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ABSTRACT

We propose a novel data hiding system where data is embed-
ded in local non-overlapping regions in an image. To survive
cropping, the encoder embeds the same data in multiple re-
gions of fixed dimensions, while the decoder’s challenge is
to independently retrieve the local regions. Salient feature
points are computed on an image and the local regions are
centered around them. To obtain non-overlapping regions,
the points are pruned based on their corner strength and the
size of the region. The decoder can retrieve the data only if it
can precisely identify one or more of the same key-points. We
present suitable key-point pruning methods such that even af-
ter considering a reduced number of key-points, the receiver
is successful in identifying the same key-point locations as
the encoder. We perform experimental comparison of various
corner detectors and also study the performance of segmenta-
tion methods to obtain robust key-points.

Index Terms— data hiding, corner detectors, robust seg-
mentation, keypoint pruning

1. INTRODUCTION

Data embedding in digital multimedia finds many applica-
tions ranging from digital watermarking, secret communica-
tions,copyright protection, content authentication and others.
Recent watermarking methods focus on embedding the water-
mark in local blocks or regions rather than the entire image in
order to survive attacks like cropping. Most of these methods
find salient points in an image to identify the local regions.
If the image undergoes a geometric transformation, the trans-
form parameters are computed using different techniques and
the image is usually realigned back to its original grid to ex-
tract the watermark. The data hiding problem is more chal-
lenging because the receiver has to blindly decode the data
without having access to the original watermark. Most of the
research is focused on hiding data in the entire image, while
very few works address the challenge of robust data hiding
in local image regions. Although, the amount of data that is
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Fig. 1. (from left to right) (a) original image with key-points
(KP) marked, with the square blocks showing the embedding
regions, (b) a geometrically transformed image is aligned
with the original grid - the KP common with (a) are shown

hidden is very less, local region based data hiding can survive
attacks such as cropping which cannot be survived by current
data hiding methods.

We propose a robust data hiding system by hiding the same
data in different local regions in an image. To make the sys-
tem robust to geometric transforms, synchronization peaks
are inserted in the mid-frequency band of the Fourier mag-
nitude domain whose positions are shared between encoder
and decoder [1]. Although peak based methods are resis-
tant against geometric transforms, they lack security since the
peaks can be easily detected and smoothed out by an adver-
sary. Here, our aim is to achieve robust rather than secure data
hiding.

In our hiding scheme, the hiding occurs in non-overlapping
square regions of fixed dimensions (Fig. 1). We use various
corner point detectors to obtain the key-points(KP) and
then prune them based on relative corner strengths and
spatial constraints (non-overlapping) to obtain the hiding
regions. We compare the performance of various corner point
detectors and also see the effectiveness of the salient region
based methods. We now explain the three main modules in
our hiding system - encoder, channel and decoder.

Encoder: (Fig. 2(a)) Before encoding, peaks are inserted
in the Fourier magnitude domain of the image. In the en-
coder, salient points are computed and data embedding is re-
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Fig. 2. The end-to-end data hiding framework (a) encoder: the same encoded sequence is embedded in every local region
around a key-point, (b) channel: the stego image can be subjected to geometrical transformations, followed by image processing
attacks, (c) decoder: it aligns the received image with the original image grid and decodes data from the local regions around
detected key-points. The boxes outlined in bold represent the main challenges/tasks at the encoder and the decoder.

peated in B × B square regions centered around a pruned
set of key-points (the pruning method is described in Sec. 3).
Embedding[2] is done using quantization index modulation
(QIM) in non-overlapping 8×8 blocks in each B ×B region.
For embedding, we choose a certain low and mid-frequency
band in the AC DCT domain. Since QIM is used, the decoder
needs to access the same set of coefficients as the encoder -
a shift of one pixel will cause desynchronization between the
set of hiding coefficients considered at the encoder and the
decoder. The data-bits are encoded using a turbo encoder.
Channel: (Fig. 2(b)) The stego image can be geometrically
transformed using a 2×2 matrix A and then can be subjected
to global image attacks and cropping.
Decoder: (Fig. 2(c)) The noisy stego image is first aligned
with the original image grid by estimating the positions of
DFT-domain peaks. Here, we do not describe how we esti-
mate the peak positions. Then, the decoder obtains key-points
from the aligned image (using the same pruning method as at
the encoder). A question arises as to how the decoder knows if
it has correctly identified a key-point. Turbo decoding is run
on the extracted symbols corresponding to the block-based
DCT coefficients obtained from the local region around that
key-point. When the turbo decoding converges with a high
average log-likelihood ratio (soft confidence values), then it
is assumed that proper decoding has occurred. Our decod-
ing method is robust to attacks such as JPEG, noise addition
and the data can be decoded even after the received image has
been re-aligned to its original grid after geometric attacks.

Paper Organization: The main contribution of this paper
is the key-point pruning methods for different key-point de-
tectors. Various salient point and salient region detectors are
discussed in Sec. 2. Key-point pruning methods are discussed
in Sec. 3. The detection results for the pruned key-points after
various noise attacks are presented in Sec. 4.

2. CORNER POINT DETECTORS

When the geometrical transformations are compensated for
(transformation by A in Fig. 2(b) followed by A−1 as in
Fig. 2(c)), the interpolation involved introduces noise among

the pixel values. The factors affecting the accuracy of the
KP detector are the interpolation noise and global noise intro-
duced by the channel (Fig. 2(b)).

Key-point detection methods:
(1) Scale Invariant Feature Transform (SIFT) [3] - Here, lo-
cal maxima are computed in Difference of Gaussian (DoG)
images obtained from a scale space representation of the im-
age. Taylor’s series expansion is used for more precise KP
localization. The strength of a SIFT KP is the corresponding
intensity value in the DoG scale space, for a given pixel loca-
tion and a given scale.
(2) Harris [4] - The corner points are obtained by comput-
ing the Hessian of the auto-correlation matrix in the gradi-
ent domain for every image pixel, comparing the eigenvalues
and then discarding flat areas and edges based on the relative
magnitudes of the eigen values. Denoting the autocorrelation
matrix per pixel as A, the corner strength mh is expressed
as mh = det(A) − k(tr2(A)) (k is a tunable parameter) and
pixels with mh significantly greater than 0 are identified as
Harris corners.
(3) Nobel-Forstener (NF) [5, 6] - The corner strength is de-
termined using mn = (tr(A) + ε)

−1det(A) (ε is a tunable
parameter).
(4) Harris-Laplace (HL) [7] - It uses the scale-adapted Harris
function to localize points in scale-space and then selects the
point with a characteristic scale, which is the extremum of the
Laplacian over different scales.
(5) Laplacian of Gaussian (LoG) detector [8] - This algorithm
is mainly used for blob detection where the number of de-
tected key-points equals a pre-assigned number of blobs. For
HL and LoG, the scale factor associated with a KP is regarded
as its corner strength.

Segmentation Methods: Maximally Stable Extremal
Regions (MSER): While obtaining the MSER regions, an
image is thresholded into a set of binary images, where the
thresholds are in ascending order. The blobs/regions obtained
are such that the boundary pixels (one pixel thick) have a
higher or lower intensity than the pixels inside the region.
The extremal regions are affine invariant for both geometri-
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Figure (b)
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Figure (c)

Fig. 3. Fig.(a): The KP pruning steps are shown. For two prospective KP ((M3,M4) or (M5,M6)) which are less than B apart
from each other, we retain the one with the higher strength. When the distance between two points (e.g. (M1,M2)) is greater
than or equal to B, both can be retained. Fig.(b) and (c): The figures show the fraction of KP that are correctly detected using
SIFT key-points at the decoder side before and after pruning, respectively. As an attack, we add various levels of Gaussian
noise before decoding.

cal and photometrical transformations [9]. The centroids of
the segmented regions are used as the key-point locations.

3. METHOD FOR PRUNING KEY-POINTS

We first explain some notations that are used to explain the
KP-based pruning method:
• B - the size of a local region used for hiding is B×B.
• Xenc, Kenc - Xenc is the set of Kenc key-points obtained
from the image at the encoder side where hiding occurs in
B ×B local regions around the key-points.
• Xdec, Kdec - Xdec is the set of Kdec key-points obtained
after geometrically aligning the noisy received image with the
original image.
• frmatch - it denotes the fraction of the Kdec key-points that
correspond exactly to any of the Kenc key-points used at the
encoder, i.e. frmatch = |Xdec ∩Xenc|/Kdec.

In our hiding scheme, we embed the same data in non-
overlapping B ×B blocks centered on various key-points
found on the image. The robustness of a key-point selec-
tion scheme requires that if this image undergoes changes
due to peak insertion, data embedding, and channel attacks, it
should still be possible to exactly recover some of the original
key-points from the received image. A standard KP detection
scheme yields a large number of points. One way to decode
the data is through brute force by centering a square block on
every obtained key-point and decode data wherever the turbo
decoder converges. We present a pruning scheme to return a
small number of salient points and in general, we observe that
there are common KP between the encoder and decoder even
after pruning.

The steps in the key-point computation are outlined below.

(1) Border effects - The key-points are computed in
the N1 × N2 image where a point (y, x) is considered if
B/2<y ≤(N1−B/2) and B/2<x ≤(N2−B/2), as shown

in Fig. 3(a). This ensures that the (B×B) block around the
key-points do not extend outside the image.

(2) Actual key-point computation - It is done using a
variety of methods, as discussed in Sec. 2. The corner
strength I(·) is computed for all key-points. We retain only
those key-points whose corner strength exceeds a certain
pre-defined threshold δth, which is made low such that
key-points are obtained in almost all regions of an image. Let
there be K1 such key-points, given by {Mi = (yi, xi)}K1

i=1.

(3) Removing Nearby Key-points - The key-points are
first sorted according to their corner strengths and their
corresponding positions {(yi, xi)}K1

i=1are stored in a list
with the top most position being the highest corner strength
position. Starting from the first point, the chessboard distance
is computed with all other points. Those points whose
distance is lesser than B is removed. This process is repeated
for all points till there are no more close enough key-points.
For eg. one may end up with key-points M3 = (y3, x3) and
M4 = (y4, x4), where max(|x3 − x4|, |y3 − y4|) < B, as
in Fig. 3(a). We cannot use both these key-points to obtain
the hiding regions since we want the B ×B blocks to be
disjoint. The corner strength is used to decide between 2 (or
more) points in such cases; e.g. we retain the key-point M3

if I(M3) > I(M4) and vice versa. After removing all the
nearby key-points, let the final number of remaining points
be K2, where K2 ≤ K1. As an example of the amount of
pruning achieved for SIFT key-points, the average value
of K1 using pruning steps (1)-(2) (for 512×512 images)
varies from 900 to 5000 as δth is decreased from 5 to 0; after
pruning using steps (1)-(3), the corresponding K2 varies
from 12 to 21. The fraction of matching KP before (after)
pruning is shown in Fig. 3(b) (Fig. 3(c)) for varying cutoffs
for the SIFT key-points.



Table 1. The average value of frmatch is computed over 250 images for different KP detectors and various noise attacks. B=80
is used to obtain the local hiding regions, along with 5 AC DCT coefficients in the hiding band.

Method A vg. Kenc Gamma-1 Gamma-2 AWGN R+S+crop Blur JPEG unsharp median
frmatch frmatch frmatch frmatch frmatch frmatch frmatch frmatch

SIFT 20.4 0.288 0.272 0.251 0.110 0.242 0.123 0.139 0.168
Harris 20.0 0.397 0.333 0.295 0.093 0.205 0.127 0.259 0.070

NF 19.3 0.457 0.413 0.400 0.127 0.365 0.200 0.305 0.123
HL 12.5 0.456 0.481 0.790 0.322 0.834 0.566 0.716 0.656
LoG 11.1 0.416 0.343 0.665 0.250 0.675 0.477 0.530 0.548

MSER 16.3 0.217 0.203 0.137 0.077 0.172 0.105 0.122 0.147

4. EXPERIMENTAL RESULTS

To reiterate, one source of error for the KP detector mod-
ule (between the encoder and decoder) is the interpolation
involved during the geometric realignment process. KP de-
tection errors are also caused by the various global image at-
tacks that are assumed to be part of the channel noise. All
these global attacks can be followed by cropping.

Our dataset consists of 250 JPEG images (quality factor
(QF) of 75). The key-point detection results for various at-
tacks are presented in Table 1. Since we embed the same data
in multiple blocks, our system is successful when there is exact
localization of at least one region, i.e. at least one key-point
match. The attacks we performed are given below. Except the
fourth attack, all other attacks are followed by a JPEG com-
pression at an output QF of 60.
(1) Gamma-1: γ = 1.5, Gamma-2: γ = 0.6,
(2) AWGN: AWGN is added at SNR of 25 dB,
(3) R+S+crop: Rotation (R) at 30◦, scaling (S) along both
axes at scale factor of 0.75, and then 70% of the image is re-
tained along each dimension (the received image is properly
aligned first before KP extraction),
(4) blur: Gaussian blur at σ = 2,
(5) JPEG: JPEG compression at a QF of 10,
(6) unsharp masking: using a 3-by-3 unsharp contrast en-
hancement filter,
(7) median filtering: using a 5x5 window.

From Table 1, we see that even after severe noise attacks,
there is still a match(one or more) between the encoder and
decoder key-points. The Harris-Laplace has the best overall
performance when compared with other detectors.

5. CONCLUSION
We have presented a key-point pruning method which com-
bines both the corner strength magnitude and the spatial con-
straints (depending on block size) to obtain a reduced set of
key-points distributed in different parts of an image. We hide
data in non-overlapping blocks centered on each point. Using
the same pruning method, we extract almost the same key-
points from the received image and decode data by center-
ing the blocks on those points. Since we embed same data
in all blocks, we will be able to decode data when there is a

match of at least one key-point with the original. Here, we as-
sume that our data hiding system can accurately decode data
even after various image attacks and geometric realignment
and all it needs is the exact key-point to get the exact block.
Although our pruning method outputs key-points in different
parts of the image, in future, we will consider methods where
almost all image regions are covered yet maintaining the mag-
nitude and spatial constraints. Since cropping generally af-
fects the image borders, key-points near the image center can
be weighed more than points near the border, thus modifying
the pruning method.
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