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1 Introduction

The activity of microtubules in cell structure has been of great importance in
studying certain diseases and their treatments. For instance, promising anti-
cancer drugs block cell division by stabilizing microtubule activity. This work
analyzes microtubule activity using statistical techniques that have been de-
veloped for “Growth Curve” modeling.

2 Microtubules

Microtubules are sub-cellular structures in most plant and animal cells and
play a major part in cell locomotion, cell transport and cell division. Micro-
tubule images in living cells are acquired by fluorescence microscopy. The
images are in the form of video which is essentially a stack of images taken
over successive time intervals.

In each stack a certain number of microtubules are selected and tracked,
i.e. their individual co-ordinate locations are noted for each image in the
stack by the experimenter. It is of interest to study the dynamicity of these
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microtubules under different treatments and conditions. Dynamicity is a bi-
ological term to describe changes in the lengths of microtubules. So a micro-
tubule which grows and/or shortens very rapidly would be said to be highly
“dynamic”. We develop rigorous statistical analyses and tests to confirm or
refute various biological hypotheses about the microtubules under differing
treatment conditions. For our analysis, we use growth curve modeling (see
eg. [4]), which is discussed briefly in the following section.

Figure 1: Microtubule tips are tracked manually or automatically.
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3 The Growth Variable

By observing a stack/video of the microtubules, the experimenter chooses
some microtubules whose tips are easy to track. These microtubule tips are
then tracked in each frame. For each microtubule in each frame the tip’s
pixel location pi = (ai, bi) (where i is the frame number) is noted. The ex-
perimenter also adds the co-ordinates of the other end of the microtubule,
p0 = (a0, b0) (i.e. where the microtubule is attached and seems to grow out
of) as the initial observation or the origin. Thus the Euclidean distance be-
tween the points p0 and pi viz, ‖ pi − p0 ‖ is approximately the length of
the microtubule in frame number i.
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Figure 2: The path traversed by a typical microtubule
tip. The first point(origin) is the location of one end of
the microtubule.

Figure 2 is the plot of the path given by the sequence p0,p1,p2, ... for
a typical microtubule. It can be seen that the tip locations, p1,p2, ... are
reasonably along a straight line. Not all microtubules can be tracked for the
same number of frames. Some microtubules are lost or become denatured
before the others. Hence for each tip, the tracking sequence is of different
lengths. As a preliminary analysis, we chose only those microtubules which
could be tracked for the full 25 frames. For each microtubule we compute
the length sequence {li} given by,
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li = {(ai − a0)
2 + (bi − b0)

2} 1
2 ; i = 1, 2, ..., 25. (1)

Now we define our “growth variable” xi, i = 1, 2, ..., 25 as the cumulative
change in length up till frame i i.e.,

xi =
i∑

j=1

| lj − lj−1 |, (2)

where we take l0 = l1, making x1 = 0. We use this variable for our growth
curve analyses. Our growth curve is defined by xi for the 25 time points,
i = 1, 2, 3, ..., 25.

In this report we analyze the microtubule dynamics for 4 different classes
-the control or uninjected, and 3 treatments.

1. control: These are for the normal cells with no treatments. There are
27 observations in this class.

2. 3R: These are for cells injected with 3R tau. There are 22 observations
in this class.

3. 4R: These are for cells injected with 4R tau. There are 20 observations
in this class.

4. 4RGV: These are for cells with mutation. There are 16 observations
in this class.

Figure 3 shows the plots for the growth variables for these different classes.

4 Growth Curve Modeling

Suppose that there are r different treatments or groups and x is the real
valued growth variable measured at p different time points: t1, t2, ..., tp for
nj individuals chosen at random from the jth treatment. Potthoff and Roy
[4] first introduced a nice way to treat such correlated data and labeled
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Figure 3: blue: control, red: 3R, yellow: 4R, black: 4RGV.

it Growth Curve Analysis. It was discussed and analyzed later by several
authors significant among them, Khatri [3] and Grizzle and Allen [1]. See
also Rao [5]. We specify the following polynomial regression model of degree
(q − 1) for the growth x on the time variable t,

E(xt) = ψj0t
0 + ψj1t

1 + ... + ψjq−1t
q−1; (3)

(t = t1, ..., tp; p > q − 1; j = 1, 2, ..., r).

Let
ψ′

j = [ψj0ψj1...ψjq−1] (4)

denote the vector of the growth curve coefficients for the jth treatment. The
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observations xt1 , ..., xtp being on the same specimen are correlated, and we
shall denote their variance-covariance matrix by Σ. We assume Σ to be the
same for all the r groups. Let Xj denote the p×nj matrix of the observations
for the jth group. Since our “growth variable” sequence obtained for each
of the microtubule starts with x1 = 0, this first value is redundant. It will
make the design matrix X (equation 5) singular and is omitted. Let

X = [X1X2...Xr]. (5)

X is a p×N matrix of all the observations where,

N = n1 + n2 + ... + nr. (6)

Therefore from Equation (3) we get,

E(Xj) = [BψjBψj...Bψj]

= BψjE1nj
(j = 1, 2, ..., r), (7)

where

B =




t01 t11 ... tq−1
1

t02 t12 ... tq−1
2

... ... ... ...
t0p t1p ... tq−1

p


 (8)

and Eab denotes, a matrix of order a× b with all elements equal to 1. Bp×q

is called the “Design Matrix”. From equation 7, we get

E(X) = [Bψ1E1n1|Bψ2E1n2|...|BψrE1nr ]

= BψA, (9)

where

ψ = [ψ1...ψr] (10)

is the q × r matrix of the growth curve coefficients and
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A = diag[E1n1 ,E1n2 , ...,E1nr ], (11)

a block diagonal matrix with E1nj
(j = 1, 2, ..., r) along the diagonal blocks

and zeros elsewhere. A is of order r ×N .

Let VecX, be defined as the column vector obtained by stacking the
columns of X one below the other. Denoting Var(VecX) by Var(X) we find
that,

Var(X) = IN ⊗Σ, (12)

where ⊗ denotes the Kronecker product of two matrices. Equation (9) to-
gether with Equation (12) is what is called the Growth Curve Model.

5 Growth Curve Analysis

To fit the Growth Curve model and to test various hypotheses, we perform
the following computations. Obtain matrix B2 of order p× (p− q) such that

B′
2B = 0, (13)

where B is as in Equation 8. This can be done by choosing (p − q) linearly
independent columns of [Ip −B(B′B)−1B′].

Next we compute,

S = X(I−A′(AA)−1A)X′, (14)

where A is defined in (11). We fit the mean growth curves for these classes
using an algorithm described in [3]. We would like to test the hypothesis,

H∗
0 : the degree q − 1 of the growth curves is adequate. (15)

To test this hypothesis we construct the MANOVA table(Table 1).

To perform the test we construct the Wilks’ Λ statistic defined by,
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Source d.f. Dispersion, order (p− q = 22)
H∗

0 r = 4 H0 = B′
2X[A′(A(AA′)−1A]X′B2

Error N − r = 81 E0 = B′
2SB2

Total N = 85 H0 + E0 = B′
2XX′B2

Table 1: MANOVA for Test of Specification

Λ0 =
| E0 |

| E0 + H0 | (see table 1). (16)

We need the following degrees of freedom,

dm = order of the error or hypothesis matrix,

dE = d.f. associated with the error matrix,

and dH = d.f. associated with the hypothesis matrix.

For q = 1 we get Λ0 = 0.0314. To test the null hypothesis we use the test
given by [5]; namely,

F =
1− Λ

1
2
0

Λ
1
2
0

.
ms− 2λ

dH .dm

(17)

is approximately an Fdf1,df2 where

df1 = dm.dH

df2 = ms− 2λ

and

m = N − dm+dH+1
2

s = ( (dm.dH)2−4

d2
m+d2

H−5
)

1
2

λ = (dmdH − 2)/4.
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Here p = 24 and N = n1 + n2 + n3 + n4 = 27 + 22 + 20 + 16 = 85. We
construct our matrix of observations X24×85 and our design matrix B24×q is
obtained from Equation (8).
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Figure 4: blue: control, red: 3R, yel-
low: 4R, black: 4RGV.
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Figure 5: The true means (solid
lines) and the fitted means (dotted
lines).

For q = 1 we find F = 3.5507, with p-value= 3.4417 × 10−15. Hence we
reject H∗

0 which says that there is no growth or change over time. For q = 2
we find Λ0 = 0.3548, F = 0.8161, with the p-value of 0.8654. This says that
a linear fit for the growth-curve provides an adequate fit, and the model is
well specified. Under this model that the mean growth function is linear, we
show the plots for the mean curves in figure 4. Figure 5 shows how these
linear fitted means for each class compare with the (nonparametric) observed
means, computed as the mean at each time point for all the functions in that
class. It turns out that higher order polynomial fits for the mean function
do not provide any better fits and figure 6 shows the fitted curves for a 4th

degree polynomial. B-splines were also used to fit the data. The figure 7
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shows the fits for B-splines of degree 2 and with 5 basis functions. Such
spline bases are likely to be useful when dealing with non-steady-state data.
For the steady state data that we have, linear fits seem to do fine as expected.
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Figure 6: The fits of order 4 (q = 5).
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Figure 7: The fitted spline curves.

Next we test for differences between the classes, i.e. we test the hypoth-
esis,

H∗
1 : ψ1 = ψ2 = ... = ψr (here r = 4)

: LψM = 0; (18)

Source d.f. Dispersion, order (p− q = 22)

H∗
1 m = 3 H1 = (Lψ̂M)(M′R11M)−1(Lψ̂M)′

Error N − r − (p− q) = 59 E1 = L(B′S−1B)−1L′

Total N − r − (p− q) + m = 62 H1 + E1

Table 2: MANOVA for Test of H∗
1
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where,

L = I2 and M =




1 0 0
0 1 0
0 0 1

−1 −1 −1


 .

To test this hypothesis we construct the MANOVA table(Table 2). We cal-
culate the following Wilks’ Λ statistic,

Λ1 =
| E1 |

| E1 + H1 | (see Table 2) = 0.5175. (19)

R11 in Table 2 is defined by,

R11 = (AA′)−1[I + AX′ ×
{
S−1B

(
BS−1B

)−1
}

XA′(AA′)−1]. (20)

Since dm = 2, we compute the following F-statistic,

F1 =
1−√Λ1√

Λ1

.
(dE − 1)

dH

= 7.5428. (21)

Under the H∗
1 this has an F distribution with df=2dH , 2(dE − 1). The

p-value= 7.6650 × 10−007, which is very low. Hence H∗
1 is rejected, i.e. the

Pair Wilks’ Λ p-value
3R vs control 0.6839 0.0185
4R vs control 0.4112 1.3836× 10−004

4RGV vs control 0.4842 0.0043
3R vs 4R 0.8655 0.3150

3R vs 4RGV 0.9004 0.5616
4R vs 4RGV 0.8399 0.4179

Table 3: Pair-wise comparisons
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growth curves are significantly different from each other across the various
classes.

Next we perform pair-wise comparisons to see how the classes compare
to one another. These were carried out by fitting the model to two classes at
a time and testing the appropriate linear hypotheses for the equality of the
polynomial coefficients (here linear). The table 3 summarizes the results.

The p-values show that there is significant difference between the follow-
ing pairs: 3R vs control, 4R vs control and 4RGV vs control. More data
might reveal differences among treatment groups like 3R vs 4R and 4R vs
4RGV.
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