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Abstract

We describe a wide area camera network on a campus
setting, the SCALLOPSNet (Scalable Large Optical Sensor
Network). It covers with about 100 stationary cameras an
expansive area that can be divided into three distinct re-
gions: inside a building, along urban paths, and in a re-
mote natural reserve. Some of these regions lack connec-
tions for power and communications, and, therefore, ne-
cessitate wireless, battery-powered camera nodes. In our
exploration of available solutions, we found existing smart
cameras to be insufficient for this task, and instead designed
our own battery-powered camera nodes that communicate
using 802.11b. The camera network uses the Internet Pro-
tocol on either wired or wireless networks to communi-
cate with our central cluster, which runs cluster and cloud
computing infrastructure. These frameworks like Apache
Hadoop are well suited for large distributed and parallel
tasks such as many computer vision algorithms. We discuss
the design and implementation details of this network, to-
gether with the challenges faced in deploying such a large
scale network on a research campus. We plan to make the
datasets available for researchers in the computer vision
community in the near future.

1. Introduction
The analysis of video from a camera network covering a

large area has been relatively unexplored. The technical,
security, and privacy challenges have made it difficult to
collect the data necessary for this research. Instead, most
available datasets and networks use only a few cameras and
observe a small area, such as a conference room or a court-
yard. Larger camera networks do exist, but are are run by
governments and companies and are not publicly available.

We present the design and implementation of the Scal-
able Large Optical Sensor Network (SCALLOPSNet), a
large camera network covering a wide area of a university
campus. Using almost 100 stationary cameras, it observes
indoor, urban, and remote scenes for human and natural ac-

tivity. In order to cover such diverse scenes, the network
employs both wired cameras and battery or solar powered
wireless nodes. It records and processes all of this data
through a cloud computing-style cluster.

Our contributions include the deployment of one of the
more diverse and expansive camera networks in the research
community, the development and use of battery-powered
wireless IP camera nodes for use in remote places, and
the use of cloud computing infrastructure in our processing
cluster for scalability. We will use this network to generate
and make available datasets for computer vision research in
the near future.

Section 2 describes existing datasets and camera net-
works available to the research community. Sections 3 and
4 describe the locations and architecture of the camera net-
work. Section 5 demonstrates the application of tracking on
our system. Finally, in Section 6, we describe some of the
privacy and security issues we’ve encountered in the devel-
opment of our system.

2. Prior Work
2.1. Available Datasets

The Workshops on Performance Evaluation of Track-
ing and Surveillance (PETS) [6] have released several
free datasets with multiple, synchronized, and overlapping
views of scripted events. The PETS 2001 dataset contains
four short sequences observing people and vehicles mov-
ing on a small road from two cameras. The VS-PETS 2003
dataset contains views from three different corners of a soc-
cer field during a game. These sets and their ground truth
test object detection and tracking algorithms with single and
multiple cameras.

PETS 2006 marks a transition to the higher level goal of
detecting security and criminal events, specifically, aban-
doned luggage. A portion of a train station is viewed from
four distinct views with actors leaving baggages. The fol-
lowing year, PETS 2007 added two more events, loitering
and luggage theft, in a different four camera setup at a more
crowded location.
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Finally, PETS 2009 increased the number of cameras to
eight and changed the goal to crowd observation. This in-
cluded people counting and density estimation, tracking in-
dividuals in a crowd, and tracking the overall flow.

An unscripted dataset is available for a fee as the Mul-
tiple Camera Tracking dataset from the Image Library for
Intelligent Detection Systems (i-LIDS) [1]. This data is
sponsored by the UK Home Office Scientific Development
Branch, and has been used in TRECVid Event Detection
[14] and AVSS Multi-Camera Tracking Challenges [7]. It
contains both overlapping and non-overlapping views from
five CCTV cameras in the lobby of an airport.

2.2. Available Camera Networks

Without many available real-world datasets, several
groups have opted to design their own smart cameras [13]
or cameras networks [2].

Smart cameras developed by the research community
include CITRIC [4], CMUCam3 [15], and MeshEye [8].
These generally use low-power processors like ARM or XS-
cale, and 802.15.4 wireless communications. These cam-
eras process the video on board and transmit only analyzed
results.

One of the older and larger efforts in multiple visual
sensors was VSAM (Video Surveillance and Monitoring)
[5] at Carnegie Mellon University and Sarnoff Corporation.
It incorporated multiple types of sensors including Pan-
Tilt-Zoom (PTZ) cameras, infrared cameras, omnidirec-
tional cameras, airborne cameras, and relocatable vehicle-
mounted cameras in an effort to give a human operator the
most useful information possible.

Other research efforts tend to be more modest. Many
of them are temporary networks. For example, Wang et al.
[16] collected two outdoor scenarios with four marginally
overlapping cameras. Some more permanent camera net-
works exist, such as the KNIGHTM system [9], which used
a few cameras for detection and tracking in overlapping
and non-overlapping views. At the Robotic Vision Lab at
Purdue University, 18 Cyclops smart cameras with Mica-Z
motes form a network, which provides an overhead view
of one room [10]. UC Santa Barbara has a 10 camera
overlapping-view network called VISNET [12], which is
used for camera calibration and selection research.

One of the larger networks being run by a research in-
stitute is VideoWeb [11] at UC Riverside. It contains 80
Internet Protocol (IP) PTZ cameras mounted in and around
a single building. The cameras connect wirelessly to low-
level and mid-level processors that can be easily rearranged
to test different processing paradigms. The system has been
used generate a dataset 2.5 hours of video data annotated
with dozens of activities.

Figure 1: Camera (yellow circles) locations on one floor of
the building; five per floor observing the door and elevators.

3. Camera Network Placement
One of our goals in the design of SCALLOPSNet is to

enable wide-area camera network research. First, we se-
lected three distinct regions that would benefit from large
area studies: (1) inside a multi-story building, studying in-
door human traffic flow and activity; (2) along a bicycle
path, walkway, and traffic circle to study outdoor human
traffic and activities; and (3) in a wilderness reserve en-
abling remote sensing and environmental studies.

3.1. Indoor Environment

The indoor camera network was placed inside a 60,000
square foot, five floor building. All floors consist of a single
hallway leading to offices and lab spaces. Our aim is to ob-
serve the entrance and exits to every single floor, an area too
large for one camera to cover. These locations are shown in
Figure 1.

The relevant section of the hallways are about 8 feet tall
by 254.5 feet long by about 7.5 feet wide. Network cable
trays, which run on the south edge of every level except the
ground floor, hang 10 inches from the ceiling. These trays
carry Ethernet cables to each floor’s communication room,
and, according to building code, cannot run AC power.
Since they were our best option to mount the cameras and
manage communications, we required the Power over Eth-
ernet standard to power the cameras. On the first floor, the
cameras hang from the ceiling and are connected by cables
in the plenum.

There are 27 cameras in the building pointed at the en-
trances and exits to each floor. The first floor has seven
cameras viewing five entrances, two stairwell doors, and
the elevators. The remainder of the floors have five cam-
eras viewing the two elevators and three stairwell entrances.
The stairwells and elevators themselves, however, are not
observed, creating definite non-overlapping views between
floors.

This network can create good vision datasets with
real-world challenges like compression artifacts, transmis-
sions errors, and dynamic illumination resulting from non-
uniform lighting, reflections, and open doors and windows.
Potential tasks include:

• Detecting and tracking people with single and multiple



Figure 2: Camera (yellow circles) and wireless access point (blue stars) locations along the bicycle paths. The paths (green
lines) connecting the square represent the 802.11a backhaul connection.

cameras, as shown in Sec. 5.

• Detecting indoor events like opening and closing a
door, walking, running, and loitering.

• Counting the number of people on each floor.

• Modeling and summarizing typical indoor activities in
order to extract abnormal behaviors.

3.2. Outdoor Urban Environment

The outdoor camera network covers 2 km of the main
campus bicycle path, a popular walkway, and a vehicle traf-
fic circle. These are shown in Figures 2 and 3. To dis-
courage vandalism, cameras in these areas are mounted at
12 feet on light poles. As the entire bicycle path does not
contain sufficiently tall poles, portions of the path are un-
observed. From these vantage points, the cameras generally
observe intersections, traffic circles, and other areas with
high activity. However, care is also made in observing new
areas not covered by other cameras.

Figure 3: Camera (circles) locations at a walkway and traf-
fic circle.

The light poles are not a reliable source for power and
have no connections for communications. Therefore, we



needed a battery-powered camera node with a wireless con-
nection. This is discussed in more detail in Section 4.

Datasets from this network can be used for vision tasks
such as:

• Determining topology and links between camera
views.

• Detecting and tracking pedestrians, bicycles, and vehi-
cles across non-overlapping camera views.

• Modeling traffic flow and tracking crowds along the
bicycle path.

• Detecting anomalous events such as accidents.

• Fusing information from multiple sources (e.g. visual
data, class schedules, and classroom locations)

3.3. Outdoor Remote Environment

Our remote camera network is located in a natural re-
serve, which is shown in greater detail in our supplemen-
tary material. It is a protected habitat for the endangered
Snowy Plover and is designated an Important Bird Area
by the Audubon Society for the variety of birds that visit
throughout the year.

Because it is remote and difficult to access, it has little
power or communication infrastructure to rely upon. This
necessitates again the use of wireless communications and
battery power, especially with solar panels to maintain the
charge of the battery.

As a natural reserve it lends itself to both vision and eco-
logical problems such as:

• Counting the number of birds and recognizing their
species.

• Correlating human activities with the population of an-
imals.

• Tracking birds in 3D from multiple cameras.

• Detecting human trespassers into restricted areas.

• Tracking changes in plants throughout the season.

4. Camera Network Architecture
Our interests in wide-area camera network research lie in

developing the appropriate software and algorithms as op-
posed to hardware. Therefore, we relied on commercially
available equipment. Doing so required us to consider the
camera, communications, and processing solutions avail-
able on the market. This resulted in the system shown in
Fig. 4.

Figure 4: System architecture consists of cameras (Sec.
4.1), communications (Sec. 4.2), and compute cluster (Sec.
4.3).

4.1. Camera Nodes

The first camera requirement based on our site survey is
that they use both wired and wireless communication and
transmit at least VGA resolution (640 × 480) video over
320 meters. Indoor cameras also had to be able to receive
power without running AC power in the cable trays, while
outdoor cameras needed to be battery powered. Addition-
ally, the outdoor cameras had to withstand environmental
conditions like rain and fog.

Available wireless smart cameras use short range
802.15.4 wireless standard, which lack the throughput to
stream video, especially across so many hops. Thus, the
only most feasible choice was Internet Protocol (IP) cam-
eras. Many IP cameras use the Power over Ethernet (PoE)
standard to receive power over the Ethernet cable. Some
have built-in 802.11b/g Wi-Fi. These solutions also have
enclosures rated for outdoor use by either an International
Protection Code (IP) or National Electrical Manufacturers
Association (NEMA) rating.



Figure 5: The camera, a Linksys PVC2300 for indoor sce-
narios and WVC2300 in enclosure for outdoor scenarios.

We evaluated the Axis 211W and Linksys WVC2300
wireless network cameras. Both performed similarly. The
Axis camera had slightly better image quality, but, we chose
the Linksys camera, which was significantly less expensive.
It can transmit up to VGA resolution video in either Motion
JPEG or MPEG-4 streams. Transmission rates for the two
streams are about 300 KB/s and 40 KB/s, respectively.

Power to indoor cameras is supplied by Power over Eth-
ernet, a standard which transmits power over a wire on a
Category 5 Ethernet cable. Outdoor cameras are powered
by a 12V 12Ah battery. In our tests, these cameras could
stay active for over 24 hours on a single charge. Given the
size of our network, it’s infeasible to change the battery so
often. Therefore, we added a programmable switch that ac-
tivates the camera only during set times. For cameras in the
difficult to access natural reserve, we also attached a 20W
solar panel and charge controller to trickle charge the bat-
tery.

To house our camera and battery, we needed enclosures
that are at least IP43 or NEMA 3R. Enclosures with these
ratings protect against falling dirt, rain, sleet, snow, and the
external formation of ice. The cameras have a NEMA 3R
rated enclosure with external antenna connection manufac-
tured by Videolarm, while the batteries are stored in a sepa-
rate NEMA 3R junction box. The camera nodes have so far
withstood several rainstorms without incident.

4.2. Communications

Indoor cameras are easily connected using an Ethernet
cable connected to a PoE switch, i.e. a switch that injects
power into the Ethernet cable. The switch is connected over

gigabit Ethernet to our cluster.
To connect to the Wi-Fi cameras, we evaluated a number

of options: (1) 802.11b terminals with an 802.11a back-
haul, (2) WiMAX, (3) commercially available mesh net-
working with dual 802.11a/b/g radios, and (4) draft 802.11s
mesh networking. The first option was the most feasi-
ble. WiMAX would have required a wireless bridge at
each camera, which would have made our camera nodes too
large. The dual radio mesh network was constrained to 3-4
hops in order to transmit video, which was infeasible given
the size of our network . Finally, the 802.11s is still a draft
and would have required us to modify the firmware on our
cameras, which could potentially break them.

The final network consists of 7 wireless sites, which are
connected to each other by 802.11a connections. These
connections are shown in Figure 2. Each site has at least one
802.11b radio in order to connect to the cameras. The net-
work is wired into our cluster via one of the PoE switches
used for the indoor cameras. Average throughput for our
802.11a connections is 28 Mb/s and 8 Mb/s for the 802.11b
connections. The average ping time between our recording
computer and all the cameras is 85 ms, though this varies
from camera to camera, with some only a few microseconds
and other in the hundreds of microseconds.

4.3. Processing

There are two main paradigms for processing in a cam-
era network: centralized and distributed. In centralized pro-
cessing all data is handled by a single server. The advan-
tages include flexibility and speed in developing and de-
ploying new algorithms. The disadvantages are that adding
cameras generally requires more bandwidth. In distributed
processing, the raw video is processed at the node, and the
processed data is distributed to neighbors. This allows for
greater scalability and lower power consumption. However,
doing so requires more advanced algorithms and makes it
more difficult to record the video both for evaluating results
and collecting data for distribution.

The lack of suitable smart cameras precludes us from
implementing the distributed paradigm. Therefore, our net-
work is centralized with all data collected by a central
cluster. The cluster consists of 21 computers: 20 rack
servers with Intel Quad Core Xeon Processor E5530, 6GB
1333MHz UDIMM memory, 500 GB SATA hard drive; and
1 rack workstation with Quad Core Intel Xeon Processor
E5420, 8GB DDR2 667 MHz memory, and 500 GB SATA
hard drive. Also on the network is a 5 TB network storage
drive.

Our server is unique in the camera network commu-
nity in that takes advantage of technologies intended for
cluster and cloud computing. At the infrastructure level,
we’ve installed Apache Hadoop, a framework for running
applications on large clusters built on commodity hard-



ware. At the heart of Hadoop is the computational paradigm
Map/Reduce, which divides an application into small frag-
ments of work, each of which may be executed on any node
in the cluster. This fits very well with many video analysis
algorithms, which can often be parallelized across the cam-
eras, and across the spatial and temporal domains of one
video.

5. Network Evaluation

Fig. 6 and 7 contain snapshots from our network – some
of these videos will be available in the supplementary ma-
terial. To better understand some of the challenges com-
puter vision algorithms will face, we ran a multiple instance
learning tracking algorithm by Babenko et al. [3].

In the indoor videos, see Fig. 6, two people enter the
building, go to another floor, then return to the first floor and
exit. In these videos, you can see the effect of non-uniform
overhead lighting. Additionally, the reflections of people
and lights are noticeable on the floor and walls. Cam-
eras that can see windows and door ways must deal with
larger dynamic ranges than other networks generally con-
sider. Frame rates in these videos average about 26 fps, yet
still show occasional artifacts as in the legs of the closest
person in Fig. 6f.

The videos along the bicycle path, see Fig. 7, can contain
pedestrian, bicycular, and vehicular traffic. Average frame
rates of these videos are 23 fps, but can be 13 fps on a few
cameras. The snapshots show fairly active intersections and
the crowds that can be present. Also of note is the effect of
the inclement weather, creating reflections and altering the
dress and appearance of people.

The tracking results in both sequences perform reason-
ably well with expected errors during occlusions and severe
scale changes, neither of which are accounted for by the al-
gorithm.

6. Privacy and Security

Privacy and security are sensitive topics in the context
of camera networks. Our discussion with the police estab-
lished that is it legal for us to record video in any public
area, but not audio. While United States federal law and
most state laws allow for single party consent, i.e. only one
party needs to be aware of the recording, some state laws
require all parties to be aware. This is known as two party
consent. Additionally, legal precedent in the US states that
cameras not give the false impression of security. Therefore
we’ve attached appropriate signs to inform passersby.

An ethicist emphasized that recorded data would have
to be evaluated on a case-by-case basis before use in re-
search. Her chief concern was that the data not record any
instance when a person can reasonably expect privacy. In

cases where this might be violated, we should remove the
identities of those concerned.

In the near future, we will record video from across our
network. After the videos are synchronized and relevant
identities anonymized, they must be approved for distribu-
tion. Then, they will be made available to the research com-
munity for studies like the ones mentioned in Sec. 3.

7. Conclusion
In this paper, we have described the design and imple-

mentation of SCALLOPSNet camera network, a large cam-
era network covering very diverse regions including indoor
and outdoor regions, and populated and remote areas. To
do so with the available technology, we designed our own
battery-powered wireless camera nodes for outdoor use and
created a central cluster running cluster and cloud comput-
ing infrastructure, especially Apache Hadoop. We will soon
make available datasets to address research problems such
as object tracking and event detection in indoor and outdoor
scenarios.

Future tasks focus on the development of computer vi-
sion algorithms designed for expanding cloud computing
infrastructures and processes. Specifically, they need to be
more parallel in order to fit into this framework.

With respect to the design of future wide-area camera
networks, more effort is necessary in the design of wireless
smart cameras that can also transmit video for evaluating
the performance of algorithms. Additionally, our cameras
are placed and pointed based upon our own subjective de-
termination. Further work can help determine how the cam-
eras can be better positioned to more meaningfully cover the
region.
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