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We propose an image duplicate detection method for identifying modified copies
of the same image in a very large database. Modifications that we consider in-
clude rotation, scaling and cropping. A compact 12 dimensional descriptor based
on Fourier Mellin Transform is introduced. The compactness of this descriptor
allows efficient indexing over the entire database. Results are presented on a 10
million image database that demonstrates the effectiveness and the efficiency of
this descriptor. In addition, we also propose extension to arbitrary shape repre-
sentations and similar scene detection and preliminary results are also included.

1.1. Introduction

Automated robust methods for duplicate detection of images/videos is getting more

attention recently due to the exponential growth of multimedia content on the

web. The large quantity of multimedia data makes it infeasible to monitor them

manually. In addition, copyright violations and data piracy are significant issues in

many areas including digital rights management and in the entertainment industry.

In this chapter, our main aim is to propose a system that can detect duplicate

images in very large image databases. We specifically focus on the scalability issue.

Our proposed approach results in a very compact image signature that is robust

to many image processing operations, can be indexed to efficiently search large

databases (we show results on a 10 million image database), and is quite effective

(about 82% precision). Our method can also be extended for similar image detection

and “region of interest” duplicate detection.

In many practical scenarios, the duplicates are not identical replicas of the im-

ages in the database, but are digitally processed versions of the original images

in the database. In these cases, standard hashing methods will not work. Here,

“duplicate” refer to digitally modified versions of the image after manipulations

such as those shown in Figure 1.1. Duplicate detection of exact copy using hashing

techniques has been already addressed in the literature.1,2 Figure 1.1 (a) shows the

original image and Figures 1.1 (b)-(p) are obtained after digital processing such as

1
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scaling, rotation and cropping. One can consider duplicate detection as a subset

of similarity search and retrieval, see for example .3–6 Real time retrieval from
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Fig. 1.1. (a) original image; (b) gaussian noise added image; (c) blurred image; (d)-(f) rotated
images: 90o

, 180o
, 270o; (g)-(i) scaled images: 75%, 50%, 25%; (j)-(m) JPEG compressed images:

90, 70, 50, 30; (n)-(p) cropped images: 10%, 20%, 30%; (q)-(t) difference images with respect to the
original one for (b),(c),(l) and (m). The compact signatures of all these images are summarized in
the Table 1.1 sequentially.

a large image archive such as the World Wide Web (WWW) necessarily demands

robust systems in terms of

• efficiency, time performance;

• accuracy, precision and recall;

• scalability, the property of accommodating significant changes in data vol-

ume without affecting the system performance.

Many of the results reported in the literature are on small databases, ranging from

a few thousand (e.g.,7–9) to 1.4 million images in the case of Wang et al.10

The key steps in our duplicate detection includes the computation of the Fourier

Mellin Transform (FMT)11 followed by a dimensionality reduction resulting in a

12 dimensional quantized vector. These quantized vectors are represented using

unsigned characters (total of 96 bits). This compact representation allows us to
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Table 1.1. Operations corresponding 4 bytes
signatures for images in Figure 1.1.

Operations performed Compact Signature

Original Image 122 197 157 73

Gaussian Noise addition 122 197 156 73

Gaussian Blurring (2) 122 196 158 73

Rotation (90) 122 197 155 73

Rotation (180) 122 197 155 73

Rotation (270) 121 197 157 73

Scaling down (x1.3) 115 196 166 74

Scaling down (x2) 103 197 178 80

Scaling down (x4) 93 194 181 95

JPEG Compressed (90) 122 197 156 73

JPEG Compressed (70) 122 196 156 74

JPEG Compressed (50) 122 197 156 72

JPEG Compressed (30) 122 197 156 72

Cropping (by 10%) 129 201 146 72

Cropping (by 20%) 127 203 154 79

Cropping (by 30%) 126 205 165 86

build an efficient indexing tree, such as a k -d tree, that can search the database in

0.03 seconds on an Intel Xeon with CPU 2.33GHz. The accuracy is evaluated using

a query data set of 100 images. We are also exploring the use of clustering methods

for approximate search and retrieval and results are presented.

The rest of the chapter is organized as follows. Section 1.2 gives an overview

of related work. In Section 1.3, we present the details of the proposed duplicate

detection method. Extensions of the algorithm for sub image retrieval are also

proposed. Section 1.4 discusses the performance of compact signature on a very

large database. The results for sub image duplicate detection and detection of

similar images taken with slightly different illumination conditions, different point

of views, rotations and occlusions are also demonstrated. Finally, we conclude in

Section 1.5 with some discussions.

1.2. Related Work

Many duplicate detection8,9 and sub-image retrieval 5,7,12,13 schemes have been

proposed in the literature. Maret et. al8 proposed duplicate detection based on

support vector classifier. Different image features such as color and texture are first

extracted from the image. Distances are then computed in the respective feature

space and finally the dissimilarity between two images is given by the summation

of these partial distances. A 138 dimensional feature is computed for each image,

on a 18 thousand image database. The high dimensionality of the feature vector is

a limiting factor in scaling this approach to large databases.

Another method, RAM (Resolving Ambiguity by Modification),9 was proposed

for duplicate detection using Analytical Fourier Mellin Transform (AFMT). First,
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in the pre-processing stage, the feature vectors are extracted from the database.

A modified version of the original feature space is obtained by increasing the mu-

tual distances among the features maintaining the semantic content of the image.

Second, the algorithm searches through the modified database for a given query.

A constrained optimization problem was solved in order to generate the modified

feature space. This optimization problem has d × n variables and a minimum of

n2 constraints where d and n are the dimensions and number of points considered

respectively (specifically, d = 400 was used in their case). This method also suffers

from the scalability issue and some ad hoc post processing steps were suggested in

the paper to address this.

There are also methods that deal with sub image retrieval.5,7,12,13 The main idea

of all these approaches is based on extracting a large number of local features and

then using sophisticated algorithms for their efficient matching. These methods are

computationally very expensive and require significant amount of storage/memory.

In the above mentioned sub image retrieval methods, the database size ranges from

few hundreds to thousands and their scalability is not demonstrated.

Few web image search engines for large scale duplicate detection have been also

proposed.3,10 RIME (Replicated IMage dEtector)3 detects duplicate images by

representing them with feature vectors (wavelet co-efficients) and employing an in-

dexing scheme (multidimensional extensible hashing) to index the high dimensional

feature vectors. Experimental results on a database of about 30000 images are pro-

vided. In,10 each image was compactly represented (≤ 32 bits) by a hash code.

These compact hash codes are then compared for duplicate image retrieval yielding

a high precision recall ratio (more than 90%) on 1.4 million images considering only

the simple manipulations such as minor scale changes, image storage format (PNG,

JPEG, GIF) conversions and color/grayscale conversion.

Our proposed method makes the following contributions:

• a compact signature that can be used to detect duplicates when the original

image is modified significantly is proposed;

• the compactness of the signature allows efficient indexing tree to be built;

• the scheme shows to be scalable for large image database containing over

10 million images;

• possible extensions to similar scene and region of interest identification are

also shown.

In the following section, we discuss the system level issues in more detail.

1.3. System Overview

The overall block diagram of the web duplicate image retrieval system is depicted in

Figure 1.2. The current version of our system contains about 10 million images. The

database used in these experiments can be found at http://cortina.ece.ucsb.



October 24, 2007 11:23 World Scientific Review Volume - 9.75in x 6.5in Duplicate˙v2

Duplicate Image Detection inLarge Scale Databases 5

Image Database

Clustering and 

indexing of 

signatures
Cache

CFMT (online)

Similarity Metric

W

e

b

I

n

t

e

r

f

a

c

e

Segmentation

“cat”

input

output

AFMT Normalization

PCALloyd Max 

Quantization

CFMT (offline)

….

Fig. 1.2. System Architecture.

edu/. These images are downloaded from the web using a web crawler and stored

into the image database along with the associated meta-data (text and keyword).

CFMT block. The CFMT (Compact Fourier Mellin Transform) is computed

for each image in the database. It takes approximately 50 msec in our current C

implementation to compute this descriptor. The details of the CFMT algorithm

are discussed in details in Section 1.3.1.

K -d tree indexing. A k -d tree indexing scheme is also implemented to struc-

turally range the signatures for fast search and retrieval. It takes around 30 msec

to retrieve the 20 nearest neighbors for a given query from the entire database.

Indexing performance is discussed in Section 1.4.

Similarity metric. Both L1 and L2 distance measure have been implemented

for comparing the feature vectors. The L2 distance measure was found to improve

the results marginally.

Arbitrarily shaped region based CFMT. On a smaller dataset (MM270K

with about 18000 images) we have tested an adaptation of CFMT algorithm for

arbitrarily shaped regions. Firstly, GPAC (Graph Partitioning Active contours),

a recently proposed segmentation scheme14 is applied to segment foreground re-

gions within the image. The GPAC method was selected after exploring different

foreground/background segmentation methods (e.g. active contour model by Chan

and Vese15 and Geodesic Active Contour16) since it gives better results overall.
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Then, the CFMT is extracted on the foreground region instead of the whole image.

The adaptation of CFMT algorithm for arbitrarily shaped regions is presented in

Section 1.3.2 and preliminary results in Section 1.4.4.

1.3.1. CFMT Descriptor for Images

Fourier-Mellin transform (FMT) has been studied extensively in the context of wa-

termarking17,18 and invariant object recognition.19–21 All these methods exploit the

fact that this transform generates a rotation, translation and scale invariant repre-

sentation of the images. The FMT was first introduced in11 and our implementation

is based on the fast approximation described in.19

The classical FMT of a 2D function f , Tf(k, v) is defined as:

Tf(k, v) =
1

2π

∫
∞

0

∫ 2π

0

f(r, θ)r−ive−ikθdθ
dr

r
(1.1)

where (k, v) and (r, θ) are respectively the variables in Fourier Mellin and polar

domain representation of the function f . Ghorbel 22 suggested the AFMT, an

important modification to the problem associated with the existence of standard

FM integral (the presence of 1
r

term in the definition necessarily requires f to be

proportional to r around the origin such that when r → 0 then f → 0 ). The

AFMT, Tfσ(k, v), is defined as:

Tfσ(k, v) =
1

2π

∫
∞

0

∫ 2π

0

f(r, θ)rσ−ive−ikθdθ
dr

r
(1.2)

where σ, a strictly positive parameter, determines the rate at which f tends toward

zero near the origin.

Let f1(x, y) be an image and its rotated, scaled, translated version f2(x, y) be

related by the equation:

f2(x, y) = f1(α(x cos β + y sinβ) − xo, α(−x sin β + y cosβ) − yo) (1.3)

where the rotation and scale parameters are β and α respectively, and [xo, yo] is the

translation. It can be shown that for rotated and scaled images, the magnitudes of

the AFM transforms, |Tf1σ| and |Tf2σ|, (corresponding to f1 and f2) are related by

the equation:

|Tf2σ(k, v)| = α−σ|Tf1σ(k, v)| (1.4)

Concisely, an AFMT leads to a scale and rotation invariant representation after

proper normalization by 1/α−σ. Finally, the CFMT representation can be made

translation invariant by computing the AFMT on the Fourier transformed image

(considering only the magnitude part).

Once the AFM coefficients are extracted, Principal Component Analysis

(PCA)23 and Lloyd Max non uniform scalar quantization24 are applied to obtain

a compact representation, the CFMT descriptor. Each dimension of the CMFT

descriptor is quantized to 256 levels. After extensive experimentation, we choose
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the 12 dimensional CFMT descriptor for our duplicate detection since it provided

a good trade off between accuracy and efficiency.

1.3.2. CFMT Extraction for Arbitrarily Shaped Regions

Here we extend the CFMT computation for arbitrarily shaped regions (SA-CFMT,

Shape Adaptive CFMT). This is useful in many applications where one is looking

for specific objects or regions of interest within a larger image. A schematic of this

region of interest CFMT computation is shown in Figure 1.3. We first applied the
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Fig. 1.3. A typical 2D SA DFT work flow: (a) original image, (b) segmented Region of Inter-
est(ROI), (c)-(d) sampled foreground using the log-polar grid, (e) up-shifting and 1D SA DFT
on each column, (f) column SA DFT coefficients, (g) left-shifting and 1D SA DFT on each row,
(h) final 2D SA DFT coefficients. Darker and brighter regions correspond to background and
foreground respectively in all these matrices.

GPAC14 segmentation on a given image to extract the foreground region. Then

a log-polar transform is computed with the center of the coordinate system for

the transformation being the centroid of the region of interest. The pixel values

inside the foreground are mapped to a log-polar sampling grid and the rest of the

positions in the grid are filled with zeroes. Since all the grid positions do not

correspond to foreground, normal 2D FFT can not be employed on the sampled

values directly. Instead, we use the Shape Adaptive Discrete Fourier Transform (SA-

DFT).25 SA-DFT was first proposed for coding of arbitrary shaped image segments

in the MPEG-4 image compression standard.

The SA DFT coefficients of a vector x[n] where n = 0, 1, 2, ...., N − 1 are com-
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puted in a two step approach:

(1) Let x[n] has Ns samples belonging to the foreground and the rest to the back-

ground samples. Also consider a new sequence x′[n] to be constructed using

only the foreground samples of x[n]. Two cases can occur. In the first case, the

foreground samples can form a contiguous cluster:

x[n] = {0, 0., ., 0, a1, a2, a3, .., aNs
, 0, ..0, 0}

where {ai}i=1,2,...,Ns
denotes the foreground and the zeros are the background

samples. In this case, x′[n] is obtained by taking the contiguous block from x[n]

e.g. x′[n] = {a1, a2, a3, ...., aNs
}. In the second case, the foreground samples in

x[n] can be separated by the background samples like:

x[n] = {0, 0.., a1, a2, 0, 0, 0, a3, a4, a5, 0, 0, .., aNs
, 0, 0}

Therefore, in this case, x′[n] is constructed by replacing the background ones

with following foreground samples e.g. x′[n] = {a1, a2, a3, ...., aNs
} (x′[n] is the

condensed version of x[n] without any background samples). Also the relative

positions of the foreground samples in x[n] are maintained in x′[n].

(2) Then, a Ns point DFT is applied to x′[n], followed by a scaling of 1/
√

Ns which

preserves the orthogonality property of the DFT 2D transform. Let us define,

X ′[k] where k = 0, 1, 2, ...., Ns − 1 be the DFT of x′[n]. The required number

of zeros are padded at the end of the sequence X ′[k] to have the same length

as the input vector x[n]. Thus, X ′[k] gives the SA DFT of x[n].

Like other separable transforms SA DFT is also applicable to two dimensional

matrices. Firstly, each column is processed using above mentioned 1D algorithm

and secondly the same is applied to each row of the results. Given the 2D SA DFT

representation for an image we extract the CFMT signature in the same way as

described in Section 1.3.1 and finally obtain the SA-CFMT.

1.4. Experimental Results

We now describe the evaluation metric used to asses the performance of the proposed

CFMT signature. Then, we proceed to present experimental results on duplicate

detection for both whole and segmented image. Time performance is also discussed.

1.4.1. Performance Evaluation

Precision-recall value has been used to measure the performance of our signature.

Let A(H, Γ) be the set of H retrievals based on the smallest distances from the

query image, Γ, in the signature space and C(Γ) be the set of D images in the

database relevant to the query Γ. Then, precision P is defined by the number of

images retrieved relevant to query image divided by the set of retrievals, H .

P (H, Γ)
def
=

|A(H, Γ)
⋂

C(Γ)|
H
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Fig. 1.4. Original image, log-polar transformed image and reconstructed image (from left to right)
using only ∼ 50 % of the total A.C. energy. Overall shape remains unchanged in the reconstructed
image.

Recall which is defined as

R(H, Γ)
def
=

|A(H, Γ)
⋂

C(Γ)|
D

is the proportion of relevant images retrieved from C(Γ). A precision-recall curve

is usually obtained by averaging precision and recall values over a large number of

queries Γ to obtain a good estimate.

1.4.2. Results on Web Image Database

In our implementation of AFMT, the image is first mapped to a log-polar domain

and a 2D FFT is then computed on that domain. A 71×71 grid has been found to be

adequate for the log-polar mapping. We extract all Fourier Mellin (FM) coefficients

lying within a fixed radius, the target radius, from the center. We choose the target

radius in such a way so that the energy of the AFM coefficients within it corresponds

to 50% of the total AFM coefficients energy. Within the target radius (which in

our implementation is 8 pixels) there are 96 independent AFM coefficients. The

AFM coefficients are normalized by the central FM harmonic to get rid of the α−σ

term (see Eq. 1.4). Figure 1.4 shows the original image and the reconstructed image

using the AFM coefficients which correspond to 50% of the total A.C energy.

A set of 100 random images are chosen as queries and for each of the query images

15 duplicates are generated by performing the operations described in Table 1.1.

Varying sizes of CFMT signature include: 4, 6, 8 and 12 dimensions with one

byte per dimension. To give an idea of how much the signatures varies among

duplicate images, the 4 dimensional CFMT representations for the images shown

in Figure 1.1 are reported in Table 1.1.

Figure 1.5 shows the retrieval results for various sizes of CFMT signatures.

Note that for the 12 dimensional CFMT signature for H=15 (at the knee point)

the corresponding precision and recall are P = 0.82, C = 0.81. In Figure 1.6, a

comparative study is obtained to show the scalability of CFMT signatures as the
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Fig. 1.5. Precision Recall curve on close to a 10 million image database averaged on 100 queries,
each with 15 duplicates.
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Fig. 1.6. Scalability performance of various signatures: (a) performance of 4 dimensional descrip-
tor; (b) performance of 12 dimensional descriptor.

size of the database increases starting from 1 million up to 9 millions. It is clear

from the figure that the 12 dimensional descriptor scales quite well with the size of

the database.

1.4.3. Time Performance

We investigated different approaches to improve the run time performance of our

system. A naive sequential search over the 10 million image database takes ap-

proximately 3 seconds for retrieving the 20 nearest neighbors. A k -d tree indexing

data structure is also implemented. The k -d tree index structure built on a 12

dimensional feature space takes only about 0.03 seconds to retrieve the 20 nearest

neighbors. It takes about 3 minutes to build this data structure and requires 1.5
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GB of main memory to keep the data structure. Note that the entire k -d tree

needs to be kept in memory during the query-retrieval time. Such high memory

requirement might be crucial. In fact, if we increase our database size by 50% the

k -d tree structure would require more than 2 GB of main memory. This motivated

us to investigate clustering based methods for approximate nearest neighbor search

and retrieval. The performance of the simple K-means clustering is summarized

in Table 1.2. For the 10 million images with 64 clusters one can get about 65.6%

accurate results with the search time of about 1.8 seconds. These clustering results

are preliminary and suggest a trade off between accuracy and computations.

Table 1.2. Speed and accuracy using sequen-
tial search and K-means clustering.

#clusters none 32 64

# points 11033927 1085509 583381

search (sec) 3.014 2.841 1.826

accuracy 82% 77.9% 65.6%

1.4.4. Results on MM270K Image Database

Preliminary results have also been obtained for region and similar scene retrieval

on a smaller dataset. The MM270K database used in these experiments can be

downloaded from http://www.cs.cmu.edu/∼yke/retrieval.

Similar Scene Retrieval. In this case, the duplicates correspond to images

of the same scene acquired under different imaging conditions. For example, these

images are captured at different time, from different view point and may have

occluded regions. See Figure 1.7 for some examples. The CFMT descriptor in its

current form is not translation invariant and needs further modifications to address

this issue. One simple solution is to construct the CFMT descriptor on top of the

Fourier Transform of the image. Performance can be further improved by increasing

the dimensionality of the descriptor. The precision recall curve obtained for the

whole MM270K dataset is depicted in Figure 1.8 for the case of 12 dimensional and

36 dimensional modified descriptor. In this graph, the results are averaged over 14

queries with each having 4 similar scenes in the database. As can be seen from the

graph, these preliminary results are quite promising.

Arbitrarily shaped region retrieval. The GPAC14 segmentation method

was used to automatically compute the foreground and background segmentation

from the MM270K database for this experiment. We constructed 40 query examples,

each having 12 duplicates. These duplicates correspond to the modifications (b)-

(m) in Figure 1.1. GPAC segmentation was applied to the MM270K database,

to the originals and its duplicates. Some results are shown in Figure 1.9. There

was no manual parameter tuning on these results. The SA-CFMT descriptors was

then computed on these segmented region as discussed in Section 1.3.2. We also
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Fig. 1.7. Tested scene changes in the similar scene retrieval experiments. Similar images are
taken with: slightly different view points, camera setting, occlusions, rotation and photometric
changes.

computed the CFMT for the whole image with different kind of backgrounds as

shown in Figure 1.10. Figure 1.11 shows the precision recall curve for MM270K

database with CFMT (whole image) compared to GPAC plus SA-CFMT (region
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Fig. 1.8. Precision Recall curve on MM270K averaged on 14 queries, each with 4 similar scenes.

(a) (b) (c) (d)

Fig. 1.9. (a) original images; (b)-(d) segmentation results on: original images, 180o rotated
version of the original images, 25% scaled version of the original images.
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Fig. 1.10. Backgrounds used for testing CFMT and SA-CFMT in MM270K.

based). Note that a precision of 61% is achieved with a recall rate of 60% at the

knee point for H = 12 for GPAC plus SA-CFMT and very low precision values are

obtained by using only CFMT on the whole image for any size of signature.

1.5. Conclusion and future work

In this chapter we have presented a scalable duplicate detection method. The

scalability of the 12 dimensional CFMT signature has been demonstrated for a web

image database containing about 10 million images. We have provided detailed

experimental results demonstrating the accuracy and efficiency of the proposed

approach. On the 10 million image database we get about 82% accuracy with

a search time of about 30 msec on a standard desktop. Preliminary results for

arbitrarily shaped similar region retrieval as well as similar scene detection are very

promising.
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Fig. 1.11. Precision Recall curve on MM270K averaged on 40 queries, each with 12 duplicates.
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