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ABSTRACT

This paper describes ongoing work on creating a benchmark-
ing and validation dataset for biological image segmentation.
While the primary target is biological images, we believe that
the dataset would be of help to researchers working in im-
age segmentation and tracking in general. The motivation for
creating this resource comes from the observation that while
there are a large number of effective segmentation methods
available in the research literature, it is difficult for the ap-
plication scientists to make an informed choice as to what
methods would work for her particular problem. No one sin-
gle tool exists that is effective on a diverse set of application
contexts and different methods have their own strengths and
limitations. We describe below three different classes of data,
ranging in scale from subcellular to cellular to tissue level
images, each of which pose their own set of challenges to im-
age analysis. Of particular value to the image processing re-
searchers is that the data comes with associated ground truth
information that can be used to evaluate the effectiveness of
different methods. The analysis and evaluation are also in-
tegrated into a database framework that is available online at
http://dough.ece.ucsb.edu.

Index Terms— Standardized dataset, biological images,
segmentation evaluation, ground truth, subcell, cell, tissue.

1. INTRODUCTION

The collection of a standard dataset is a critical first step in
evaluating and benchmarking new technologies. This is par-
ticularly important in image processing methods that have a
wide range of applications ranging from biology to remote
sensing. Once the benchmark is set up, the current state-
of-the-art image analysis methods can be tested with evalu-
ation measures appropriate to the specific application. This is
the main motivation in building the UCSB benchmark dataset
for bioimaging application. In particular, we describe in the
following datasets at different scales with carefully gener-
ated manual ground truths that could be of significant help to
not only researchers in biology who have the need for image
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Fig. 1. Example dataset provided in the benchmark.

segmentation/tracking tools but also to the image processing
community in general.

In recent years, there have been a few successful bench-
marking efforts in image analysis and computer vision,
such as the face recognition dataset [1], Berkeley seg-
mentation dataset for natural images [2], macrobiologi-
cal structures such as mammorgams and MRI images [3],
and the database collected by the National Institutes of
Health1. Recently, there have been some efforts in creat-
ing microbiological image benchmark such as the cell cen-
ter database (http://www.ccdb.ucsd.edu) and mouse retina
database (http://www.cepko.med.harvard.edu). However,
these benchmark do not yet include different scale data,
ground truth and/or image analysis tools. This was high-
lighted at a recent panel involving benchmarking and valida-
tion of computer vision methods in biology 2.

In this work, we describe a benchmark for biological
images. The datasets include collections with well defined
ground truth. We provide representative datasets of micro-
biological structures whose scales range from a subcellular
level (nm) to a tissue level (µm). The collections are obtained
through a collaborations with domain scientists in molecular,
cellular and developmental biology, and highlight some of the
current challenges at these varying spatial scales for image
segmentation (Fig. 1).

1http://www.nibib.nih.gov/Research/Resources/ImageClinData.
2http://www.ece.ucsb.edu/bioimage/workshop2008/program.html



Table 1. Dataset and ground truth in the benchmark.
Type Microtubule Cell Nuclei Retina

# images 9 stacks 888 images 343 images
size 512×600 512×512 300×200

(pixel) (also 768×512) (also 768×512)
format .tiff .stk .tiff .bmp .tiff

Rod photoreceptors (anti-rod opsin; red)
channels Rhodamine TO-PRO Microglia (isolectin B4; green)

Muller cells (anti-GFAP; blue)
condition Taxol/Docetaxel treated normal normal, 1-day, 3-day

3-day detached 7-day, 28-day detached
species human (HUVEC) cat cat

ground truth 1374 traces of microtubules manual cell count (3 experts) 91 layer masks
(4 experts) 40 ONL masks 108 boundary masks

2. DATASET, GROUND TRUTH, ANALYSIS TOOLS

Benchmark images are acquired through two of the most
common microscopic imaging techniques: transmitted light
microscopy and confocal laser scanning microscopy. The
collected images are an effort to standardize the dataset for
microbiological structures and present common challenges
in segmenting them. The challenges to segmentation in-
clude [4]: inhomogeneous illumination across visual fields,
occlusion of objects, variation in object shape, size and ori-
entation and considerable variation of the signal intensity of
objects from the same class. Table 1 summarizes the image
collections at each of these varying spatial resolutions.

The benchmark also includes the analysis tools that are
designed to obtain different quantitative measures from the
dataset such as microtubule tracing, cell segmentation, and
retinal layer segmentation.

Additionally, in the proposed benchmark, ground truth is
manually created by experts from part of each dataset. In the
following, we explain the dataset, ground truth and image
analysis tools available in the benchmark at different scales
(see Table 1). In Sec. 3, we describe evaluation methods
provided to assess the performance of the integrated analysis
tools.

2.1. Subcellular level

Microtubules are conveyer belts inside the cells. They move
vesicles, granules, organelles like mitochondria, and chro-
mosomes via special attachment proteins. Structurally, they
are linear polymers of tubulin which is a globular protein.
Researchers believe microtubules play a important role in
the study of Alzheimer and in certain cancers. To obtain a
quantitative description of behavior under different experi-
mental conditions, researchers track individual microtubule
traces manually as shown in red in Fig.2. We focus here on
microtubule time sequence images obtained by transmitted
light microscopes. The challenges at this scale and with this
acquisition modality are typical for in-vivo cell imaging: high
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Fig. 2. Microtubule tracing examples. The blue traces are
automatically obtained by the algorithm proposed in [5] and
the red line are ground truth traces.

clutter, gaps, and low signal to noise ratio.
The tracking of the microtubule free ends allows biolo-

gists to compute the growth and shortening statistics (of the
microtubules) which in turn are related to the presence of key
proteins such Tau and its interaction with various drugs. Un-
derstanding the dynamics of the microtubules under differ-
ent experimental conditions is important in the study of sev-
eral neuro-degenerative diseases (e.g., Alzheimer’s) as well as
cancer. The manual measurements of these microtubules are
very labor intensive and time consuming. Due to the limita-
tions in biological sample preparation and fluorescence imag-
ing, typical images in live cell studies exhibit severe noise
and considerable clutter and automatic microtubule tracing
becomes a hard task. Our benchmark includes an automatic
method [5] for extracting curvilinear structures from live cell
fluorescence images. The data also include ground truth for
microtubule tip location and microtubule bodies that could be
useful for evaluating image segmentation and tracking meth-
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Fig. 3. Retinal layers. Confocal microscopy of a vertical sec-
tion through a cat retina. Each layer has a different structure
which consists of the group of cell bodies or synaptic termi-
nal. The photoreceptor cell bodies comprise the ONL. Left
top image shows the ONL at higher magnification (boxed area
in right image).

ods.

2.2. Cell level

Challenges at the cellular level include large variations in cell
shape and staining, intensity variation within and across the
images, and clustered objects. In biology, cell addition and
cell death are important occurrences in the study of diseases
or injuries. Therefore, one of the common tasks is to count the
number of cells and nuclei, particularly in histological sec-
tions, and characterize various cell attributes such as shape,
size, smoothness of the boundary, etc. For example, in reti-
nal images, the number of photoreceptor nuclei in the outer
nuclear layer (ONL), depicted in Fig.3, is one of the impor-
tant measurements of the death and degeneration of the retina.
Our retinal dataset consists of 40 confocal images of normal
and 3-day detached feline retinas (20 normal and 20 3-day
detached). The detached retinal samples are obtained by sur-
gically detaching a retina and leaving the animal in the de-
tached retinal state for one to three days before imaging the
tissue samples. Images were collected using a laser scanning
confocal microscope from tissue sections. For each image,
the ground truth, available in the benchmark, consists of an
ONL binary mask and the corresponding manually cell count
in ONL by three different experts. A nucleus detector based
on a Laplacian of Gaussian filter is integrated into the bench-
mark (for more detail see [6]).

In addition, there are about 50 histopathology images
used in breast cancer cell detection with associated ground
truth data available. There are, however, no benchmark meth-
ods currently available for performance evaluation on these
histopathology images.

2.3. Tissue level

Confocal microscope images of retinas taken during detach-
ment experiments are critical components for understanding
the structural and cellular changes of a retina in response to
disease and injury. As the first step of any other analysis (e.g.
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Fig. 4. Example of layer segmentation results compared
to ground truth for feline retinal images normal condition.
(a) ONL segmentation: white boundaries detected by [7]’s
method compared to black one (ground truth); (b) layer seg-
mentation: blue boundaries detected by [8]’s method com-
pared to red one (ground truth).

before cell counting), it is crucial to have a reliable map of the
retinal layers. Hundreds of retinal images and layer ground
truth are part of the benchmark (see Tab.1). Four major layers
of the retina are segmented manually: the ganglion cell layer
(GCL), the inner nuclear layer (INL), the outer nuclear layer
(ONL), and the outer segments (OS).

Two retinal layer segmentation algorithms are integrated
in the benchmark. One is a variational segmentation ap-
proaches based on pixel pairwise similarities [7]. This method
exploits prior information (reference image) and a dissimilar-
ity measure between the pixels of the reference and the pixels
of the image that has to be segmented. The other segmenta-
tion algorithm integrated in the benchmark uses parametric
active contour to detect the boundaries between layers [8].
An example of the segmentation results and ground truth are
respectively shown in Fig.4 (a) and (b).

3. EVALUATION

The tasks associated with the above data analysis are very la-
bor intensive. The benchmark segmentation/tracking methods
associated with these data are an initial attempt at automating
some of these manual tasks. The ground truth data provide a
critical reference point to evaluate these automated methods.
In some cases, for e.g.-microtubule tracing and tracking, au-
tomation not only helps in performing the original computa-
tions efficiently but also facilitates quantitative measurements
( full body tracking of the microtubules–a task that is very
difficult, if not impossible, to do manually) that are otherwise
not possible. In order for the scientists to use such methods,
however, one needs to provide evaluation metrics that would
make a reasonable comparison between the automated results
and the ”ground truth” data obtained manually. Such perfor-
mance metrics would also enable comparison of different im-
age processing methods on standardized datasets.

3.1. Microtubule (MT) tracing

We propose the following three measurements to evaluate MT
tracing. 1) MT tip distance: Tip distance error is the Eu-



clidean distance between the ground truth tip to the trace tip
(i.e. the tip found by the algorithm). 2) MT trace distance:
Trace distance error is the average distance from all the points
on the ground truth to all the points on the trace. 3) MT length
errors: Length difference is simply the difference between the
length of the ground truth and the trace. Acceptable threshold
for these error measures are set by biologists and tracing al-
gorithm failures occur when: 1) tip distance larger than 0.792
µm; 2) length difference is larger than 0.792 µm ; 3) trace
distance (mean) is larger than 0.396 µm;

When we run the integrated tracing algorithm on the mi-
crotubule dataset, the failures are on average 0.09%. Exam-
ples of failure and no failure are shown in Fig. 2.

3.2. Cell/nucleus detection

A simple evaluation method is integrated to evaluate the ap-
proaches that count cells, nuclei, or other objects in sectioned
materials. The error, E, in cell counting is measured by the
percentage error between manual counts (obtained from three
experts) and the result of a nucleus detector as follows:

E =
1
N

|ND −GT |
GT

where N is the number of images in the dataset, ND and GT
is the number of nuclei detected by the nucleus detector and
by the average of manual counting, respectively. When the
nucleus detector is applied on this dataset, it correctly counts
nuclei within the ONL with an average error 3.52%.

3.3. Retinal layer segmentation

Both common and new evaluation measures are integrated
to test the performance of automatic methods for layer and
boundary retinal segmentation: 1) distancelayer = distance
between ground truth and segmented boundaries for each
layer obtained using Fast Marching; 2) Precision = the ratio
between true positive and automatically detected pixels; 3)
Recall (sensitivity) = the ratio between true positive pixels
and ground truth 4) 1-sensitivity = the fraction of false posi-
tives; 5) F measure= harmonic mean between precision and
recall for each layer; 6) weighted F measure = it scores F-
measure layers in proportion to their percentage of the total
area and sum them all up in order to weight more segmenta-
tion errors in larger layers. For example, when applied on the
dataset the method [7] gives a F-measure around 0.88%.

4. DISCUSSION AND CONCLUSION

The proposed benchmark provides a unique, publicly avail-
able, datasets as well as image analysis tools and evaluation
methods for bioimages. The benchmark will help researchers
to validate, test and improve their algorithms, and provide bi-
ologists a guidance of algorithms’ limitations and capabili-
ties. The benchmark is integrated into the Bisque bioimage

database infrastructure (http://dough.ece.ucsb.edu) at UCSB
and all the tools described above can be applied on the pro-
posed dataset. Users are encouraged to upload their bioim-
ages and ground truth, test the analysis tools and perform the
evaluation. Moreover, new (user contributed) segmentation
algorithms and evaluation methods can be integrated upon re-
quest. Dataset and ground truth can be downloaded from our
website http://www.bioimage.ucsb.edu.
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