+1, · · · , b2N} is embedded us-
ing the finer quantizer.
• Method 3 (M3): It embeds every odd-numbered bit

({b1, b3, · · · , b2N−1}) using the coarser quantizer and every
even-numbered bit using the finer quantizer.

For hiding, we use a big-block size B of 9 in the YASS
framework and the hiding band consist of the top 5 (λ = 5)
AC DCT coefficients per 8×8 sub-block. The average hiding
rate is expressed in terms of the “bpnc” (bits per non-zero
DCT coefficient) and the embedding distortion is quantified in
terms of the Peak Signal To Noise Ratio (PSNR) - the results
are averaged over 500 images. The design quality factor for
hiding, QFh is varied from 50-75. After hiding, the images
are JPEG compressed at QF a = 75. In Table 1, “bit-by-bit”
embedding is used for M1-M3 and out of them, M2 is seen to
have the highest embedding rate at the same PSNR. We then
replace the single bit based embedding in M2 by “2-bit tuple”
based embedding and refer to it as Method 4 (M4) in Table 1.
3.1. Steganalysis Experiments

We conduct the steganalysis experiments on 4500 JPEG im-
ages, from the MM270K database 1, compressed at a quality

1downloaded from http://www-2.cs.cmu.edu/yke/retrieval



Table 2. Comparison of detection accuracies using PF-274
and Chen-324, for single (denoted by (1)) and double (de-
noted by (2)) embedding in QIM-based YASS, with B = 9.
QFh ∆ λ Pd,PF (2) Pd,PF (1) Pd,Ch(2) Pd,Ch(1)
50 1 5 0.6212 0.6062 0.5555 0.5554
60 1 5 0.5582 0.5541 0.5414 0.5356
70 1 5 0.5447 0.5238 0.5284 0.5252
50 2 5 0.6514 0.6464 0.6216 0.6165
60 2 5 0.6405 0.6382 0.5788 0.5746
70 2 5 0.6377 0.6311 0.5736 0.5652

factor of 75. Half of the images are used for training and
the other half for testing. We use a support vector machine
(SVM) based classifier for steganalysis, where the SVM is
trained using the following features.
• Pevny and Fridrich’s 274-dimensional feature (PF-274)

that merges Markov and DCT features [6] is used.
• Chen et al’s 486-dimensional feature (Chen-486) [7],

that accounts for both intra and inter-block correlation among
JPEG DCT coefficients, has also been experimented with.

The probability of classifying a test image correctly as
cover or stego - the detection accuracy Pd (Pd ≈ 0.5 im-
plies undetectable hiding, and as the detectability improves,
Pd increases towards 1) is obtained for the different steganal-
ysis methods. We use M4 for double embedding. In Ta-
ble 2, Pd,PF and Pd,Ch refer to the detection accuracy ob-
tained using PF-274 and Chen-486, respectively. Pd,PF (1)
and Pd,PF (2) refer to the Pd values for PF-274 based ste-
ganalysis, when single and double embedding are used, re-
spectively. The steganalysis results show that for similar hid-
ing conditions, the detection accuracy (Pd) for double em-
bedding is slightly more than when single embedding is used.
Thus, though double embedding results in a higher hiding
rate, the effect on steganalysis performance is quite small.

3.2. Discussion

Based on the embedding distortion (quantified by PSNR) and
the steganalysis (quantified by Pd using PF-274 and Chen-
486 features) results, the following observations can be made.
• We obtain a much higher embedding rate using double

embedding as compared to single embedding, the margin be-
ing higher when the system is more robust to JPEG compres-
sion (higher ∆ and lower QFh). Single embedding has higher
bpnc for the less robust cases (∆ = 1 and QFh = 70 or 75).
• The “2-bit tuple” based approach (M4) generally results

in higher bpnc than the “bit-by-bit” based method (M2) - the
PSNR is also slightly higher for M4.
• Regarding double embedding, we see that it is generally

better to combine the two N -bit sequences (M2) instead of
using them separately (M1). Also, for a sequence of 2N bits,
we find that placing the two sequences consecutively (N bits
of the first followed by N bits of the second) is generally bet-
ter than embedding successive bits using the coarser and finer

quantizers, i.e. M2 is better than M3.
We can explain the above observation as follows - RA-

coding generally performs better on longer sequences. Hence,
combining the two N -bit RA-coded sequences into one se-
quence of 2N bits gives improved results (M2 over M1).
Since there are more errors using the finer quantizer, the de-
coding errors tend to be more concentrated in M2 and more
spread out in M3. For RA-encoded sequences, we have ex-
perimentally observed that when the errors are more concen-
trated, it generally converges at a lower q as compared to
when the errors are well spaced - specially for q ≥ 15.

Double embedding can replace single embedding in a
steganographic scheme where we need significant increase in
bpnc, the penalty being a slight increase in Pd.

4. CONCLUSION

We have increased the hiding rate by using double embed-
ding in the QIM framework. It has been shown that using
a single encoded sequence encompassing the two quantizers,
where the two successive halves of the sequence are embed-
ded using the coarser and finer quantizers, generally results in
a higher embedding rate as compared to single embedding, for
moderately noisy channels. Embedding two bits as a pair sig-
nificantly increases the hiding rate as compared to individual
embedding. We will focus on improving the noise robustness
of the double embedding scheme in future.
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