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ABSTRACT

We present a simple framework for image enhancement using
local image information. The main idea is to divide the image
into small tiles and individually enhance each of these tiles.
Enhanced tiles are then mosaicked back together. Our ap-
proach is presented for enhancement of fluorescent microscopy
images and demonstrates better local contrast preservation
and saturation reduction in comparison with traditional global
approaches (histogram stretching, equalization or gamma cor-
rection).

1. INTRODUCTION

The dynamic range of modern systems employed for bio-
medical imagery is usually higher than the dynamic range of
standard screen display devices used. This discrepancy leads
to the problem in the tone mapping from the acquired high
dynamic range (HDR) into the lower dynamic range (LDR)
of print or screen. The usual approach is to linearly map in-
tensity values into the new dynamic range. In confocal mi-
croscopy problems in tone mapping arise when there are ar-
eas with different fluorescent responses and certain regions
might not be visible or suffer from a severe loss of contrast
as shown in Fig. 1. Another problem is uneven illumination
which is very common in light microscopy. Different solu-
tions for these problems were proposed and can be classified
into two groups: (1) global - spatially invariant mappings, and
(2) local - spatially variant operators [1].

Several commonly used global mappings such as histogram
equalization usually result in loss of local contrast and over-
saturation. Spatially variant operators define regions that are
independently enhanced and their quality depends mostly on
region outlining.

Our method combines both these approaches by applying
mapping on small portions of the image (tiles). The main idea
is to divide the image into overlapping tiles and individually
enhance each one of them. Enhanced tiles are then mosaicked
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Fig. 1. Fluorescent confocal image of cat retina stained with
TOPRO, regions in a) and b) are independently enhanced.

back together using multi resolution spline technique [2]. Us-
ing our framework different tasks can be achieved, such as:
dynamic range compression, uneven illumination correction
and automatic vignetting (light fall off) correction.

This paper is structured as follows: first we give an overview
of previous research in section 2. The the description of the
tile-based framework is presented in section 3. In section 4
we describe the contrast enhancement algorithm. Section 5
shows experimental results and we conclude in section 6.

2. BACKGROUND WORK

In this section the overview of previously developed global
and local methods is presented. The most naive global map-
ping linearly normalizes image values into the output device’s
dynamic range preserving global relative contrast. This can
produce regions that are too dark or too bright and may result
in a loss of local contrast. Other commonly used global map-
pings include histogram stretching, gamma correction and his-
togram equalization. These methods are usually simple and
computationally efficient by using look-up-tables. However,
their fundamental drawback is over-saturation.

Spatially variant operators, on the other hand, preserve
local information by creating separate mappings for each par-
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Fig. 2. Multi-resolution spline process, both laplacians are
splined and recomposed into blended image.

ticular pixel resulting in a possibility to map two pixels with
the same intensities to a different output value. At the same
time, two different intensities could be mapped to the same
output value. Many methods were inspired by physical vision
model called Retinex [3], nevertheless, the main difference
is in how to delimit local regions that are being adjusted in-
dependently. Proposed solutions include the use of level-set
methods [4], magnitudes of the gradients in the image [1] and
windows around each image pixel [5] among others. In the
last case each pixel is treated as a separate region.

The proposed method combines both approaches by not
defining specific regions but instead using small rectangular
portions of the image that are adjusted independently.

3. TILE-BASED FRAMEWORK

Our method mixes both previous approaches applying inde-
pendent mapping for small portions of the image (tiles). The
main idea is to divide the image into overlapping tiles and in-
dividually enhance each one of them. Enhanced tiles are then
mosaicked back together using multi resolution spline tech-
nique [2]. The tile size is an important issue and should be
comparable in size with the smallest object to be preserved lo-
cally. The minimum size for the tile is constrained by the use
of multi resolution spline technique so that the image pyramid
would still make sense. We use tiles of size 64x64 pixels.

The algorithm is divided into two steps. In the first step,
the adjustment parameters are acquired for each tile, slid-
ing the tile-size window over the image with some certain
“step”. This “step” parameter is defined a priori and controls
the amount of overlap which is usually half or quarter of the
tile size. In the case that step parameter is equal to 1, our
approach becomes a pixel-by-pixel one [5]. To guard against
possible noise and enforce smoothness it is suggested to refine
the map of adjustment parameters using simple filters such as
median, gaussian or thresholding.

In the second step we render the resultant image by adjust-
ing all tiles and mosaicking consecutive tiles together. This
process is done by rows where each row is constructed by
consecutively blending neighboring tiles. In order to blend
tiles we opt for multi-resolution spline technique [2] known
to provide smooth blending yet preserving features located in
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Fig. 3. Transition zones indicated by dashed lines (a) equidis-
tant and (b) error minimization.

the overlapping area.
During the mosaicking procedure, the images to be blended

are first decomposed into a multi-resolution laplacian pyra-
mid (Fig. 2). Both pyramids are then spliced level by level,
with each level being spliced using a weighted average over
a transition zone. Then the blended image is obtained by re-
versely composing the spliced laplacian pyramid. Therefore
the spline is matched to the scale of features and images are
blended gradually without blurring finer image details.

The averaging transition zone can be easily defined as a
line equidistant to borders of both tiles (Fig. 3(a)) represented
by a dashed line. Another more sophisticated approach is
to define the transition zone by minimizing the error in the
overlapping area (Fig. 3(b)). The approximate solution to this
minimization problem is recently given by a computationally
efficient graph-cut algorithm [6]. We will define the graph
where each node correspond to a pixel in the overlapping area
between the two tilest1ov andt2ov. The weight of the edge
(p,q), where p and q are adjacent nodes, is defined by a cost
functionW (p, q) given by:

W (p, q) =
‖E(p)‖ + ‖E(q)‖ + Do(p)
‖Gt1(p, q) + Gt2(p, q)‖

Where the error is defined asE(p) = t1ov(p)− t2ov(p), G is
a gradient defined as:Gt(p, q) = tov(p) − tov(q) andDo(p)
is a minimum distance from pixel p to the overlap border.
This cost function provides splicing that avoids high error ar-
eas, uniform areas, overlapping area borders and flows around
high gradient areas. Source and sink links are also initialized
for left-most and right-most border pixels of overlapping area.

4. CONTRAST ENHANCEMENT ALGORITHM

We will now demonstrate the use of the proposed framework
for the local contrast enhancement (HDR compression) prob-
lem. The dynamic range of each tile needs to be preserved
while minimizing the global dynamic range of the whole im-
age. A straightforward approach is to stretch the histogram
of each tile in order to fit it into the desired dynamic range.
The adjustment parameter maps are then constructed by ex-
tracting max/min values for each tile. This simple solution
has an important drawback that these max/min maps mani-
fest a block-like nature. In fact, they essentially are outputs
of dilation/erosion operators with kernel size equal to the tile
size. This can represent problems over relatively uniform ar-
eas with high spikes. The tile incorporating a spike will not



s

a

s

a

t1 t2 t3a b
Fig. 4. Exemplar intensity profiles, (a) original and (b) ad-
justed for tiles t1, t2 and t3. Tiles t1 and t3 are enhanced
although tile t2 remains the same.
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Fig. 5. Maps of adjustment parameters, original on the left
and filtered (median and gaussian) on the right.

be adjusted similarly to its neighboring tiles and could lead to
a different intensity patch in the resultant image.

To overcome this problem, we obtain the adjustment pa-
rameter for each tile using its average intensity, the amount of
enhancement is then defined by the ratio of desired-average-
intensity over the tile-average-intensityadjtile = avgdes

avgtile
. The

adjustment parameter map for the whole image is then con-
structed and each tileT is enhanced as follows:

Ttile =
{

Ttile, if adjtile > 1
Ttile · adjtile, else

To clarify this step the adjustment is demonstrated using the
intensity profiles of the signal in Fig. 4. The curve marked
as “s” represents a signal and dotted line “a” is a value of
desired-average-intensity. The Fig. 4(b) shows that the sig-
nal contained in the tiles t1 and t3 is enhanced although tile
t2 remains the same. Abrupt discontinuities in consecutive
tiles left after the enhancement step are then removed by the
multi-resolution spline technique. In order to filter out noise
and obtain a smooth output image, we first up-threshold the
adjustment parameter map by the values that could only be
produced by tiles containing no information. Then, a me-
dian filter followed by a gaussian filter are applied to remove
some imminent noise and enforce smoothness of adjustment
parameter map. A not-processed and a processed adjustment
parameter maps are shown in Fig. 5. These maps were gener-
ated to enhance the image in Fig. 8.

The desired-average-intensity parameter provides flexibil-
ity to tailor the method for a particular user’s taste. Four pos-
sible values of this parameter are proposed: Low, Medium,
High and Extra High. The “medium” value is defined as aver-
age intensity of the image. Other values are obtained from the
sorted list of tile’s average intensities. The “extra high” is the

highest average intensity from this list. In our implementation
“high” value is 30% below the highest average and “low” is
15% below the average position. Moreover, the use of tiles
allow interactive adjustment of desired-average-intensity. In
this case only the tiles with changed adjustment parameters
are enhanced and mosaicked back into the final output.

There are two known drawbacks of the proposed algo-
rithm. If objects are smaller than the tile size, they might
not be enhanced optimally. Thus the choice of the tile size
is of importance for optimal performance. Secondly, using
equidistant transition zones to spline tiles may result in visi-
ble halos between two regions of highly different intensities.

5. EXAMPLES

The proposed algorithm’s performance is demonstrated in fol-
lowing examples that show original and processed images.
Confocal images of cat retina labeled with antibody to cal-
retinin are shown in Fig. 6 (histogram equalized image is
given for reference) and in Fig. 7. Cross-section stained with
TOPRO is shown in Fig. 8. Fig. 9 shows fluorescent image
of microtubules, enhancement is performed in original 12bits
data and then linearly normalized into 8bits.

6. CONCLUSION

A tile-based contrast enhancement method is presented and its
performance is demonstrated on different microscopy images.
The authors carried out extensive experiments and obtained
promising results for both computational efficiency and en-
hancement quality.Acknowledgments: Authors would like
to thank Dr. Mark Verardo, Prof. Steven Fisher, Dr. Geof-
frey Lewis, Prof. Stuart Feinstein, Kenneth Linberg, Austin
Peck and Kallen Betts from Neuroscience Research Institute
for generously providing image data.
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(a) Original image

(b) Local enhancement

(c) Histogram equalization

Fig. 6. A laser scanning confocal image of a whole mounted
7day detached cat retina stained with an anti-neurofilament
antibody. Ganglion cell bodies and their processes are la-
beled.

(a) Original image (b) Local enhancement

Fig. 7. Confocal image of cross-section cat retina labeled with
antibody to calretinin.

(a) Original image

(b) Local enhancement

Fig. 8. A single plane image from a laser scanning confocal
microscope of a 3 day detached cat retina section stained with
TOPRO, a nuclear dye.

(a) Original image (b) Local enhancement

Fig. 9. Fluorescent image of microtubules.


