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Abstract

Information technology research has played a significant
role in the high-throughput acquisition and analysis of bio-
logical information. The tremendous amount of information
gathered from genomics in the past decade is being com-
plemented by knowledge from comprehensive, systematic
studies of the properties and behaviors of all proteins and
other biomolecules. Understanding complex systems such
as the nervous system requires the high-resolution imag-
ing of molecules and cells and the analysis of these im-
ages in order to understand how distribution patterns (e.g.,
the localization of specific neuron types within a region of
the central nervous system, or the localization of molecules
at the subcellular level) change in response to stress, in-
jury, aging, and disease. We discuss two kinds of bioimage
data: retinal images and microtubule images. We argue that
supporting effective access to them requires new database
techniques for description of probabilistic and interpreted
data, and analysis of spatial and temporal information. The
developed techniques are being implemented in a publicly
available bioimage database.

1. Introduction

The understanding of complex cellular behavior and sys-
tems is critically enhanced by the capture and analysis of
biological images. Significant progress in our understand-
ing of biological events can be made by applying advances
in information technologies, such as image processing, pat-
tern recognition, and databases, to the enormous volume of
such images that are being generated.

Bioimage databases obtain their semantics and utility
through tools that interpret them. At a primitive level, we
have tools that detect edges, segments and contours. Then,
we have tools that assign likely labels (from a domain-
specific ontology) to these extracted objects. At the next
level, we have tools that infer group-specific characteristics

(e.g., a retinal layer consisting of cells of a specific type,
or the pattern of neurons entering a collection of cells). Fi-
nally, we have tools that gather spatio-temporal attributes
from a collection of images and relate them to higher-level
models of change (e.g., a disease or response to stimuli).
The multitude of such tools that interpret the observed data
as well as other interpretations results in a complex collec-
tion of values and objects. Supporting the above set of tasks
calls for a database design that is flexible, can support mul-
tiple layers of inherently probabilistic interpreted informa-
tion, and supports a collection of analysis tools.

Typical queries on bioimages are posed using a combi-
nation of attribute-based descriptors (querying of metadata)
and content-based descriptors (querying of raw and pro-
cessed data). Typically, the raw images are analyzed, and
visual descriptions extracted (manually or automatically).
This analysis can lead to a multifold increase in the amount
of storage and complexity. Clearly, the amount of infor-
mation to be maintained and accessed in such databases is
complex and enormous. Based on the degree of seman-
tics and interpretation, queries in image databases can be
divided into a number of types. At the basic level, we
have queries that use only the experimental conditions and
other tags easily associated with the images. Next, we have
queries on the spatial features extracted from the images.
For example, images with a specified subcellular localiza-
tion pattern can be found by extracting texture features and
searching using a suitable distance metric. Then, we have
queries based on high-level semantic interpretations, such
as cell types, that are extracted from the images manually
or automatically. Finally, we have queries that are based on
spatio-temporal changes of features and high-level objects
such as protein localization.

The rest of the paper is organized as follows. Section 2
discusses the biological background of retinal and micro-
tubule images, the two main components of our bioimage
database. Section 3 discusses distance metrics and index
structures useful for spatial analysis of bioimages. Section
4 discusses probabilistic data and queries. Section 5 dis-
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cusses the temporal analysis of bioimages. We end with
some concluding remarks in Section 6.

2. Retinal and microtubule image datasets
The vertebrate retina has a layered structure in which

each layer consists of well-defined cell types. There are five
kinds of neurons: photoreceptors (rods and cones), horizon-
tal cells, bipolar cells, amacrine cells, and ganglion cells.
The primary flow of the electrical signals generated by the
photoreceptors in response to light stimuli is from the pho-
toreceptors to the bipolar cells to the ganglion cells, and fi-
nally through the optic nerve into the rest of the brain. Hori-
zontal and amacrine cells provide lateral connections across
the retina. Non-neurons such as Müller cells, astrocytes,
and microglia are also present in the retina. The retina can
be divided into a number of layers: retinal pigment epithe-
lium (RPE), outer segment (OS), inner segment (IS), outer
nuclear layer (ONL), outer plexiform layer (OPL), inner nu-
clear layer (INL), inner plexiform layer (IPL), and ganglion
cell layer (GCL).

Under injury, many proteins show remarkable variabil-
ity in their spatio-temporal distribution because of changes
both to the morphology of the retina and to the distribution
of proteins in each cell. These distributions are observed
by coupling fluorophores to protein-binding antibodies and
other labels. Sections of the retina are then observed un-
der a confocal, laser-scanning microscope. In Figure 1, we
see that in response to detachment, the protein rhodopsin
redistributes so as to label not only the outer segments of
the rods, as in Figure 1(a), but also the rod cell bodies (in
the outer nuclear layer), as in Figure 1(b) [5]. We also see
that the M̈uller cells, which express glial fibrillary acidic
protein, hypertrophy [4]. These images form the raw image
data for the ensuing spatio-temporal analysis.

Microtubules are long, hollow, unbranched protein struc-
tures found within cells. They are about 25 nm in diameter
and up to severalµm long. They are polymers of tubulin
and formed by assembly ofα andβ subunits. The micro-
tubules are part of the cytoskeleton, but in addition to struc-
tural support they are used in many other processes. They
are capable of growing and shrinking in order to generate
force, and there are also motor proteins that move along
the microtubule. Microtubules play a major role in cell di-
vision, where they attach to the chromosomes in order to
segregate them correctly.

Gain or loss of tubulin subunits from the (+) end can
change the length of a microtubule. Growth occurs by the
assembly of GTP-bound tubulins, and shrinking occurs by
the hydrolysis of GTP to GDP. The switch from growth to
shrinking is called acatastropheevent and the switch from
shrinking to growth is called arescueevent. The dynamic
equilibrium between these events changes under different
conditions such as drug concentrations. For example, the

(a) Normal (b) Detached for 28 days

Figure 1. Normal cat retinas labeled with
anti-rhodopsin (red), anti-glial fibrillary acidic
protein (anti-GFAP, green), and isolectin B4
(blue). Scale bars: 50 µm

drug taxol makes the microtubules more stable (reduces the
likelihood of shrinking), while Colchicine has the oppo-
site effect [2]. Microtubule dynamics is observed through
a stack of images taken at different time points. These form
the raw image data for microtubule behavior analysis.

3. Spatial analysis of bioimages

Supporting efficient access to the complex bioimage data
and metadata requires the design of appropriate distance
metrics and index structures. For many classes of images,
including retinal images, the spatial location of objects (e.g.,
layers, cells or parts of cells) in the image is important in
determining whether two images should be considered sim-
ilar. The earth mover’s distance (EMD), first proposed by
Werman et al. [11] and later applied to computer vision
problems by Peleg et al. [8], captures the spatial aspect of
the different features extracted from the images. The dis-
tance between two images measures both the distance in
the feature space and the spatial distance.

Though the EMD is theoretically attractive and is a better
distance function for images thanLp norms [9], it involves
solving a linear programming problem, which may take a
long time. For example, for 256-dimensional features ex-
tracted from images that are partitioned into 8× 12 tiles,
each EMD computation takes 27 s, so, a similarity search
on a database of 4,000 images can take almost 30 h to com-
plete!

We have proposed theLB-index, a multi-resolution ap-
proach to computing the EMD [6]. We formulate the EMD
in a new way that works directly with feature vectors of
any dimensionality without requiring the images to have the
same total “mass.” The formulation allows us to condense



Rows Columns Number Time Ratio of
of bins [s] distance to

actual distance
2 3 6 0.13 86%
4 6 24 0.58 93%
8 12 96 26.68 100%

Table 1. Average time to compute and aver-
age ratio to the actual distance between two
histograms as a function of histogram size
for 256-dimensional CSD feature vectors.

the representation of an image in feature space into progres-
sively coarser summaries. We have developed lower bounds
for the EMD. The lower bounds can be computed from
the summaries at various resolutions, and then applied to
the problem of similarity search (k-nearest-neighbor search
and range search) in an image database. Higher-level lower
bounds are less tight, but less expensive to compute.

For 256-dimensional Color Structure Descriptor
(CSD) [7], Table 1 gives the average running time for
different resolutions, as well as the average ratio of the
lower bound distance computed from a coarser resolution
to the actual distance. Using different levels of lower
bounds for sequential scans can speed up range queries and
k-NN queries by factors of 30–60 on a database of 3,932
cat retinal images. We also applied the lower bounds to
a variant of the M-tree [1] algorithms. This can lead to
a speedup of factors of 5–25 for range andk-NN queries
compared to the original M-tree algorithms.

4. Probabilistic data and queries

Probabilistic data are abundant in scientific databases:
Measurements have varying accuracy (numerical values,
spatial, or temporal extents), and computational methods
produce results of varying confidence. For example, a pro-
gram that identifies cells in fluorescent confocal retinal mi-
crographs may output a region of the image, and state that
the region is 45 % likely to be a horizontal cell body and
30 % likely to be an amacrine cell body. Managing and
querying probabilistic data is challenging. Relevant scien-
tific questions include schema design for modeling, stor-
ing and accessing probabilistic information, as well as sup-
port for different kinds of queries (top-k, range, similarity,
and join) and discovery (outlier detection, classification) on
such data.

If we have a model for the imprecision in images, an
imprecise value can be represented as a probability distri-
bution. Probability distributions can also summarize a pop-
ulation of exact measurements. As an example of the latter,
consider retinal micrographs. Much can be learned about
the effect on the retina of diseases and treatments by mea-

suring the thickness of these layers. In Figure 1(b), retinal
detachment has caused some of the photoreceptors to die.
As a result, the outer nuclear layer (ONL), which contains
photoreceptor cell bodies, has become thinner. The thick-
ness of the layer varies, however, so measuring it in just one
place is useless. Keeping only the mean of several measure-
ments is also insufficient, as the spread of the measurements
is important: Highly variable thickness is indicative of de-
generate retinas.

Whatever the source of the probability distribution, it
can be represented in different ways. Fitting the distribu-
tion to a parametric distribution such as a Gaussian makes
sense when the source of uncertainty is well understood.
In contrast, histograms have the advantage of being able to
represent arbitrary distributions without an a priori assump-
tion of what the distribution should look like. This is im-
portant because it supports data-driven research, in which
new hypotheses are generated by analysis of the wealth of
poorly understood measurements (raw data) in the database.
For instance, the distribution of a certain measurement may
appear Gaussian with a small amount of noise, but care-
ful analysis of measurements from a large number of im-
ages may reveal that some of the supposed noise is really a
systematic contribution from a previously unknown mecha-
nism. If the data were just fitted to a Gaussian, the mecha-
nism would elude discovery.

Groups of bins in a histogram can be merged hierar-
chically to yield a multi-tier histogram that can accelerate
database queries. Another possible way of summarizing
distributions is to take spatial locality into account. In this
case, one obtains a space-varying measure of a feature (e.g.,
layer thickness). These can again be obtained at varying
spatial resolutions.

When more than one feature is of interest, there are two
alternatives, depending on whether spatial variations in an
image need to be coordinated. When there is no need to
coordinate the feature distributions spatially, one can extract
independent histograms from an image and combine them
using range queries or NN-queries. When the variations
in space need to be coordinated, the distributions become
multi-variate, and storing and querying them becomes more
difficult.

Next, we present some examples of queries that can be
posed using the above probability distributions. Consider
the example of querying retinal images for understanding
layer thicknesses. A range query R(t, p) asks for all images
for which a particular layer is thicker thant units with a
probability at leastp. This query can be answered using a
hierarchical index structure of histograms: Raw image his-
tograms are stored at the leaves, histograms that are similar
are aggregated, and a subtree of leaf nodes is represented by
a min–max histogram storing the lower and the upper bound
values for each bin. A nearest-neighbor query NN(t, k) asks



for thek images that have the highest probability of being
the closest to a thickness oft units. This query is much
harder to answer: The thickness distributions of all images
have to be considered before we can decide thek nearest
images. An image with a distributionB dominatesanother
image with a distributionC if the expected distance ofB to
t is less than the expected distance ofC to t. (Alternative
formulations are also possible). This relationship defines a
partial order and the topk images in the partial order are
returned by the nearest neighbor query. Speedups are ob-
tained if approximate moments are computed using multi-
level histograms, and the approximate values are used to
prune the solution space. The most interesting query gives
an input distribution (or, an input image) and asks for the
best matches. To answer this query, we need to compare
the distance between two distributions. The EMD discussed
earlier is useful for such comparisons. It defines the metric
space for returning the best matches.

In all the above queries, questions of scale are an im-
portant factor when comparing images. Two images should
be normalized to the same scale (resolution) before we can
compare them. This information is available in the meta-
data associated with each image. Query algorithms must
also take into account that images are generally of different
size after normalization.

Other important queries, like “what is the typical thick-
ness distribution of the INL after the retina has been de-
tached for 28 days?” or “does a given treatment have any
effect on detached retinas?”, require images to be clustered
and classified by their distributions. Distance metrics such
as the EMD can be used along with existing data mining al-
gorithms. Another possibility is to represent a distribution
as a mixture of primitive distributions (such as Gaussian),
and to represent a class of distributions by a set of appropri-
ate parameters.

Because of probabilistic data, developing a schema for
our image database has proven to be more difficult than ex-
pected. The parts of the schema that store the raw images,
the details for the acquisition process, and simple image
features build on previous systems, such as the Open Mi-
croscopy Environment (OME) [10]. Our contributions per-
tain to the part of the schema that stores information inter-
preted from the images by image analysis methods. This in-
formation differs from simple image features by (1) having
semantic (biological) meaning and (2) being probabilistic
in nature. Examples include a count of bipolar cell bodies,
and the thickness of the inner nuclear layer of the retina.

The semantic information also differs from simple fea-
tures in another, crucial way: It is necessary to track its lin-
eage. Whereas simple image features are well-defined and
can only be computed correctly in one way, semantic infor-
mation can have many different origins, including manual
entry and analysis methods of varying reliability.
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Figure 2. Example life-history plots of micro-
tubules. The x-axis shows time in seconds
and the y-axis shows length of the micro-
tubules in µm. Three individual microtubules
are shown.

Some semantic information, such as the count of bipolar
cell bodies in the outer nuclear layer, are simply modeled
as univariate probability distributions. Whereas there are
many open questions about how to index and query such
distributions, they are fairly simple from the perspective of
designing a schema. This is not the case when it comes to
modeling the spatial locations and extents of objects identi-
fied in the image. It is not clear how to model, for instance,
an axon, a cell body, or a layer of cells.

5. Understanding temporal behavior
Bioimages can be captured at different time instants to

understand the temporal processes behind a disease or be-
havior. Two such examples are retinal images recorded af-
ter different periods of retinal reattachment and microtubule
behavior under different conditions. In this section, we
summarize a temporal study of microtubule behavior.

Microtubules in a cell change their behavior of growth
and shortening under different drug injections and different
drug concentrations. The dynamic behavior of microtubules
is an extremely important biological process. For exam-
ple, the dysfunction of the microtubule-associated protein
tau has been correlated with a variety of neurodegenera-
tive diseases, including Alzheimer disease, fronto-temporal
dementia with Parkinsonism associated with chromosome
17 (FTDP-17), Pick disease, and progressive supranuclear
palsy [3].

To ascertain the growth and shortening behaviors under
different conditions, biologists record videos of the micro-
tubules both in vivo and in vitro and track individual micro-



Cluster Conditions

Buffer 3R tau 4R tau

Cluster 1 17 10 -
Cluster 2 - 12 4
Cluster 3 - - 18

Table 2. The distribution of microtubules in
the three clusters.

Cluster 1 Cluster 2 Cluster 3

Cluster 1 0.00 40.70 50.00
Cluster 2 0.00 37.15
Cluster 3 0.00

Table 3. The inter-cluster distances. “Buffer”
is closer to “3R tau” than to “4R tau.”

tubules. The length of a microtubule versus the time is then
plotted as a “life-history” plot. Figure 2 shows three such
life-history plots of microtubules.

Each life-history plot is a time series, so there is a collec-
tion of such time series for each condition. We need to un-
derstand the patterns within a collection, and also how dif-
ferent collections relate to one another. Such analysis can be
improved by data transformation (such as Fourier, wavelet,
or discrete cosine transform). The resulting summaries can
be clustered or classified to provide new biological insights,
e.g., how periodicities change under a treatment, or whether
a drug leads to similar growth dynamics as another drug.

A particularly useful analysis is the comparison of mi-
crotubule behavior in different concentrations of wild-type
three-repeat tau (3R tau) and wild-type four-repeat tau (4R
tau) [3]. We computed the Fourier transformation of the
time series of microtubules of three different conditions,
then clustered them. The conditions were “Buffer”, “3R
tau”, and “4R tau”. Table 2 shows the results of the cluster-
ing. Clusters corresponding to each condition can be iden-
tified. Table 3 shows the distances among the three clusters.
We see that microtubules treated with different wild-type
tau proteins behave more similarly than when not treated
with tau. We also observe that “Buffer” is closer to “3R
tau” than to “4R tau.” This indicates that the effect of 4R
wild-type tau is stronger than the effect of 3R wild-type tau.

6 Conclusion

Many areas of biology depend heavily on the acquisition
and analysis of images. Advances in database field are nec-
essary in order to efficiently store, query, and analyze high
volumes of such images.

In this paper, we have discussed requirements for bioim-
age databases. Motivated by real datasets, we have de-
scribed challenges for bioimage databases and outlined pos-
sible solutions. Bioimages must provide distance measures
that are sensitive to spatial locality, support probabilistic
data and queries, and support mining of interpreted spatio-
temporal data.
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