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Abstract
The ability to store and query uncertain information is of great

benefit to databases that infer values from a set of observations,
including databases of moving objects, sensor readings, historical
business transactions, and biomedical images. These observations
are often inexact to begin with, and even if they are exact, a set of
observations of an attribute of an object is better represented by a
probability distribution than by a single number, such as a mean.

In this paper, we present adaptive, piecewise-linear approx-
imations (APLAs), which represent arbitrary probability distri-
butions compactly with guaranteed quality. We also present the
APLA-tree, an index structure for APLAs. Because APLA is
more precise than existing approximation techniques, the APLA-
tree can answer probabilistic range queries twice as fast. APLA
generalizes to multiple dimensions, and the APLA-tree can index
multivariate distributions using either one-dimensional or multi-
dimensional APLAs.

Finally, we propose a new definition of k-NN queries on uncer-
tain data. The new definition allows APLA and the APLA-tree to
answer k-NN queries quickly, even on arbitrary probability distri-
butions. No efficient k-NN search was previously possible on such
distributions.

1 Introduction
Databases of uncertain values have received much recent atten-

tion because querying uncertain values is technically challenging
and benefits a variety of applications, ranging from moving object
databases and sensor networks to biomedical and other scientific
databases.

A database of moving objects, such as taxicabs, police cars,
delivery trucks, convicts, or ships, will contain uncertain locations
not only because the position is inexactly measured in the first
place, but also because radio range, energy consumption, and cost
make it infeasible to continuously update the database with the
object’s current location. We must therefore be able to answer
queries based on a probability density function (pdf) of the object’s
predicted position. The pdf can be as simple as a uniform density
within a range determined from the object’s max. speed, or it can
be an arbitrarily complex function derived from models of the road
network, traffic conditions, and the object’s past behavior.

Networks of power-constrained sensors that measure tempera-
ture, atmospheric pressure, chemical concentrations or other quan-
tities generate uncertain values for the same reasons as moving
object databases. They also introduce another level of uncertainty
because measurements are aggregated in space and time: If a re-

gion contains multiple sensors, then the aggregate temperature of
that region is a pdf—even if each measurement is exact.

The combination of high-throughput data acquisition tech-
niques and new search technology has transformed genetics and
proteomics into data-driven fields: Querying the wealth of exist-
ing data has become both a source of new hypotheses and a means
of testing them. Several large projects are underway to make
data-driven research a reality in other biomedical fields [12, 17],
and this pursuit has been a rich source of new challenges for the
database community. Microscopy is a cornerstone of biomedical
research, and microscopy images and the observations or mea-
surements from the images are at the very core of biomedical
databases. Examples include the density of cells in a certain tissue
or the thickness of a certain layer of neurons in the retina. The
measurements are numerous: the thickness of a layer of neurons
in the retina can, for instance, be measured in hundreds of places
in each image, yielding different numbers. The data are a mix of
the results of image analysis programs and manual observations by
scientists. There is an element of uncertainty associated with every
value, not only because both analysis programs and humans make
mistakes, but also because image resolution, focus, and noise limit
the accuracy of measurements.

Queries ask for summaries of, or conclusions drawn from, the
observations or measurements. A query may ask, for instance, for
all tissue samples that have cell densities in a certain range. Note
that there may be hundreds of measurements of cell density in dif-
ferent regions of each sample, but the query asks for the samples,
expecting the system to abstract away from the individual mea-
surements. It is obviously not a satisfactory solution just to find
all samples that have at least one measurement in the query re-
gion, for this will return many samples that are irrelevant because
only a few of their measurements were in the range. An attrac-
tive solution is to store the summary as a probabilistic value, i.e.,
a probability density function (pdf) over measured quantities. For
the cell density example, this representation could capture that the
density is∼32,000 cells/mm2 most places but∼28,000 cells/mm2

in about 20 % of the sample. In simple cases, the summary can
be obtained by computing a histogram of the measurements, but it
can also be the result of complex analyses involving measurements
of different quantities.

Uncertain values result not only from summarizing imprecise
scientific measurements, but wherever a large number of records
are grouped and treated as one object for the purpose of search—
even in otherwise mundane business applications. As an example,
imagine the database behind a car auction website. All previous
sales are stored in the database, and serve as a basis for users to
learn what models they can expect to get for what price. A user



that asks “How much do 1992 Honda Civics sell for?” expects
not a single number (e.g., a mean), but information such as “usu-
ally $3000–4000, but sometimes as low as $2000.” The system
can give such an answer by returning the pdf of the attribute price
of the object 1992 Honda Civic. Other examples of probabilis-
tic queries include “Find all models that usually sell for between
$20,000 and $30,000” (a range query) and “Find 10 models that
sell for around $25,000” (a k-NN query).

The database challenge, then, is to answer queries on pdfs. This
has been studies by several authors [2, 3, 4, 6], but under the as-
sumption that the pdfs are uniform or Gaussian. These assump-
tions allow for interesting and efficient index structures, and can
be appropriate for the uncertainty of many of the individual mea-
surements. They are too restrictive for pdfs that occur as a result of
summarization, however, for the observations being summarized
may be generated by different mechanisms. For instance, a sum-
mary of the density of bipolar cells in a detached (injured) retina
will have two peaks, corresponding to parts of the retina that are in-
jured and healthy, respectively. Fitting a model distribution, such
as a Gaussian, to the data is only appropriate when the data are
well understood, and in a scientific database, the most interesting
data to query are precisely the ones that are not well understood.

We are therefore concerned with probabilistic queries on arbi-
trary pdfs in this paper. The major contributions are as follows:

• Adaptive, piecewise-linear approximations (APLAs), com-
pact representations of arbitrary pdfs. Because APLAs have
guaranteed error bounds, they can be used to prune objects
during search, and because they are better approximations
that existing techniques, they can prune more objects and
thereby answer queries faster.

• APLA-tree, an index structure for APLAs. Because APLAs
can approximate a set of other APLAs, we can build a tree
structure, prune entire subtrees during search, and thereby
scale to large datasets.

• A novel definition of k-NN queries on uncertain data. No
efficient solution existed for k-NN search on arbitrary distri-
butions, but the new definition allows such distributions to be
indexed with APLA and the APLA-tree; consequently, k-NN
queries can be answered quickly.

The remainder of the paper is organized as follows. In Sec-
tion 2, we investigate probabilistic range queries and discuss
desiderata for indexing schemes. In Section 3, we suggest a novel
definition for k-NN queries on pdfs. Section 4 proposes APLA and
the APLA-tree index structure. Section 5 evaluates the techniques
experimentally before Section 6 concludes the paper.

2 Range queries on uncertain data
Let fi : Rd 7→ [0,1] be the joint probability density function of d

real-valued attributes of an object oi in the database. For any point
~x = [x1, . . . ,xd ], fi(~x) is the probability that a random observation
of the object will have the value x1 for oi’s first attribute, the value
x2 for xi’s second attribute, and so on.

A probabilistic range query [4, 19] consists of a query range
R ⊆ Rd and a probability threshold τ. It returns all objects for
which a random observation has a probability of at least τ of being

in the query range, i.e.,

Q(R,τ) = {oi :
Z
R

fi(~x)d~x≥ τ}.

The probability that a random observation appears in the query
range is called the object’s appearance probability. We limit our
investigation to rectilinear query ranges. (A query with arbitrary-
shaped range can be answered by querying with the MBR of the
range, then refining the results.)

If the pdf is represented by a histogram, an upper bound of the
appearance probability can be computed by adding up the depths
of all bins that intersect the query range, and the upper bound can
be turned into a lower bound by subtracting the bins that intersect
the boundary of the query range. This is inefficient, however: as-
suming that the query range intersects the same number of bins,
m, in each dimension, the sum has md terms.

Computing the sum can be avoided by turning the pdf fi(~x)
into a cumulative distribution function (cdf). The cdf Fi(~x) is the
probability that a random observation will have a value ~x′ that is
element-wise smaller than~x. By applying the inclusion–exclusion
theorem, the appearance probability can now be computed as a
sum of 2d terms. As an example in 2-space, if R is the rectangle
defined by the points (x0,y0) and (x1,y1), the appearance probabil-
ity of an object oi is Fi(x1,y1)−Fi(x0,y1)−Fi(x1,y0)+Fi(x0,y0).

Using the cdf reduces the amount of computation, but the I/O
cost is still unacceptable because detailed multidimensional his-
tograms are bulky and because we have to inspect one such his-
togram for every object. A different representation of the cdf is
therefore needed. A good representation should have the follow-
ing three properties:

1. It should be compact in size,

2. It should give tight lower and upper bounds for the cdf at
every point, and

3. It should be able to summarize the representations of a set of
objects, so that the bounds computed from the summary are
valid bounds for every object in the set.

The third property is what allows a representation to be used in
search trees: During search, entire subtrees can be pruned because
it can be determined from the compact summary stored in an inter-
nal node that none of the objects in the subtree satisfies the query.

2.1 Previous solutions
If the bulk of the histograms is the source of the problem, an

obvious remedy is to use histograms with fewer bins. How to find
a compact histogram that is a good match to the original pdf is less
obvious, however. Jagadish et al. [8] give a dynamic programming
algorithm that partitions a one-dimensional histogram into a given
number of intervals so as to minimize the sum of squared differ-
ence between the mean over an interval and any value within that
interval. The algorithm can also be adapted to minimize the max-
imal absolute difference. Jagadish et al.’s algorithm elegantly re-
duces the size of one-dimensional histograms, but in two or more
dimensions, the problem of whether a given partitioning is optimal
is NP-complete, so heuristics must be used [15].

The fact that a histogram is a piecewise-constant approxima-
tion is cause for concern. A piecewise-constant approximation



may be as good as any when approximating arbitrary functions,
but the cdf is a special case because it is monotonically increas-
ing from 0 to 1. The approximation will therefore be good in the
middle of each interval being approximated by a constant function
but not so good closer to the ends of the interval. This raises the
question of whether something else than a constant function could
provide a better approximation.

If a piecewise-constant function is not such a good approxima-
tion for the cdf, why not approximate the pdf instead, and then
compute the cumulative of the result? This approach, described
by Jagadish et al. [8], has the opposite problem: not only the ap-
proximate function accumulates, but also its error, so the resulting
approximate cdf will be a good fit close to the bin boundaries and
bad fit in the middle of a bin. The question remains of whether a
different approximation would be better.

Keogh et al. [9] use piecewise-constant approximations on
time series (where the objections just discussed do not apply).
Each time series is approximated by s constant pieces, then in-
serted into an R-tree as a 2s-dimensional point. (Odd dimen-
sions contain the constant value of each piece, even dimensions
the boundaries between pieces.) The MINDIST distance function
of the R-tree is then modified so that time series can be searched
by similarity.

Korn et al.’s OptimalSplines [10] fit a series of B-splines by
maximum likelihood. This works well for selectivity estimation,
where the expected error over many queries is what matters: It is
acceptable for small parts of the domain to be poorly approximated
because it will only affect some queries. We are interested, how-
ever, in tight upper and lower bounds so we can prune objects (or
entire subtrees). OptimalSplines are not appropriate here because
the maximal error is what is important for the bounds’ tightness:
If the approximation is poor even in a small part of the domain, the
bounds become loose and the pruning power is diminished for all
queries. We experiment with OptimalSplines in Section 5.

Tao et al.’s conservative functional boxes (CFBs) [19] treat
each dimension separately and envelope the cdf with four lines,
found by linear programming. The first two lines bound the part
of the cdf where Fi(x) ≤ 0.5 from above and below, respectively.
The other two bound the part of the cdf where Fi(x)≥ 0.5. Always
using Fi(x) = 0.5 as a boundary is both a blessing and a curse: It
results in a compact representation because the partitioning point
does not have to be stored, but the bounds can be very loose be-
cause the partitioning point does not adapt to the data. In Section 5
we conduct experiments that compare our proposed techniques to
CFBs and the U-tree index structure based on them.

3 k-NN queries on uncertain data
It is not obvious how to define k-NN queries on probability

distributions. What exactly does it mean for one distribution to be
“nearer” than another to a query point ~q?

Cheng et al. [3] suggested a definition for 1-NN queries based
on the probability pi that a random observation of an object oi is
closer to ~q than random observations from all other objects in the
database. The object with the highest pi is considered ~q’s nearest
neighbor. The probability pi is defined as

pi =
∞Z

0

P(d(~q,oi) = r)∏
j 6=i

P(d(~q,o j) > r)dr, (1)

where d is any distance measure. Cheng et al. develop efficient so-
lutions for the special cases where the pdf is a uniform distribution
constrained to line segments and circles. However, for arbitrary
distributions, computing pi is inefficient and impractical because
pi depends not only on oi’s pdf, but also the pdfs of all other ob-
jects in the database. This is in stark contrast to k-NN queries on
deterministic data, where data points are ranked by their distance
to the query point—a quantity that is easily computed for each data
point without reference to the rest of the database.

As an alternative, we propose to define probabilistic k-NN
queries so they return the k objects that have the smallest expected
distance (ED) from the query point ~q, i.e.,

ED(~q,oi) =
Z
Rd

d(~q,~x) fi(~x)d~x. (2)

ED(~q,oi) is also known as fi’s first moment about ~q, and can be
computed solely from the query point ~q and oi’s pdf, fi.

This definition is not equivalent to Cheng et al.’s definition
(consider a 1-NN query with query point 0, two objects with pdfs
defined by the histograms [0.30,0.02,0.68] and [0.08,0.41,0.51],
respectively, and an Lp-norm as distance measure), but we believe
it is an equally natural interpretation of a query that asks for the
k distributions that are “nearest” a particular query point. As an
example, Figure 1 plots the pdf for a mixture of Gaussians and the
portion of ED(q) that is inside the uncertainty region. (The uncer-
tainty region of an object is a closed region such that object’s pdf
in nonzero only inside the region [3].)

When the distance function d is the L1 (or “Manhattan”) dis-
tance, ED has an important property, namely that if ~q is outside
the uncertainty region of oi, then ED(~q,oi) is the distance from ~q
to the mean of oi, as shown by the following lemma.

Lemma 1. If ~q is outside the uncertainty region of oi, then

ED(~q,oi) =
d

∑
k=1

wk|qk−µik|= L1(~q,µi),

where wk is the weight of the j-th dimension (1 if unweighted L1-
distance is used) and µi j is the j-th dimension of the mean of fi.

Proof. Each term of the L1 distance function can be integrated
separately, so

ED(~q,oi) =
d

∑
k=1

EDk(~q,oi) =
d

∑
k=1

Z
Rd

wk|qk− xk| fi(~x)d~x,

By marginalization, each term of the sum can be written

EDk(~q,oi) = wk

∞Z
−∞

|qk− xk| fi(xk)dxk.

Because ~q is outside the uncertainty region, for a particular di-
mension k, either (1) qk > xk for all xk such that fi(xk) > 0 or
(2) qk < xk for all xk such that fi(xk) > 0. Assume without loss of
generality that qk > xk. (The qk < xk case is symmetric.) Then

EDk(~q,oi) = wkqk−wk

∞Z
−∞

xk fi(xk)dxk = wk(qk−µik).

The fact that ED has such a simple shape outside the uncer-
tainty region is promising: It means that an indexing scheme needs
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Figure 1. An example pdf (mixture of three Gaus-
sians) and its ED-curve, which gives the expected
distance from the pdf to any query point.

only concentrate on the part inside the uncertainty region. In the
next section we will develop a compact approximation scheme that
can be used to index ED under the L1 distance—a distance mea-
sure that is a natural choice for joint distributions of attributes with
different domains, such as temperature and pressure. Generalizing
this to work with L2 and other distance measures is future work.

Closed-form solutions can be found for ED for particular
distributions—for instance, if fi is uniform, then ED is parabolic
inside the uncertainty region—but the focus of this paper is on ar-
bitrary distributions.

4 Adaptive, piecewise-linear approximations
Sections 2 and 3 have established that probabilistic range and

k-NN queries can be answered by estimating the value of a func-
tion at a certain point: For range queries the cdf of the object must
be estimated at the extremes of the query range, and for k-NN
queries the estimated distance (ED) must be estimated at the query
point. We are now ready to present our approximation scheme,
Adaptive, Piecewise-Linear Approximations (APLA).

APLA combines the virtues of the previous solutions discussed
in Section 2.1: It (1) partitions the function adaptively; (2) approx-
imates each partition by a linear function, which is likely a better
fit than a constant function to fit the monotonically increasing cdf
or the cup-shaped ED-curve; (3) it has a compact representation;
and (4) index structures can be built for it.

We first describe the APLA representation and how upper and
lower bounds for F(x) can be computed for any x. We then present
algorithms for computing an APLA, either directly from a set of
observations or from other APLAs. APLA will be presented in
terms of a one-dimensional function F(x), then extended to two-
dimensional functions (surfaces) in Section 4.2. Section 4.3 de-
scribes our APLA-tree index structure.

An APLA F̂(x) for a function F(x) consists of a sequence of
up to s line functions L1(x),L2(x), . . . ,Ls(x), as well as a global
error ε. The number of lines s is a parameter, and is the same for
all objects in the database. Consecutive lines cannot be parallel,
and a line’s intersection with the next line of the approximation is
required to have a larger x-coordinate than its intersection with the
previous line.

For i = 1, . . . ,s−1, let x∩i be the x-coordinate of the point where
Li intersects Li+1. Further, let x∩0 and x∩s be the extreme points
of the uncertainty region. (For cdfs, x∩0 and x∩s can be found by
solving L1(x0) = 0 and Ls(x∩s ) = 1, respectively; for ED-curves,
the extreme points are stored with the APLA.) We call these s+1
points the breakpoints of F̂ . Given an APLA, the function can be

estimated for any value of x as

F̂(x) =



F(x) if x≤ x∩0
L1(x) if x∩0 ≤ x≤ x∩1
L2(x) if x∩1 ≤ x≤ x∩2

...
Ls(x) if x∩s−1 ≤ x≤ x∩s
F(x) if x∩s ≤ x.

The first and last case refer to the fact that outside the uncertainty
region, the function need not be estimated, but can be computed
exactly—for cdfs as either 0 or 1, and for ED-curves as the dis-
tance from the mean.

Let εi be the maximal absolute difference between a line Li and
the function F it approximates in the interval [x∩i−1,x

∩
i ], i.e.,

εi = max
x∩i−1≤x≤x∩i

|Li(x)−F(x)|. (3)

The global maximal error ε can then be defined as ε = maxs
i=1 εi.

Thus, the APLA defines upper and lower bounds for every point
x: We are guaranteed that F̂(x)− ε≤ F(x)≤ F̂(x)+ ε.

Assuming that we already have partitioned the set of points
sampled from F(x) into subsets X1,X2, . . . ,Xn, how do we find the
line F̂i that approximates a subset Xi while minimizing the error
εi? This problem can be expressed as a linear program as follows:
Minimize ε subject to the linear constraints

z− ε≤ aix+bi ≤ z+ ε (4)

for each point (x,z) ∈ Xi. The problem can be solved quickly
by computational geometry methods because there are only three
variables (ε and the two line parameters ai and bi) [5].

There is one complication, however. Recall that, in the interest
of compactness, the APLA contains only ε and the line parameters,
so the breakpoints are used to determine the range in which line
should be used as approximation. We therefore have to make sure
that the breakpoints coincide with the partition boundaries. For
reasons that will become clear in the proof of Theorem 1, we must
not in fact partition the points, but find covering subsequences such
that any two consecutive subsequences Xi−1 and Xi overlap by one
point xk. We then augment the line fitting problem with constraints
that ensure that the x-coordinate of the intersection of the lines
F̂i−1 and F̂i falls between (xk−1 + xk)/2 and (xk + xk+1)/2. When
ai−1 < ai, the applicable constraints are

xk−1 + xk

2
(ai−ai−1)≤ bi−1−bi and (5)

xk + xk+1

2
(ai−ai−1)≥ bi−1−bi; (6)

otherwise, they are

xk−1 + xk

2
(ai−ai−1)≥ bi−1−bi and (7)

xk + xk+1

2
(ai−ai−1)≤ bi−1−bi. (8)

When fitting a line, we first try constraints (5) and (6) with the
additional constraint that ai−1 < ai. We then fit the line again with
constraints (7) and (8) with the additional constraint that ai−1 > ai.
The solution with the smallest εi is chosen.

Figure 2 shows the dynamic programming algorithm that adap-
tively computes an APLA for a function defined by N points. The



Algorithm COMPUTE-APLA
Inputs: P, a sequence of N points, sorted by x-coordinate

s, the highest number of linear pieces to use
for ω = 1 to N−1

Fit a line L′ to points P[0] through P[ω]
L[ω,0] := L′

ε[ω,0] := the max. error of L′ (Eq. (3))
if ω < N−1 and P[ω].x = P[ω+1].x

ε[ω,0] := ∞

A[ω,0] := 0
for t = 1 to s−1

for ω = t +1 to N−1
for α = t to ω−1

Fit a line L′ to points P[α] through P[ω]
ε′ := the max. error of L′

c := max{ε[α, t−1],ε′}
if ω < N−1 and P[ω].x = P[ω+1].x

ε[ω,0] := ∞

if α > 0 and P[α−1].x = P[α].x
ε[ω,0] := ∞

if α = t or c < ε[ω, t]
L[ω, t] := L′

ε[ω, t] := c
A[ω, t] := α

t := s−1
while t > 0 and ε[N−1, t−1] < ε[N−1, t]

F̂ [t] := /0

t := t−1
c := ε[N−1, t]
ω = N−1
while t > 0

F̂ [t] := L[ω, t]
ω = A[ω, t]
t := t−1

return F̂ [1] . . . F̂ [s] and c

Figure 2. Dynamic programming algorithm for finding
the adaptive, piecewise-linear approximation of a set
of points

algorithm fills an N× s table ε such that ε[ω, t] is the max. error
of the best t-segment approximation to points 0, . . . ,ω. Once the
best (t − 1)-segment approximation is known for every prefix of
the points, the best t-segment approximation for points 0, . . . ,ω
can be found by computing

ε[ω, t] =
ω−1
min
α=t

(ε[α, t−1]+ εt), (9)

where εt is the max. error of the line fitted to points α through ω.
Previously fitted lines are kept in an array L so they can be used to
compute constraints (5)–(8) during future line fittings. The array
A keeps track of the best results: A[w, t] is the index of the first
point of the t-th segment of the best t-segment approximation to
points 0, . . . ,ω. The algorithm ensures that if a line is fitted to
points with a certain x-coordinate, it is fitted to all the points with
that coordinate.

It is worth noting that constraints (5)–(8) can make the dynamic
programming algorithm find a non-optimal APLA. To see why,
consider two consecutive segments F̂i−1 and F̂i where εi−1 < εi.

It is possible that a slightly suboptimal fit of F̂i−1 would allow
F̂i to fit its points better, reducing εi and thereby also the global
error ε. Our experiments indicate that the algorithm still finds good
approximations, however.

4.1 APLAs of other APLAs
Suppose that we have already computed APLAs F̂1, . . . , F̂n for

functions F1, . . . ,Fn (cdfs or ED-curves). It is useful to be able to
compute an APLA Ĝ for the entire set of functions without once
again retrieving the large set of observations that define the func-
tions. (This is particularly useful for building hierarchical index
structures, such as the one described in Section 4.3.) The new
APLA Ĝ can be computed as follows.

We begin by finding X = ∪n
i=1{x : (x,z) ∈ X∩i }, the set of all

x-values that occur in breakpoints of any of the APLAs. For each
x ∈ X , we compute the highest upper bound and the lowest lower
bound over all the APLAs, i.e.,

zmax(x) = max
F̂i

[F̂i(x)+ εi] and (10)

zmin(x) = min
F̂i

[F̂i(x)− εi], (11)

and add (x,zmax(x)) and (x,zmin(x)) to a set P. Finally, P is sorted
by x-coordinate and passed to COMPUTE-APLA.

The following theorem proves that the computed APLA is in-
deed a valid approximation of the underlying distributions.

Theorem 1. Let F̂i be an APLA for function Fi. The APLA Ĝ com-
puted from a set of APLAs that include F̂i is a valid approximation
for Fi, i.e., Ĝ satisfies the constraints of Ineq. (4) for all (x,z) s.t.
z = Fi(x).

Proof. We say that an APLA F̂ with max. error ε satisfies a point
(x,z) if z is between the APLA’s upper and lower bound at x, i.e.,
F̂(x)−ε≤ z≤ F̂(x)+ε. Suppose for the purpose of contradiction
that (x,z) is a point that is satisfied by F̂i but not by Ĝ.

From X , the set of x-coordinates that occur in breakpoints, let
a and b be the largest member less than x and the smallest member
larger than x, respectively. (Note that a or b cannot be exactly x, for
then zmin(x) and zmax(x) would be added to P. They span F̂i(x)±
εi, so Ĝ would have been constrained to satisfy (x,z).) It follows
that there cannot be any breakpoints with coordinates between a
and b.

We say that a value x is covered by a line segment if the line
was fitted to points with x-coordinates no greater than x and points
with x-coordinates no less than x. (Recall that COMPUTE-APLA
uses dynamic programming to find overlapping subsequences of
x-coordinates from the input points, so most values are be covered
by one line segment but some are covered by two.)

If a and b were covered by the same segment of Ĝ, then Ĝ
would satisfy (x,z). (The reason is that a and b are members
of X , so the upper and lower bounds for F(x) have been com-
puted and added to P.) Consequently, there must be a segment
of Ĝ that covers a and not b, and another that covers b but not a.
Because COMPUTE-APLA fits lines to overlapping subsequences,
there must then be a breakpoint with x-coordinate between a and b
so that it can be covered by both segments. We already know that
this is impossible, and this contradiction proves the theorem.

The algorithms so far work well for computing APLAs for ED-
curves and combining these APLAs. Cdfs, however, have two



properties that can lead to undesirable results when combining the
APLAs of two or more cdfs. We address this in the following.

The first property is that the range of a cdf is limited to [0,1]. To
see why this is a problem, consider the cdfs F1 and F2 of two uni-
variate distributions with disjoint uncertainty regions. Assuming
that F1 is to the left of F2, there a point x between the two uncer-
tainty regions where F1(x) = 1 and F2(x) = 0. Any APLA that
is is a valid approximation for both F1 and F2 will therefore have
a maximal global error ε of at least 0.5. This makes the APLA
useless, as the upper bound is 1 and the lower bound 0 for ev-
ery x. The problem can be avoided by working with the inverse
function of the cdf, thereby redefining εi to be the maximal abso-
lute x-difference (instead of z-difference) between a line Li and the
function F it approximates. Special care must be taken if the cdf
has constant intervals because the inverse is undefined in that case,
but we omit the details.

The second property of cdfs that requires special attention is
their monotonicity. Suppose an APLA F̂ is computed for two ob-
jects with uniform pdfs. Object o1’s uncertainty region is [1,2],
and object o2’s uncertainty region is [3,4]. Thus, within the uncer-
tainty regions, their cdfs are F1(x) = x−1 and F2(x) = x−3. With
the constraints defined so far, the APLA computed for the objects
is the N-shaped function

F̂(x) =


x−1 if 1≤ x≤ 2,

−x+3 if 2≤ x≤ 3,and
x−3 if 3≤ x≤ 4,

which is certainly a good (perfect!) solution, but breaks the range
search algorithm because the upper bound at x = 2.5 is lower than
the lower bound at x = 1.5, so the computed probability that o1 is
in the range [1.5,2.5] is negative. The APLA can be forced to be
monotone by constraining the line segments to have positive slope.

4.2 APLAs of joint probability distributions
The question of whether APLAs generalize to two or more di-

mensions is interesting from a theoretical standpoint. It is also of
practical use when two or more quantities are observed together.
For instance, the thickness of the cell layers can be measured at
many locations on the retina, and the thickness of both the outer
nuclear layer (ONL) and the inner nuclear layer (INL) are of inter-
est. Biologists may want to ask for images that show an area of the
retina where both the ONL and the INL are thick. Note that this
is not the same as asking for images that show an area where the
ONL is thick and an area where the INL is thick; the latter query
is more permissive.

As a second example, consider a database of historical loca-
tions of taxicabs. Each location is a simultaneous observation of
latitude and longitude. If a dispatcher wants to find all taxis that
are in the northeastern part of town with probability at least 0.7,
it is not enough to know that a certain car is likely to be on the
east side and that it is likely to be on the northern part of town; we
need to know that there is a high likelihood of the two observations
occurring together.

The cdf of the joint distribution of two attributes a1 and a2 is a
surface; the x and y axes are the domains of a1 and a2, respectively,
and the z-axis is the cumulative probability: If the surface goes
through a point (x,y,z), then the probability that a1 ≤ x and a2 ≤ y
are observed together is z. The surface is xy-monotone, i.e., it is
nondecreasing along both dimensions. A two-dimensional APLA

is a compactly represented surface that approximates this surface,
as well as a number ε indicating the greatest difference between the
original surface and its approximation. Figure 3 shows an example
of a bivariate cdf and its APLA.

Even ignoring the requirement that an APLA must be repre-
sented compactly, finding the optimal piecewise-linear approxi-
mation to a surface is a difficult problem. Agarwal and Suri [1]
show that it is NP-hard to decide whether the surface can be ε-
approximated with k triangles whose projections on the z = 0 plane
are pairwise disjoint. We must therefore resort to heuristic algo-
rithms.

A common heuristic for surface approximation is to maintain a
triangulation of the surface, then greedily remove vertices whose
incident planes are almost coplanar [1]. The resulting represen-
tation is not very compact, however: In addition to ε, we would
have to store the x, y, and z coordinates of every remaining vertex.
Instead, we select vertices so that their projections on the z = 0
plane form a grid. Thus, p× q vertices can be represented by p
x-coordinates, q y-coordinates, and p×q z-coordinates.

The problem of selecting p x-coordinates and q y-coordinates is
known as the p×q partitioning problem [15], and has been studied
extensively because it comes up when mapping an irregular work-
load to nodes in a parallel computer. We adopt a simple heuristic
approach that was independently proposed by Mingozzi et al. [13]
and Nicol [16]. The algorithm starts with an arbitrary partition-
ing, then iteratively improves it. At each iteration, the partitioning
along one axis is kept constant, and the optimal breakpoints are
chosen along the other axis. The algorithm terminates when the
partitioning no longer changes.

After finding a good partitioning, and thus the x and y-
coordinates of the vertices, we are still one hurdle away from a
compact APLA. As part of the process of finding a good partition-
ing, our algorithm fits planes to the partitions. (In fact, it fits two
planes to each partition: one to the lower triangle and one to the
upper.) Thus, each vertex has six incidental planes, each of which
can have a different z-value at the vertex. How do we choose which
z-value to store for each vertex? One could use the z-value from
the original surface at the vertex, but this would lead to a large ε,
as points in the middle of the partition can be far from the plane
defined by its incidental points. Instead, we propose a heuristic
algorithm that starts with the plane with highest ε. From the equa-
tion of the plane, we compute a new z-value for each of its three
incidental vertices. This process is repeated for all the planes, in
order of decreasing ε, assigning new values only to vertices that
have not received one in previous steps.

The details of our algorithm has been omitted because of space
constraints. We note that fitting a plane to a set of points is an
instance of the L∞-linear approximation problem, which can be
solved efficiently by computing the convex hull (in O(n logn) time
[5]) and finding the parallel planes of support with minimal sepa-
ration (linear time in the size of the convex hull) [11].

Multidimensional APLAs are not the only way to answer a
multidimensional query: One can also use a number of 1-D
APLAs, one for each marginalized distribution f (x0), . . . , f (xn).
An object is deemed to satisfy a range query if each of the one-
dimensional APLAs satisfies the query. This is obviously more
permissive than using a 2-D APLA: Just because there are obser-
vations of x ∈ [x0,x1] and y ∈ [y0,y1] does not necessarily mean
that there are any observations of (x,y) ∈ [x0,x1]× [y0,y1], so us-
ing several 1-D APLAs may lead to lower precision. This effect is
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Figure 3. A bivariate cdf and its APLA.

counteracted, however, by the fact that p×q planes take up more
space than p + q line segments, so the space used by a p-by-q-
plane 2-D APLA can fit two 1-D APLAs with more than p and q
line segments, respectively.

4.3 Indexing the APLA
Because of its compactness, the APLA speeds up sequential

scans. In order to reduce the time to answer queries further, we
have designed a dynamic, balanced, paged index structure for the
APLA. Our index structure, which we call the APLA-tree, is a tree
structure similar to the well-known R-tree [7], but contains APLAs
instead of rectangles. We only describe the differences.

Figure 4 illustrates the structure of the APLA-tree. A leaf node
contains APLAs of one or more objects, as well as an object iden-
tifier. Probability distributions over d attributes are stored by a
sequence of d APLAs, each approximating the marginalized dis-
tribution of one attribute. (Multidimensional APLAs, which ap-
proximate joint distributions of two or more attributes, can also be
used.) An internal node consists of a number of entries. Each entry
has a pointer to a child node and APLAs summarizing all objects
in the subtree rooted at that child. If 1-D APLAs are used, there
will be d APLAs in each entry (one for each dimension).

During range search, an upper bound for the appearance prob-
ability is computed for each entry in an internal node. Only if the
appearance probability is at least τ is it necessary to retrieve the
subtree rooted in the child node pointed to by the entry.

During k-NN search, two priority queues are maintained.
There is a queue of the best objects seen so far, and also a sec-
ond queue that contains nodes the subtrees of which have not yet
been searched. The queue of nodes is sorted by the EDmin of the
subtree. The algorithm iteratively pops a node from the queue of
nodes. Leaf nodes are processed as for sequential scan. For each
entry of an internal node, EDmin and EDmax are computed. The
child node pointed to by the entry is inserted in the queue of nodes
only if EDmin does not exceed the EDmax of the k-th object in the
queue of objects.

When inserting a new object with APLA Ĝ into the index struc-
ture, we recursively choose to insert the object into the subtree Ti
with the lowest cost. (Ties are broken arbitrarily.) The cost c(Ĝ, F̂)
is the relative amount by which the ε of the APLA F̂ of the subtree
Ti would have to be increased in order to be a valid approximation
for the new object. The cost can be computed as the maximal dif-
ference between F̂ and any breakpoint of Ĝ, adjusted by the global
errors of the APLAs, i.e.,

c(Ĝ, F̂) =
εG− εF + max

(x,z)∈X∩
|F̂(x)− z|

εF
, (12)

where εG and εF are the global errors of Ĝ and F̂ , respectively,
and X∩ is the set of breakpoints for Ĝ. If an entry contains more

than one APLA (for different dimensions), c(Ĝ, F̂) is computed
for each APLA and the maximum used as the cost.

If inserting the new object would cause the node to overflow,
the node is split, using a random split policy. Other split policies
can be imagined using the same cost function as when choosing
a subtree to insert into, but we leave a detailed investigation of
the dynamic aspects of the index structure for future work. After
splitting a node, new APLA are computed for the two resulting
nodes, using the algorithm described in Section 4.1.

After inserting an object into a node, the APLA of the parent
node may no longer be valid, so it must be adjusted or recomputed.
To adjust an APLA means simply to increase its ε-value so as to
satisfy the constraints Ineq. (4) for the new object. Recomputation
is slightly more involved: Points are extracted from the APLAs of
all children, and a new APLA computed for the parent using the
algorithm described in Section 4.1. This paper does not focus on
the dynamic aspects of the index structure, so we do not investigate
the tradeoff of adjustment vs. recomputation.

5 Experimental results
This section evaluates the performance of APLA through ex-

periments on synthetic and real data. All experiments were run on
computers with Athlon MP 1800+ CPUs running Linux 2.6.8 and
the LP-solver CPLEX 9.0.

We compared our technique to Tao et al.’s conservative func-
tional boxes (CFBs) and the U-tree index structure based on
them [19], and also to Korn et al.’s OptimalSplines [10]. A CFB,
which is the approximation stored in the leaf nodes of a U-tree,
consist of four lines, stored as eight numbers, for each dimension.
For a fair comparison, we let our APLA technique use three line
segments, which together with the global error take seven numbers
to store. We padded each APLA with an eighth, unused number.
We made OptimalSplines use three knots, which together with the
global error also take seven numbers to store.

An object with a bivariate pdf was represented by two APLAs
(one for each dimension, 128 bytes in total) and a 20-byte pay-
load (object identifier, etc.). The page size was 4096 bytes, so 23
objects fit in each leaf node.

When constructing an APLA-tree for k-NN search, we used
three-segment APLAs in the internal nodes, just as in the leaf
nodes. For the APLA-tree for range search, however, we used
two-segment APLAs in the leaf nodes. Again, this is so that the
approximations in our internal nodes will use the same amount of
space as the approximation in the U-tree’s internal nodes, a re-
quirement for fair precision experiments.

The first set of experiments performs range queries using both
APLAs and CFBs, and compare the precision of the results. A
low precision translates to high query time because there are many
false positives, the bulky data of which must be retrieved from
disk in a refinement step. For these experiments, we use the “LB”
dataset, which was also used by Tao et al. [19] to evaluate the U-
tree. The dataset consists of 53,144 two-dimensional constrained
Gaussian distributions. The mean of each distribution is the cen-
tral position of a geographical object in Long Beach, California,
normalized to the [0,10000]2 space. The standard deviations are
125, and the distributions are constrained to the area within two
standard deviations from the mean. We varied the size of the query
range from 500×500 to 2500×2500. For each size, we computed
the average precision over 500 range queries with randomly placed
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Figure 5. APLA yields only slightly better precision
than CFB for the LB dataset because the CFB is al-
ready a good approximation for Gaussian distribu-
tions. For mixtures of two Gaussians, the precision
of APLA is much higher than that of CFB.

query ranges of the appropriate size and probability threshold 0.8.
We answered the queries by sequential scan of the leaf nodes so as
to isolate the performance of the object representations from the
pruning performance of the tree structures.

We measured precision rather than running time in this exper-
iment because the actual running time of a query would include
refining the results in order to remove false positives. Because this
experiment uses idealized distributions as ground truth, the time to
refine the results would be very small, without any relation to the
time it would take to query a set of arbitrary distributions, the re-
finement of which involves accessing actual observations on disk.

Figure 5(a) shows that although APLAs give higher precision
than the CFBs for this Gaussian dataset, the improvements are
modest. The reason is that the CFB is a pretty good envelope for a
Gaussian cdf. In order to illustrate how the APLA can adapt to the
distribution at hand and give decent approximations for arbitrary
distributions, we created a new, bimodal dataset “LB-Bimodal”
based on LB. In LB-Bimodal, each distribution is a mixture of
two Gaussians, one 1250 units northeast of the other. The compo-
nent Gaussians have standard deviation 125, as in LB. Figure 5(b)
shows that the precisions of range queries on LB-Bimodal are dra-
matically different. For small queries, CFBs yield a precision as
low as 20 %, and even for larger queries there is a 10–20 percent-
age point difference between the precisions of CFB and APLA.

The main conclusion to draw from the precision experiments is
that a technique that approximates a Gaussian well does not nec-
essarily approximate other distributions well, so a technique that
targets arbitrary distributions must be evaluated using real datasets
of empirical distributions. Consequently, we use a sensor network
dataset for the remainder of our experiments. A network of 16
sensors [14] measured temperature and atmospheric pressure for
∼124 h. Each hour of measurements from each sensor was aggre-
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Figure 6. Because OptimalSplines minimizes the ex-
pected error, but the maximal error ends up being
higher than APLA in all cases, and more than 10
times higher for about 50 % of the objects.

gated into one bivariate pdf, resulting in 1964 objects after drop-
ping objects with very few samples. In order to get a larger dataset,
we copied each object 35 times and shifted the copies to other lo-
cations in the data space.

We computed APLAs and OptimalSplines for each of the ob-
jects and compared the global error. Figure 6 shows that Opti-
malSplines had larger error in every case, and for about half the
objects the error was more than ten times that of APLA. The rea-
son is that OptimalSplines minimizes the expected error instead of
the maximal error, so the error can be high in small parts of the
domain. The high maximal error destroys the pruning power for
all queries.

5.1 Range query performance
In this section, we compare the range query performance of the

APLA-tree to that of the U-tree using the sensor network dataset.
The index structure is about one-twentieth of the size of the actual
data, so it is reasonable to assume that the index structure can be
cached in main memory and the actual data cannot. Before each
query, the file system was therefore unmounted and remounted in
order to flush the operating system’s cache. The index structure
was then scanned sequentially so as to bring it into the cache.

We measured the total time to answer a query for all objects
that have temperatures between 55 and 58 degrees and pressure
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between 1005 and 1010 mbar with a probability of at least 0.9.
The time includes a refinement step to ensure that there are no
false positives among the results.

Figure 7 plots the total time to answer range queries as a func-
tion of database size for Tao et al.’s techniques (CFB and U-tree)
as well as our APLA-seq and APLA-tree. The graph shows that
for the sensor dataset, the U-tree is not much faster than sequential
scan of CFBs. The reason is that the precision of CFB is lower
than that of APLA (42 % compared to 67 %), so the U-tree is not
able to prune enough subtrees to gain an advantage. The sequen-
tial scan using APLAs is about 15 % faster, and the APLA-tree is
about twice as fast as the other techniques.

5.2 k-NN query performance
APLAs of the ED-curve can be used to answer k-NN queries

both by sequential scan and using the APLA-tree structure. Be-
cause the APLAs yield a range for the expected distance to each
object, the searches do not return exactly k objects, but a larger
set that are guaranteed to contain the k nearest neighbors. This
set must then be refined by retrieving the objects from disk and
computing their actual expected distances to the query.

Figure 8 shows that a sequential scan of APLAs can answer a
10-NN query on 30,000 objects in 144 ms. The APLA-tree is a
factor of two faster, and answers the same query in 74 ms. The
times plotted are the total times to search the index structure, then
refine the results by retrieving actual objects from disk.

Because this paper is the first to answer k-NN queries on arbi-
trary probability distributions, there are no competing techniques
to compare to, but we note that computing the expected distance
to each object directly by reading all observations from disk, is far
too slow to be practical: The time increased linearly from 2.8 s for
10,000 objects to 8.7 s for 45,000 objects. (The observations were
stored in binary format so no parsing was necessary.)

In order to better understand where the time to answer k-NN
queries is spent, Figure 9 plots the CPU and I/O time for sequential
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Figure 9. CPU and I/O time for 10-NN queries on
datasets from 10,000 to 45,000 objects. The CPU time
of sequential scan increases linearly, and becomes
very significant, but the CPU time of the tree-based
search stays below 4 ms.

and tree-based 10-NN search. The CPU time was obtained by
not refining the results from the search, and the I/O time is the
difference between total time and CPU time. The CPU time for
sequential scan increases linearly, and at around 30,000 objects it
starts to surpass the time required to refine the results. In contrast,
the CPU time for the tree-based search remains below 3 ms.

We note that both APLA-seq and the APLA-tree answer 10-
NN queries with more than 80 % precision (in most cases more
than 90 %). As a consequence, the number of candidate objects
that need to be refined are only 11 or 12 in most cases. For many
applications, this is sufficiently precise, so the refinement step can
be skipped, and because the index structure fits in the cache, a
10-NN query on 40,000 objects answered in 4 ms.
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Figure 10. On the 30,000-object dataset, the APLA-
tree answers k-NN queries twice as fast as APLA-
sequential, regardless of k.

Figure 10 plots total query time as a function of k for the
35,000-object dataset. We see that the query time increases lin-
early with k. The cost of searching the index structure remains
constant at 72 ms for APLA-sequential and 3 ms for APLA-tree, so
the increase is because the number of candidates that must be re-
fined goes up. The APLA-tree is twice as fast as APLA-sequential,
regardless of k.

6 Conclusion
Querying databases of uncertain values is important for many

applications, ranging from moving object databases to sensor net-
works and biomedical and other scientific databases. Probabilis-
tic databases must handle arbitrary, empirical probability distri-
butions in order to support data with uncertainty models that are
complex or poorly understood.

We have presented algorithms for computing adaptive,
piecewise-linear approximations (APLAs) of arbitrary functions.
We have applied the APLA technique to cumulative distribution
functions and shown that APLAs provide more precise approxima-
tions than existing methods, and therefore answers queries faster.
We have proposed to answer k-NN queries by ranking objects by
their expected distance to the query point, and applied the APLA
technique to the expected distance (ED) function. Finally, we have
described a dynamic, balanced, paged index structure for APLAs
and shown experimentally that it speeds up both range and k-NN
queries by a factor of two.

In the future, we will apply APLA to biomedical and other
datasets in order to understand the datasets and queries for which
2-D APLAs are advantageous. We also plan to improve the heuris-
tics for finding two-dimensional APLAs that are both compact and
precise. Finally, we will investigate and find ways to index ex-
pected distance (ED) functions for L2 and other distance measures.
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