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ABSTRACT

We present a detection based tracking algorithm for tracking
melanosomes (organelles containing melanin) in time lapse im-
age sequences imaged using bright field microscopy. Due to heavy
imaging noise detecting all the melanosomes accurately in every
frame is difficult. Therefore, two sets of imperfect detections are
used in a unified probabilistic approach to simultaneously perform
melanosome detection and tracking. We propose a novel iterative
algorithm which jointly estimates the optimal set of detections and
track results in every iteration from the previous tracks and detec-
tions. Our algorithm obtains significantly better tracking results than
the state of the art tracking-by-detection algorithm.

Index Terms— Simultaneous Detections and Tracking, Hun-
garian algorithm

1. INTRODUCTION
Melanosomes are organelle containing melanin, the most important
light absorbing pigment in the animal kingdom. Melanosomes in the
Retinal Pigment Epithelium (RPE) functions in the screening of light
and their subcellular localization is determined by molecular motor
transportation. Understanding the dynamics of melanosomes will
provide general insights into organelle dynamics in eukaryotic cells.
Analysis of melanosomes can give insight to the cause of genetic
diseases [1]. Melanosomes are difficult to detect due to background
clutter and imaging noise. Therefore, we formulate the melanosome
tracking problem as a multi-object tracking problem which is robust
to missing detections.

Multiple object tracking is an important and challenging prob-
lem in computer vision and bio-image analysis [2, 3, 4, 5]. The com-
mon paradigm towards multiple object tracking has shifted towards
a tracking-by-detection approach. Here, tracking is achieved by as-
sociating reliable detection responses over multiple frames. The
primary drawback of this approach is it assumes the existence of
accurate and stable detectors, which might not be feasible in our
melanosome tracking problem. It can be easily understood that de-
tections help build effective tracks and conversely, tracking results
provide valuable information about missing detections and false pos-
itive detections. In accordance with this notion, we propose to use
imperfect melanosome detections to iteratively improve subsequent
tracks in a novel probabilistic simultaneous detection and tracking
framework.

Association based multiple object tracking (tracking by detec-
tion) is a well studied problem in computer vision. Traditional ap-
proaches such as [6, 7] tackle this problem until enough evidence
is obtained to substantiate the grouping. However, task complexity
limits these optimization approaches to consider only few time steps.
The Hungarian algorithm [8] for associating detections is a widely

used approach in several recent works. In [4], Wu et al. define an
object affinity based on color, position and size and use the Hungar-
ian algorithm to obtain the associations across neighboring frames.
In [9], Stauffer et al. propose a tracklet1 association algorithm with
initialization and termination costs for modeling their source/sink
analysis problem. In [3], Huang et al. propose a three level hierar-
chical association algorithm which uses conservative estimation of
tracklets. Their algorithm also models the false alarm hypothesis
of the tracklets. These approaches require robust detections which
might not be always practically feasible.

To overcome this problem, some approaches make use of inter-
mediate tracking results to estimate reliable useful detections which
can enhance the final tracking performance. In this regard, Liebe
et al. [10] propose a coupled detection and tracking algorithm in .
They use a formulation based on a quadratic boolean program and
obtain the detections and tracks using an EM style optimization al-
gorithm. This formulation requires approximating the optimization
to an EM type estimation where convergence is not always guaran-
teed, as opposed to the novel joint estimation framework proposed
in this work. Also, the detection estimates in our approach are based
on global data compared to the incremental frame-level estimates of
[10]. Other approaches such as [11, 12] also tackle the problem of
simultaneous detection and tracking but lack a unified optimization
framework. There are a few approaches towards tracking multiple
cells in bio-image sequences [5, 13], but they again rely on accurate
detections.

Therefore to overcome these deficiencies in prior approaches,
we propose a novel framework for simultaneous detection and track-
ing. Our contributions include:

• A principled probabilistic framework for simultaneous detec-
tion and tracking which combines the modeling of detections
and associated tracks together.

• A novel optimization algorithm which jointly estimates the
optimal detections and associations based on the Hungarian
algorithm.

2. OUR APPROACH
In this work, we propose a Bayesian formulation for simultaneous
detection and tracking. Given a set of detections for all the frames in
an image sequence Di, for the ith iteration, we first build tracklets,
T i, using a conservative tracklet building algorithm. This implies
no false associations are made across the detections in this low-level
association step. Given these tracklets, we want to identify the best
possible combination of tracks (Si) and detections (Di+1) which

1Tracklets are high confidence object associations usually across a few
frames, which can be combined to form tracks



serve as input for the next iteration. This can be mathematically
written as

{Diopt,Siopt} = arg max
Di+1,Si

P(Di+1,Si|Di, T i, I) (1)

where I refers to the entire image sequence.
Using chain rule, we split this into two terms

P(Di+1,Si|Di, T i, I) = P(Si|Di, T i, I)P(Di+1|Di, T i, I,Si)
(2)

The first term represents the association model. Here, the infor-
mation provided by the tracklets T i is sufficient for the estimation
of the tracks, Si. We note that the previous detections (Di) and the
image information (I) is not useful or rather redundant for the asso-
ciation problem. In second term we estimate the new detections for
the next iteration, Di+1. We assume the Di+1 only depends on the
track identity (T i) and the image information. Therefore (2) can be
re-written as

P(Di+1,Si|Di, T i, I) = P(Si|T i)P(Di+1|I,Si) (3)

Fig. 1. Our optimization framework uses the tracklets T i (obtained from
current detections) and image information I to jointly optimize for improved
detections Diopt and tracks Siopt (3). If there is no change in the detections
(Diopt = Di), we output the final tracks Si, otherwise, the improved detec-
tions are used for the next iteration until convergence.

The overall flow of our approach is shown in Figure 1. The
following section describes the models for the association and new
detection estimation terms.

2.1. Association model

Several association models have been proposed for multiple object
tracking as reviewed in Section 1. In our work we use an approach
similar to [3] in which the authors jointly model the tracklet associa-
tions with the false alarm hypothesis. Let the individual tracklets T i
in the ith iteration be denoted by {T i1 , T i2 ...T iNi}. Similarly let the
tracks of Si be denoted by {Si1, Si2...SiMi}.

Now, the association term is decomposed as

P(Si|T i) = P(T i|Si)P(Si)

=
∏

T i
k
∈T i

P(T ik|Si)
∏
Si
l
∈Si

P(Sil ) (4)

Here we assume the likelihoods of the input tracklets are condi-
tionally independent given Si and the tracks {Sil} are independent
of each other.

A Bernoulli distribution is used to model the false alarm hy-
pothesis of the tracklet using the detector precision denoted by β.
Therefore, the likelihood of a tracklet is defined as

P(T ik|Si) =

{
P+(T

i
k) = β|T

i
k| if ∃Sil ∈ Si, T ik ∈ Sil

P−(Tki) = (1− β)|T
i
k| if ∀Sil ∈ Si, T ik /∈ Sil

(5)

where |T ik| is the number of detections in T ik, and P+(T
i
k) and

P−(T ik) are the likelihoods of T ik being a true detection and a false
alarm respectively.

The tracklet association priors in (4) are modeled as Markov
Chains.

P(Sil ) = Plink(T ik1 |T
i
k0)...Plink(T

i
kpk
|T ikpk−1

) (6)

where pk refers to the number of tracklets associated to form the
track Sk. Basically, the association prior is a product of transition
terms representing linkage probabilities between tracklets.

We note that T ik cannot belong to more than one Sil . Thus (4) is
rewritten as the following by inserting P+(T

i
k) into its correspond-

ing chain.

P(Si|T i) =
∏

∀Si
l
∈Si,T i

k
/∈Si

l

P−(T ik)
∏
Si
l
∈Si

[
P+(T

i
k0)

Plink(T ik1 |T
i
k0)..Plink(T

i
kpk
|T ikpk−1

)P+(T
i
kpk

)

]
(7)

2.2. Detection estimation model
In this section we propose a technique to model P (Di+1|I,Si) in
(3). Our approach jointly combines both the image sequence infor-
mation I and the track information Si to obtain an optimal set of
detections Di+1. Here we assume that all the image information
for detection purposes is captured by the set of all detections in all
frames in the time sequence, denoted by Dall and Di ⊂ Dall ∀i
(refer to Figure 2). So, our aim is to estimate the best possible detec-
tions from Dall which complements the track Si estimation prob-
lem. Therefore, the overall distribution is factored into different in-
dividual tracks (Sik). Missing detections in a track are interpolated
from the other detections. Let all these interpolated detections of the
kth track be denoted by Di

(inter,k). These interpolated detections
in every track assimilate all the useful information which each track
provides for estimating Di+1. These steps can be mathematically
written as

P(Di+1|I,Si) = P(Di+1|Dall,Si)

=
∏
k

P(Di+1
k |D

all, Di
(inter,k)) (8)

Fig. 2. Example of initial detections D0 (left) and Dall(right) in a frame.
We can observe Dall consists of several false positive detections but no false
negatives (best viewed in color)

Now, the individual detections in the kth track of the ith itera-
tion are denoted by {dik,j}j=1..nk where nk is the total number of
detections in the kth track. We assume the interpolation function has
the property that only the missing detections are different from Di.
The individual interpolated detections are denoted by diinter(k,j)

. As
the detections are independently obtained we have



P (Di+1|I,Si) =
∏
k

∏
j

P (di+1
k,j |D

all, Di
(inter,k)) (9)

Our focus is to model the estimation of di+1
k,j ∀j, k which

is a subset of Dall. We propose a gaussian density model for
P(di+1

(k,j)|D
all, Di

(inter,k)) with the mean of the Gaussian distri-
bution being diinter(k,j)

. Therefore for 2-D detection information
denoting the center of the detection (9) becomes,

P (Di+1|I,Si) =
∏
k

∏
j

1

2πσ2
exp

(
−
‖di+1
k,j − d

i
inter(k,j)

‖2

2σ2

)
(10)

where di+1
k,j ∈ Dall, and should be present in the same frame and

σ2I is the covariance matrix 2.

2.3. Inference
As we need to maximize (3), first we convert it into a cost function
by taking negative logarithms. The overall cost which we need to op-
timize is the sum of negative logarithms of (7) and (10). In this Sec-
tion, we propose an optimization technique which jointly estimates
Si and Di+1. To motivate this scheme we first need to understand
how the individual cost functions can be optimized separately.

2.3.1. Track inference given detections
The cost described in (7) can be optimized by the Hungarian al-
gorithm over tracklets similar to the one proposed in [3]. Here, a
probabilistic cost is formulated to associate any two tracklets and to
denote a tracklet as a false positive. In brief, to associate n tracklets
a n × n cost matrix is built with the non-diagonal entries denoting
the tracklet association costs and the diagonals are the false positive
costs. The optimal tracklet associations and false positive set which
minimize the cost globally is obtained by the Hungarian assignment
on this cost matrix.

2.3.2. Detection inference given tracks

To obtain the optimal set of detections (10) given the tracks, we first
observe that for all detections, if diinter(k,j)

= dik,j then di+1
k,j =

dik,j . This implies the detections in the previous iteration which are
not false positives are preserved in the next iteration. So, only the
missing detections have to be optimally chosen from Dall. Now, we
intent to optimally map the interpolated detections (from the missing
positions in the tracks) to detections in Dall. This can be optimized
by constructing a cost matrix Cf at every frame f with the missing
detections as the rows and the elements in Dall \ Di in frame f as
the columns. Let the detection interpolation corresponding to the ith

row be dfri and the detection in Dall corresponding to jth column
be dfcj , now the cost is written as

Cf (i, j) =
‖dfri − d

fc
i ‖

2

σ2
(11)

Subsequently, we use the Hungarian algorithm on Cf to map the
interpolated detections to elements in Dall at every frame. Thus, we
obtain the optimal set of missing detections which minimizes (10).

2The detection responses we typically work with are the center co-
ordinates of the detections and therefore assuming the covariance matrix as
σ2I is justified.

2.3.3. Joint track and detection inference
One of the possible ways to optimize (1) is an EM style approach
to iteratively infer the detections given tracks (Section 2.3.2) and
tracks given detections (Section 2.3.1). But, this does not guarantee
the cost function in (1) is globally optimized. Our aim is to propose
an inference framework which jointly optimizes both the tracks and
detections and hence globally optimizes (1).

For our algorithm to work, we have an additional constraint on
interpolation function (to obtain Di

(inter,k)), that it only depends on
the head and tail tracklet between which it is present. As noted ear-
lier, [3] solves the tracklet association problem by a Hungarian algo-
rithm over all possible tracklet associations. Under this interpolation
assumption, the modified tracklet association cost which optimizes
(3) can be obtained as the sum of the tracklet association cost in
Section 2.3.1 and the missing detection cost similar to Section 2.3.2.
We note that the missing detections cost is affiliated to every possi-
ble tracklet pair association and is denoted by a n× n matrix CDet

where n is the total number of tracklets.
Here, we do not have the track information as in Section 2.3.2.

For every missing detection in frame f (while associating any two
tracklets), we initially tentatively assign it to the nearest detection in
Dall \Di in f , where every interpolated detection incurs a cost as in
(11). Let this interpolated detection cost across any two tracklets T ip
and T iq be denoted by CDet(p, q) which is the sum of all the inter-
polation costs when associating the tracklets. Let the total number
of tracklets be n. The overall cost to associate any two tracklets is
a sum of the tracklet association cost and overall interpolated detec-
tions cost. Therefore, the joint cost matrix CJ of dimensions n× n
to associate any two tracklets T ip and T iq is expressed as

CJ(p, q) =


lnP−(T ip) if p = q ≤ n
lnPlink(T iq |T ip) + 0.5[lnP+(T

i
p) + lnP+(T

i
q)]

+CDet(p, q) if p, q ≤ n and p 6= q
−∞ otherwise

(12)
The optimal tracks are obtained by the Hungarian algorithm on

CJ which assigns every row to a unique column. If a tracklet is
assigned to itself, it is a false positive tracklet and will be removed
from the successive iterations. We also note that every tracklet pair
selected by the Hungarian also could pick a set of detections from
Dall which are the missing detections. This solution is optimal if
there are no missing detections common to different tracks. In case
such conflict exists, we use the track information and recompute the
detection assignment by solving a frame level Hungarian according
to Section 2.3.2. Subsequently we build a new CDet after resolv-
ing conflict. This is followed by updating CJ according to (12).
When this approach converges and no such conflict exists the solu-
tion obtained (Di+1,Si) globally optimizes the product of (7) and
(10) which is (1).

In the next iteration we use Di+1 after removing the false pos-
itive tracklets, to obtain (Di+2,Si+1). We also note that the over-
all cost in every iteration decreases in practice as we remove the
false positive tracklets and missing detections help in building longer
tracklets thereby reducing the number of tracklets and association
costs involved.

3. EXPERIMENTS

Dataset: Melanosomes are imaged by Bright-Field microscopy be-
cause of their dark pigment. Our datasets were obtained from mouse
retina. In our experiment we examined two sequences, Seq1 (∼120
melanosomes) and Seq2 (∼150 melanosomes) of 50 frames each.



Fig. 3. Our approach (bottom row) tracks better when some detections are missed compared to the baseline approach (top row). We show tracking results on
frames 2,14,21,24,25,37 for both the approaches. The missing detections in frames 21-24 causes incorrect association in the baseline approach

The melanosomes predominantly had an ellipital shape and move in
rapid bursts.The dataset also contained severe background clutter.

3.1. Implementation details
Our aim is to track the melanosomes in the image sequences. Each
melanosome is detected by a elliptical template based detector at
different angles. An example detection to initialize the tracking D0

and Dall is shown in Figure 2. We use the ellipse center coordinates
to indicate the detections as the angles are not always reliable.

Tracklet Construction: After the detections, conservative
tracklets are obtained similar to [3] by associations over succes-
sive frames. Here, we first define linkage between detections (di)
and (dj) in successive frames using affinity based on ellipse centers,

A(di, dj) = e−
||di−dj ||

2

t . To prevent unsafe tracklets, we associate
only if the affinity between a pair of detections is significantly higher
than other conflicting pairs.

Track and Detection Estimation parameters: We associate
pairs of tracklets (Tp, Tq) to obtain CJ(p, q) and our associations
are valid only if the tail (end frame) of tracklet Tp is greater than
the head (start frame) of tracklet Tq . The tracklet linkage probabil-
ity across these two tracklets Plink(Tq|Tp) is defined as a product
of two terms, motion Pm(Tq|Tp) and time, Ptime(Tq|Tp). Here,
the motion term uses a linear model to predict the position of the
head of the tracklet Tq from the tail of Tp. This prediction error
(e) is used to model the motion affinity as gaussian distribution,
P (Tq|Tp) ∼ N (0, σ2

eI2×2)|e. To model Ptime(Tq|Tp) we calcu-
late the number of frames between the two tracklets (nt) (tail of Tp
and head of Tq). If nt < n0, Ptime(Tq|Tp) = λe−λnt , otherwise it
is 0. In our experiments we set σ2

e = 12, λ = 5. The only parameter
in the detection estimation part is σ = 5 in (11).

3.2. Results
We test our joint detection and tracking approach on two sequences,
Seq1 (∼120 melanosomes) and Seq2 (∼150 melanosomes) of 50
frames each. We have the ground truth (center positions) for 10
prominently moving melanosomes in each sequence. We compare
our joint detection and tracking approach to the baseline approach
[3] which only infers tracks from the detections. In [3] the missing
detections are interpolated only using the track information. Our
approach outperforms the baseline approach [3] as shown in Fig-
ure 4 where the errors in individual melanosomes are highlighted.
Also, Figure 3 visually shows instances where the baseline approach
can fail when some detections are missed. However, our approach
jointly identifies the missing detections and tracks and therefore
achieves better performance.
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4. CONCLUSION
In this paper we proposed a probabilistic framework for simultane-
ous detection and tracking of multiple objects. This approach jointly
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Fig. 4. Comparison of the root mean square error of our algorithm with the
baseline approach of both Sequence1 (left) and Sequence2 (right).

optimizes for the detections and tracks in every iteration. We obtain
promising results on melanosome tracking problem. Our algorithm
is fast and it converges in about 26 seconds on a 2.4 GHz machine to
track about 120 objects simultaneously after the detections are ob-
tained in all frames. We outperform the baseline method in [3] which
only optimizes the track associations given the detections.
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