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Abstract

Images have become an extremely important dataset in
many areas of science including biology, geography and as-
tronomy due to their ability to reveal spatial information not
immediately available from other data sources. In this paper,
we introduce a novel approach, QUIP (QUerying Image Pat-
terns), to retrieve significant spatial patterns from a large col-
lection of such images. Such an ability will provide important
clues to the domain scientists regarding the underlying pro-
cesses that produce those images.

The query pattern of interest is specified as a rectangular
region from a tiled image. A scoring formula is designed to
discriminate the significant foreground patterns from the irrel-
evant background of the region. Candidate database regions
that match the query are translated into a score matrix of the
pairwise aligned tiles. We show that the problem of finding the
maximal scoring connected sub-region from the matrix is NP-
hard and develop an effective dynamic programming heuristic.
To assist the user, each retrieved database pattern is assigned a
p-value to indicate its statistical significance. Finally, in order
to accelerate QUIP, we adopt the threshold algorithm to effi-
ciently retrieve the candidate database matches and a bound-
ing method to speed up p-value computation.

We experiment with three datasets of microscopy images of
retina. For each dataset, the results are significant for the do-
main scientists. Our method also has practical running time
and scales well with database and query sizes.

1. Motivation

Any image repository, be it a database of biomedical im-
ages, an aerial photo archive or a surveillance system, must
support analysis, comparison, retrieval, and mining of images
in order to be more useful than an online file cabinet. Over
the years, images have become an extremely important dataset
for scientific explorations due to their ability to reveal spa-
tial information and relationships not immediately available
from other data sources. Automated analysis tools have the
potential for changing the way images are used to answer

domain-specific questions. For example, in aerial photography
or in facial images, they are used for automatic image annota-
tions [21, 32]; in astronomical satellite images, they are used
to accurately detect point sources and their intensities [14];
and in biology, they are used for mining interesting patterns
of cell and tissue behavior or for high-throughput identifica-
tion of abnormal samples [4, 11]. Quantitative analysis is cen-
tral to studying changes in cells, tissues and organs and may
provide the impetus needed to emulate the success of applying
computational methods in genetics to the field of microscopy.

Querying specific patterns within a region helps domain
scientists understand useful information and trends otherwise
masked in the whole image. For example, biologists may be
interested in examining only a single kind of cell in an image
and finding similar patterns of just that cell from a bioimage
database or astronomers may be interested in detecting only
a particular kind of stars. Whole image matching methods are
not relevant in this context. Image pattern matching can also be
used to quantify the temporal, experimental, and inter-species
differences.

Figure 1 shows examples of cross-sections of feline retina
with different rearrangements of peanut-agglutinin protein.
Such microscopy images are used to understand the change
in the distribution of proteins in different experimental condi-
tions, such as when the retina is detached or when different
treatments are used, or to visualize specific cells across these
conditions [11]. The ability to discriminate and classify on the
basis of patterns (e.g., the intensity of fluorescence labeling or
texture as shown in the figure) can help identify differences
and similarities of various cellular processes within the retina.
Determining if the pattern of a particular tissue under retinal
detachment conditions is specific to cats, or is a common oc-
currence across mammals including humans may help signifi-
cantly in developing cures for retinal diseases [11].

The marked region in Figure 1(a) depicts a fold in the reti-
nal tissue. If a retinal detachment encompasses a large per-
centage of the total retinal area, then the retina can pull back
upon itself and cause a fold. Within the folded tissue, the re-
arrangement of protein labeling is different from unfolded tis-
sues. Knowledge of how the distribution and expression levels
within a fold differs provides insight into how cells respond
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(a) Query pattern (b) Result with distance-based scheme (c) Result with scoring-based scheme
on entire region and sub-region finding

Figure 1. (a) Example of a biologically interesting pattern. The marked pattern highlights a fold of the
retinal tissue labeled with peanut-agglutinin conjugated to a fluorescent probe. (b) Retrieved result
when distance-based matching on entire region is used. (c) Retrieved result when score-based match-
ing on sub-regions is used.

to injury [11]. Querying similar patterns from a database of
such micrographs helps to answer these questions. Figure 1(b)
shows that distance-based whole region matching schemes are
not sufficient in this context. Figure 1(c) shows an actual re-
sult produced by our proposed method QUIP (QUerying Im-
age Patterns).

In order to find meaningful results such as these, access
methods in image databases have to provide the following:

• It is necessary to develop a scoring scheme to separate
relevant foreground patterns from irrelevant background.
Distance-based methods include background regions that
contain little or no information and thus produce many
false results. A mechanism to assign negative or low
scores to similar background matches and high positive
scores to foreground matches should be used. Score-
based methods are also sensitive at finding interesting re-
gions irrespective of their extent.

• The result of a query can be a sub-region. As shown in
Figure 1(c), the pattern is best captured by the shape out-
lined in the figure. The portion of the region not high-
lighted constitutes the background and should, therefore,
be discarded. Scoring the pairwise aligned tiles of the
query to a database region define a score matrix. We show
that finding the maximal scoring connected sub-region by
examining all possibilities from this score matrix is NP-
hard. This means that an effective heuristic should be
devised to identify the most interesting sub-region.

• The method should handle translation, rotation and re-
flection. Images are often not registered or oriented prop-
erly. Magnification needs to handled as well to ensure
that the result contains patterns originating from similar
underlying mechanisms (e.g., same cells or tissues).

• The results from the method should be semantically
meaningful and statistically significant. It is valuable to
compute the p-value (a measure of statistical significance)
of the result in order to understand whether the queried
pattern is rare or frequent in the database. Scanning the
entire database to ascertain the p-value of the score of the
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Figure 2. Overview of QUIP.

match is not practical; consequently, an efficient approxi-
mation algorithm must be devised.

• The method should be scalable to database and query
sizes and the running times should be practical. It is
necessary to identify and prune regions of the database
that are guaranteed to be absent from the top-k matches
for the query. Since scoring-based mechanisms are used,
fast similarity search methods that can incorporate such
scores need to be designed.

Figure 2 shows a schematic view of our method QUIP that
achieves all the above goals. Both the database images and
the query pattern are tiled; image features are extracted from
these tiles and indexed (Section 2). A query is specified as a
rectangular region of tiles. A mechanism is designed to score
the match of a query tile against a database tile (Section 3).
An algorithm to choose the maximal scoring connected sub-
region is applied (Section 4) to the score matrices produced by
overlapping candidate database regions with the query (Sec-
tion 5). For each of the top-k results retrieved, the statisti-
cal significance of the match is computed against the database
(Section 6).

2. Tiling and Image Features

Comparison of a pair of image regions requires region spec-
ification, an image feature extracted from the region and a dis-
tance metric. In addition to these, biomedical images bring
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Figure 3. Scoring a query tile q against a
database tile t. b denotes the perfect “back-
ground” tile. score(q, t) = s− λr− c.

some subtle but practical complications: i) Orientation: Most
images are not oriented in the same manner; for some kind of
images, there may not be any canonical orientation at all [4].
ii) Registration: It is not always possible to register the images;
the same areas of the image will not contain the same tissue or
the same cells due to individual variations [11]. iii) Magnifica-
tion: Images may not be of the same magnification [11].

We first adjust for the magnification of each image by re-
scaling them using the GraphicsMagick CubicFilter [1] and
then partition the scaled image into non-overlapping tiles such
that the physical size of each tile is the same. A region is spec-
ified as a collection of tiles. Tiling also helps to bypass the
practical issues of image registration, image orientation, and
image segmentation. The optimal tile size depends on the na-
ture of images. The tiles must be large enough to capture the
spatial patterns. On the other hand, making a tile too large will
confuse between more than one pattern and will also decrease
the specificity of characterizing a region. Based on domain
knowledge, we set the tile size to 32 × 32 pixels.

The different image features that we experimented with in-
clude (i) Gabor texture [21], (ii) Simple intensity binning, and
(iii) Color Structure Descriptor (CSD) from MPEG-7 [23]. We
evaluated the effectiveness of each feature by examining tiles
that are retrieved by running a similarity search on a database
with that feature. Gabor texture feature failed when there was
no uniform texture across the tile. For multi-channel images,
where each channel is pseudo-colored, the texture features per-
formed poorly. Simple intensity binning worked better with
colored tiles. However, it could not capture the different pat-
terns. The CSD maintains color histograms that is sensitive to
both the color distribution of the image and the local spatial
structure of the color. Here, the image is first transformed into
the HMMD color space. Then, for each position of a sliding 8
× 8 structural element, if a color is present, its corresponding
bin is incremented. CSD captured the patterns well for both
color and gray-scale images.

In order to avoid the “curse of dimensionality” asso-
ciated with high-dimensional feature vectors like the 256-
dimensional CSD features, we applied principal component
analysis (PCA) [17]. As a rule of thumb, we retained at least
90% of the energy from each dataset. We indexed the resulting
feature vectors using an R-tree [13] and used the L1 metric to
compute the distances.

3. Scoring Mechanism

In this section, we devise an automatic scoring mechanism
that translates the distance between two tiles into a score. For
each tile, a value is computed to measure its information con-
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Figure 4. Distribution of database tiles accord-
ing to their distances from the perfect back-
ground tile. For each tile, this distance mea-
sures its “backgroundness” value.

tent. Tiles with little or no information form the background
and, therefore, should get negative or low scores whereas tiles
with more pattern information should get high positive scores
when matched with similarly distant tiles. Also, for a partic-
ular tile, more distant tiles should score less than nearer ones.
These ideas are captured in our scoring mechanism.

The tile space can be assumed to have two distributions.
The first distribution is that of similar tiles from a database tile
which we call the true distribution. We model this as an expo-
nential distribution. Our reasons for choosing this distribution
are two-fold: first, its simplicity, and second, its utility in cap-
turing small variations over related images. For a database tile
t and a query tile q (Figure 3), if r = d(q, t) = the L1 distance
between the feature values of q and t, then we can characterize
this distribution as

P (q|true distribution) = λ1e
−λ1r (1)

The second distribution is that of background tiles in the
database, which we call the background distribution. To mea-
sure the “backgroundness” of a tile, we computed the total in-
tensity of all its pixels. The perfect background tile b in Fig-
ure 3 is all black and has 0 total intensity. As shown in Fig-
ure 4, the distance distribution from b was found to be expo-
nential. If s = d(q, b) = the difference of the total intensities
of q and b, then this distribution is modeled as

P (q|background distribution) = λ2e
−λ2s (2)

The score of a query tile q matching a database tile t is given
by the log-odds ratio:

score(q, t) = ln
P (q|true distribution)

P (q|background distribution)

= λ2s− λ1r + ln(λ1/λ2) (3)

Since scoring is only used to discriminate between foreground
and background matches and the actual score is not important,
the scores can be conveniently translated and scaled with con-
stants. Denoting λ1/λ2 by a constant λ, scaling by λ2 and
translating the score gives

score(q, t) = s− λ.r − c (4)

= d(q, b)− λ.d(q, t) − c (5)
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Figure 5. A 4× 4 query is overlapped with a
database image. For each tile in the 3× 3 over-
lapped region, a score for the match is com-
puted. DP is run on the score matrix to obtain
the maximal scoring connected sub-region.

where λ and c are independent constants.
We can make the following observations from Eq. (5):

(i) When distance to a database tile is kept invariant, a query
tile with less background has a higher score, (ii) For a particu-
lar query tile, a more distant database tile has a lesser score.

We trained the parameters λ and c in order to fine tune the
results according to the given image repository. The details are
explained in Section 7.2.

An index structure built on the feature distances can be used
because of the fact that the ascending order of distances for the
database tiles is equivalent to the descending order of scores
from a particular query tile. Thus, a nearest neighbor search
readily returns the most scoring database tiles.

4. Finding Sub-Regions

In this section, we describe how the individual scores of
matching a query tile against a database tile can be combined
into a score of matching the entire query to a database region.
As shown in Figure 5, overlapping the query region with a
portion of the database image produces a score matrix of the
pairwise aligned tiles where each score can be either positive
or negative. We want to choose a connected sub-region that
has the maximal possible cumulative score from this score ma-
trix. Figure 5 illustrates that the maximal score may include
negative scores and may not be rectangular in shape. We next
show that the problem is NP-hard.

4.1. NP-completeness Proof

The problem “Find the maximal weighted connected sub-
region inside a matrix with positive and negative weights” is
NP-hard. We prove this by showing that the corresponding
decision problem in the graph equivalent of the matrix is NP-
complete.

The graph problem is posed as follows: Given a planar
graph G = (V, E) of degree at most 4, and with weight w(v)
on each vertex v ∈ V , is there a connected subgraph of weight
≥ W? We denote this problem by MAXIMAL WEIGHTED

CONNECTED SUBGRAPH or MWCS.

Theorem 1. MWCS is NP-complete, even for planar graphs
of degree at most 4.
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Figure 6. Construction from Rectilinear Steiner
Tree instance to Maximal Weighted Connected
Subgraph (MWCS) instance. The double lined
vertices are the original terminal points and the
bold lines represent a feasible solution to both
the problems.

Proof. We first show that MWCS is in NP by allowing a non-
deterministic Turing machine to guess a connected subgraph
and check whether it has a weight of at least W .

We next reduce a known NP-complete problem RECTILIN-
EAR STEINER TREE (RST) [12] to this problem. The RST
problem asks: Given a set of n terminal points that are embed-
ded in an integer grid in a plane, is there a spanning tree of
total length l or less such that the vertices of the spanning tree
are the points of the set and the grid points, and the length of
an edge is the L1 distance between the corresponding vertices?

Given an instance of the RST, we construct an instance of
the MWCS as follows: We first find the bounding box of the
points of the RST. Then, we replace each terminal point by
a vertex of weight w � l. At each grid point that is not al-
ready occupied by the n terminal points, we place a vertex
with weight 0. Between a pair of consecutive vertices on the
same grid line (e.g., on the half-grid positions), we place a ver-
tex with weight −1. Each vertex is connected to at most 4 of
its neighbors along the directions of the grid, i.e., only to its
horizontal and vertical neighbors. Figure 6 shows an example
of the construction. The original points are shown by double
circles. Clearly, the construction takes polynomial time and
the graph G thus constructed is planar with degree at most 4.

We claim that the original RST on n points has a rectilinear
Steiner tree of length ≤ l if and only if the MWCS graph has
a connected subgraph of weight ≥W = n.w − l.

Only if: Assume that there is a Steiner tree of length at most
l. By definition, it spans all the terminal points and is con-
nected. Note that for a length l path between two points, there
are exactly l vertices of weight −1. The vertices correspond-
ing to the n terminal points has a weight of w each. Therefore,
the weight of this tree is at least n.w − l. Figure 6 shows such
a Steiner tree in solid lines.

If: Any connected subgraph of weight at least n.w − l in
G must include all the n vertices of weight w and at most l
vertices of weight−1. There is no way to connect two vertices
of weight ≥ 0 without passing through a vertex of weight −1.
Therefore, the length of this subgraph is at most l, since other-
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Figure 7. Some possible matching translations,
rotations and reflections for a 2× 3 query
against a database image (shown in bold).

wise, the connected subgraph would have included more than
l vertices of weight −1. Also, if the subgraph has the maxi-
mal weight, it is a tree, since, if it is not, at least one pair of
vertices has more than one path between them. Removing that
path increases the weight of the tree by the length of the path.
Therefore, this subgraph defines a Steiner tree for the original
n points. An example of such a subgraph is shown in Figure 6
in solid lines.

4.2. Heuristic: Dynamic Programming

In this section, we design a simple dynamic programming
(DP) heuristic as an alternate to examining all possible sub-
regions for finding the maximal score. Assume that the score
in tile (i, j) of the score matrix is denoted by w(i, j) and the
tile itself is denoted by T (i, j). The DP is started from the
lower left-hand corner tile and is continued by moving to right
(→) and up (↑).

The maximal score of a sub-region ending on a tile T (i, j)
examines 4 possibilities: i) the score of the tile itself, ii) the
score of the tile plus the maximal score for the bottom sub-
region, iii) the score of tile plus the maximal score for the left
sub-region, and iv) the score of the tile plus the maximal scores
for the bottom and the left sub-regions. Since the bottom and
the left sub-regions can intersect, the score of the intersecting
region should be subtracted from the cumulative scores of the
two sub-regions so that it is not counted twice.

Denoting the sub-region with the maximal score s(i, j) end-
ing at the tile T (i, j) by R(i, j), the DP algorithm computes
the following recurrence relation:

s(i, j) = max



















w(i, j)
s(i, j − 1) + w(i, j)
s(i− 1, j) + w(i, j)
s(i, j − 1) + s(i− 1, j) + w(i, j)

−s(R(i, j − 1) ∩ R(i− 1, j))

(6)

The region maintained for the 4 cases are, respectively:

R(i, j) =











T (i, j)
R(i, j − 1) ∪ T (i, j)
R(i− 1, j) ∪ T (i, j)
R(i, j − 1) ∪R(i− 1, j) ∪ T (i, j)

(7)

Each query can be matched with a database region in 8 pos-
sible ways (4 rotations and 2 reflections). Some of these pos-
sibilities are shown in Figure 7. The DP algorithm is run for
all the 8 cases and the sub-region with the maximum score is
considered as the match.

Running time: For a score matrix of size m×n, the DP com-
putes the maximal score for the sub-region ending at each cell.
Calculating the scores for each cell requires finding an inter-
section of the largest scoring sub-regions on its bottom and
left. This may require a running time of the order of O(mn)
in the worst case. Thus, the total running time of the DP algo-
rithm is O(m2n2). For a particular score matrix, the DP needs
to be run from all the 4 corners in the following combinations
of moves: (i) ↑ or →, (ii) ↑ or ←, (iii) ↓ or →, (iv) ↓ or ←.
Thus, the worst case running time for the DP is quadratic in
the size of the score matrix.
Shape: The DP algorithm cannot investigate all the possible
connected sub-regions; it chooses the maximum scoring con-
nected sub-region from only a certain class of shapes. We next
analyze the class of such shapes. For a particular shape P , a
tile t sinks another tile s, denoted by t / s, if t can be reached
from s in P by taking only a pre-defined set of moves. A tile
t sinks a shape P , denoted by t / P , if and only if for all tiles
s belonging to P , t sinks s, i.e., t / P ⇐⇒ ∀s ∈ P, t / s. A
particular shape P can be captured by DP if and only if there
exists a tile t ∈ P that sinks P by either of the following four
combinations of moves: (i) ↑ or→, (ii) ↑ or←, (iii) ↓ or→,
(iv) ↓ or←. Examples of shapes that can be captured by DP
are: u, �. Shapes that cannot be captured include +,×.

5. The QUIP Algorithm

This section describes the overall QUIP algorithm that
includes the scoring scheme and the sub-region finding
heuristic—how the top-k matches (in terms of cumulative
scores) for a query pattern are retrieved from a database of im-
ages. For each query, there are many possible overlaps, each
producing a score matrix on which DP needs to be run for ex-
tracting the maximal scoring connected sub-region.

If a database image has m tiles, there are m possible ways
to place the query on the image. This takes into account
all the possible translations. However, to take into account
the orientation, the pattern has to be rotated at four angles—
0◦, 90◦, 180◦, and 270◦—and reflected for each such rota-
tion (Figure 7). We do not handle rotations of arbitrary an-
gles. Most images, including the ones that we experiment with
(Section 7.1), are generally aligned to the x- and y-axes and
hence these 4 angles are sufficient to capture the similar pat-
terns. Thus, for a database of n images containing m tiles
each, the cost of running the linear scan is of the order of
O(8mn) × O(DP ). Thus, the total number of tiles in the
database is the most important parameter in finding the over-
laps and not the number of images. In order to avoid the high
cost of linear scan and make our algorithm scalable to large
databases, we adopt the threshold algorithm (TA) [10] in QUIP
to find the best scoring regions.

The QUIP algorithm (outlined in Figure 8) proceeds by
maintaining a priority queue M that contains the k best
matches found so far and a threshold score T that is the best
possible score for a match not yet explored. Initially, M is
empty and T is∞. A bit vector B for all the database regions
is also initialized with 0 to indicate that none of the regions
have been explored.
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QUIP Algorithm
Input: Q, query pattern; k, number of matches
Output: M , priority queue of the top-k matching regions
1. for each query tile Qi

2. currtile[i] := First-NN of Qi

3. end for
4. T := score of DP on score matrix of tiles in currtile[i]
5. M := φ
6. for each query tile Qi

7. Ni := next κ nearest neighbors of Qi after currtile[i]
8. for each tile Nij ∈ Ni

9. retrieve Nij from disk, if not already cached
10. for each orientation
11. O := overlapping region (Nij)
12. if O has not been explored
13. S := score of DP on O
14. update M with S
15. mark O as explored in bit vector B
16. end if
17. end for
18. currtile[i] := Nij

19. update T
20. if kth score in M > T
21. return M
22. end if
23. end for
24. end for

Figure 8. The QUIP algorithm.

In every iteration of the algorithm, κ best neighbors from
each of the query tiles are retrieved from the database by using
either an index structure like the R-tree [13] or by sequential
scan. Since many nearest neighbor searches may be required to
be run for each query tile, we implemented incremental nearest
neighbor search [15]. Once a similarity search for a query tile
is run, it pays little overhead for subsequent nearest neighbor
searches. We maintain κ = 2000.

For each retrieved database tile, henceforth called “seed”,
we retrieve its corresponding image from the memory cache
or disk in case of cache miss. The seed and the position of
the corresponding query tile in the query region are used to
complete the overlapping region in the image in each of the 8
orientations. Each overlapped region produces a score matrix
as shown in Figure 5 on which DP is run to obtain a maximal
scoring connected sub-region. The sub-region is inserted in M
if its score is within the top k scores found so far. Thus, the k th

best score in M monotonically increases. The corresponding
bit for the region in B is set to 1 so that DP is not run more
than once on it.

The current score for each query tile forms an upper bound
on the scores of database tiles yet to be explored. The thresh-
old score T is thus maintained as the maximal score found by
DP on the score matrix formed by such scores. T thus stands
for the best possible cumulative score for a region not yet ac-
cessed. As the algorithm proceeds, seeds with smaller scores
are accessed leading to a decrease in T . The algorithm stops
when the kth score in M exceeds T .

6. Significance Computation

In order to assist the domain scientists in understanding
whether the query pattern is rare or matches frequently in the
database, we can compute the statistical significance or p-value
of each result retrieved by QUIP.

The p-value of score s of a result against a query is defined
as the probability of randomly obtaining a match with score
s or higher from the database for the same query. P-value of
score s can be computed by first scoring every database region
with the query and then computing the probability of scores
greater than s from the distribution. Mathematically, p-value
is calculated as the area under the score distribution greater
than s, i.e., pvalue = 1− cdf(s) where cdf is the cumulative
distribution of the scores of the database regions. The lower
the p-value, the more significant is the match.

Clearly, it is impractical to compute the p-value in the naı̈ve
way by scoring all the database regions at run time. We next
describe an approximation technique to compute p-values ef-
ficiently. There are three ideas in our algorithm: (i) use his-
tograms to approximate score distributions from each query
tile, (ii) cascade convolution of query tile histograms to obtain
the score histogram of the entire query, and (iii) use bounds to
convolute histograms.

For every database tile, the score distribution of matching it
to all database tiles is pre-computed and maintained as a his-
togram. Since the top results are likely to include more positive
scores, greater details are maintained for positive scores (bins
are in intervals of 10) than negative scores (bins in intervals of
10,000). The score distribution of a query tile is approximated
by the score histogram of its closest database tile.

The score histogram of an entire query region is the con-
volution of the histograms of the individual query tiles. For r
tiles with b bins each, the convolution requires br operations.
To avoid such exponential costs, we convolute the histograms
in a cascading fashion. Initially, the histograms of the first two
tiles are convoluted to yield another score histogram that is
binned in the same manner—intervals of 10 for positive scores
and 10,000 for negative scores. Then, this histogram is con-
voluted with the next histogram and so on till all the r his-
tograms have been convoluted. Denoting the convolution of
histograms up to i tiles by ρi and the ith histogram by qi, we
compute ρi = ρi−1 ⊕ qi up to i = r. Each histogram convo-
lution requires quadratic number of operations in terms of the
number of bins in the histograms. To make it more efficient,
we applied the following bounding procedure.

The bounding method aims to collapse multiple bins into a
single bin. This is achieved by computing score bounds in each
histogram. The scores below this bound cannot contribute to
the score s of the match whose p-value is being computed.
Hence, the details of the bins that are completely below this
bound need not be maintained. They are combined into a sin-
gle bin. This reduces the number of bins and speeds up the
histogram convolutions.

Figure 9 shows an example. Assume that qi+1 is the last
histogram, i.e., i + 1 = r. If s = 100 and the maximum score
in the histogram of qi+1 is 40, then any score less than 60 in
ρi cannot add up to 100. Thus, all the bins in ρi that contains
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Figure 9. Efficient convolution of histograms.
The bins below the highlighted bounds in each
histogram can be combined together.

scores below 60 can be combined together. In Figure 9, the
bins in ρi with upper boundaries 59 and smaller are combined
together. The bounds can be computed backwards for qi and
ρi−1 as well. The maximum in ρi−1 is 25. Since, (details of)
scores of only 60 and above are required in ρi, any score less
than 35 in qi are not required. Thus, as shown in the figure, the
bins with upper boundaries 55, 42, and 35 are left as they are.
All the three other bins can be collapsed reducing the number
of bins from 6 to 3. Similarly, the last two bins in ρi−1 that are
below the bound 5 can be combined together. Mathematically,
these bounds can be calculated by:

B(ρi−1) = s−

r
∑

j=i

(

max(qj)
)

(8)

B(qi) = s−
r

∑

j=i

(

max(qj)
)

−max(ρi−1) (9)

7. Experimental Results

In this section, we present the results: both qualitative and
quantitative. Due to the usefulness of micrographs in biology
and their availability, we conducted our experiments with 3
datasets of confocal microscopy images of cross-sections of
feline retina. We also synthetically generated a bigger dataset.

7.1. Datasets

The first retinal dataset, PA, consisted of 80 images (30,601
tiles) labeled with the lectin peanut-agglutinin (PNA). The
second dataset, NF, consisted of 37 images (31,343 tiles) la-
beled with the anti-neurofilament (anti-NF) antibody. The
third dataset, GR, consisted of 121 images (160,378 tiles) la-
beled with anti-glial fibrillary acidic protein (anti-GFAP) and
anti-rhodopsin antibodies. The details of the imaging and the
antibodies can be found in Appendix A and in [11].

Other than these real biological datasets, a synthetic dataset
was also generated to test the scalability of QUIP with
database and query sizes. The base of the dataset was 61,944
tiles of the PA and the NF datasets combined, denoted by
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Figure 10. Effect of dimensionality. Dimension-
ality of 6 has the best quality-time trade-off.

PANF (117 images). Perturbations were applied both at image
level and at tile level. The image level changes were: (i) In-
tensity of each pixel was changed randomly, (ii) Based on a
random number generated, either the upper half or the lower
half of the image was made background, and (iii) Based on a
random number generated, the image was reflected either hori-
zontally or vertically along the mid-axis. The tile level changes
were: (i) Intensity of 100 pixels in a tile were changed ran-
domly, (ii) Pixels were distributed randomly inside a tile, and
(iii) Each pixel intensity was modified to the average intensity
of its 4 neighbors. In this way, a dataset of 805,272 tiles (1,521
images) was created.

We emphasize the point that the number of potential
matches for a query is equal to the number of tiles in the
database times the number of rotations and reflections times
the number of sub-regions within each candidate region. Thus,
the number of regions a query needs to handle is equal to the
number of tiles—805,272.

7.2. Parameter Selection

We first describe the choice of different parameters used in
our experiments: the parameters for the scoring scheme and
the reduced dimensionality of the datasets.

The parameters λ and c for the scoring scheme in Eq. (5)
described in Section 3 required manual training in order to
fine tune the score according to the nature of the image repos-
itory. The parameters were chosen based on a classification
scheme similar to that used in the Walrus method [24]. For
each queried pattern, we tagged a database region as either a
true match or a false match. The classification accuracy was
computed as the ratio of the number of true matches to the to-
tal number of matches. The entire database was split into two
parts in a stratified cross-validation manner. We experimented
with different values of λ and c and evaluated the top-5 results
from each query.

Since the process of identifying the ground truth is manual
(therefore, subjective) and also very labor-intensive, we trained
our parameters for the PA dataset on 10 queries. The dimen-
sionality of the dataset was reduced from 256 to d = 7 by
PCA [17] which retained 99.99% of the energy. The highest
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Figure 11. A query from the GR dataset.

Figure 12. Top result from the GR dataset.

classification accuracy (82.0%) was achieved with λ = 1 and
c = 23000. With these parameters, 8 other queries were clas-
sified over the entire PA dataset. An accuracy of 78.6% was
achieved. The same values of d = 7 (99.99% energy), λ = 1
and c = 23000 obtained good results (86.7% for 3 queries) for
the NF dataset. The GR dataset contained color information in
both red and green channels and thus were more varied; 90%
of the energy was retained using d = 12 dimensions. The clas-
sification accuracy of the results with the same values of λ and
c was 82.4% for 3 queries. All the 14 queries except two re-
turned at least 3 true matches out of the top-5. For all of them,
the first match was a true match.

The next set of experiments was performed on the reduced
dimensionality d. Figure 10 shows the effect of dimensionality
on the classification accuracy and the running time for the PA
dataset. The parameters for the scoring scheme did not have
appreciable effect on the dimensionality and were thus main-
tained across the different dimensions. Since d = 7 retained
almost all the energy (99.99%), higher dimensional features
were not explored. The classification accuracy and the run-
ning time have been normalized with respect to their values
for d = 7. Higher dimensional feature values retrieved bet-
ter quality results, but took a longer time to finish. To deter-
mine the best quality-time trade-off, we calculated the ratio of
normalized classification accuracy to normalized running time.
Even though d = 7 achieved the best quality, the gain in qual-
ity over d = 6 was not much when compared to the amount
of extra time it took to complete. Dimensionality of 6 had the
best quality-time trade-off and was subsequently used in all
our experiments.

7.3. Biological Significance of Retrieved Results

The next set of experiments assess the performance of our
method in the context of retinal biology. Figure 1(c) shows the

PA NF GR
4.8× 10−16 2.6× 10−14 4.3× 10−39

1.6× 10−15 3.9× 10−14 1.8× 10−38

1.4× 10−14 4.5× 10−14 1.5× 10−32

1.6× 10−11 2.1× 10−13 9.4× 10−32

3.0× 10−11 1.0× 10−12 1.1× 10−31

Table 1. P-values of the top-5 results.

best result for the query in Figure 1(a) from the PA dataset.
Both capture folds in the outer segment layer in retinas that
have been detached for 7 days. Figure 11 shows a query from
the GR dataset that captures new growth of glial cells into the
outer nuclear layer and a corresponding migration of rhodopsin
from the rod and cone layer into the outer nuclear layer during
retinal detachment. The result shown in Figure 12 has found a
similar simultaneous migration of both GFAP and rhodopsin.
Appendix B shows an example query and the top result from
the NF dataset. All these results show that QUIP is able to find
matches that are semantically useful.

7.4. Statistical Significance of Retrieved Results

We next report the p-values of the top-5 matches for each
of the queries described in Section 7.3. Table 1 shows that
the results were significant with low p-values of the order of
10−11 or less. In general, the results for the GR dataset were
much more significant than the other two datasets due to its
bigger size. This shows that QUIP returns true and significant
matches for patterns of biological interest.

7.5. Running Time and Scalability

In this section, we first report the running times of returning
top-5 results for queries of size 25 (for 32× 32 pixel tiles, this
translates to 25,600 pixels) on the real datasets. It took 5.5s
and 5.6s to finish for the PA and the NF datasets respectively.
Computing the p-values added an overhead of 0.2s or 4% time.
The queries on the bigger and higher dimensional GR dataset
finished in 33.8s with an additional overhead of 1.1s or 3% of
the time for p-value computation.

To ascertain the scalability of QUIP with respect to large
databases and queries, we performed two scalability experi-
ments, one with database size and the other with query size.

Since the number of regions (equivalently, tiles) in the
database is the most important parameter in testing the scal-
ability with database size, we created different smaller sized
datasets in multiples of 200,000 tiles from the synthetic
dataset. We experimented with both bulk-loaded R-trees [37,
19] and sequential scan for nearest neighbor searches. Due to
the large number of nearest neighbors required to lower the
threshold score below the kth best score and to halt the algo-
rithm (Section 5), using R-trees was costly. The datasets were
all memory-resident and, therefore, sequential scan was faster.
The times reported here are with sequential scan. In future,
we plan to experiment with even bigger disk-resident datasets.
We also envision applying some early stopping criteria with
probabilistic guarantees by characterizing the rate of decrease
of threshold score and the rate of increase of the k th best score.
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Figure 13 shows the running time for these datasets and the
real dataset PANF (of size 61,944) for 3 different query sizes.
Even for a huge database of 805,272 regions and a query of
size 35, QUIP finishes in less than 76s. All other queries fin-
ished in less than a minute. P-value computation takes less
than a second to complete. For larger datasets, the scalability
becomes linear due to the sequential scans.

Next, we report the effect of increasing query sizes on
QUIP (Figure 14). Queries of different sizes ranging from
small (10) to huge (40) were run for PANF and two other syn-
thetic datasets. For more query tiles, more nearest neighbor
retrievals were required. Further, for larger sized regions, the
cost of running the DP for finding sub-regions were increased.
Even then, queries of size 40 finished in just over a minute.
For real datasets, even the largest queries finished in less than
22s. This shows that QUIP is practical.

7.6. Effect of Threshold Algorithm

To understand the effect of running the modified thresh-
old algorithm in QUIP instead of just a simple database scan,
we measured the number of “seeds” (or database regions) ex-
plored by QUIP on the different synthetic databases. A linear
scan always explores all the regions in the database. Figure 15
shows that using the threshold algorithm prunes large parts of
the database. For small to medium query sizes (up to 25), the
pruning is over 80%. Even for large query sizes (up to 35),
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Figure 15. Effect of threshold algorithm.

more than half the database regions are pruned, and the asso-
ciated DP costs are saved.

8. Background and Related Work

The retina is the part of the eye that contains neurons that
respond to light and transmit electrical signals to the brain via
the optic nerve. Multiple molecular probes such as lectins and
antibodies are used to examine the localization of specific pro-
tein expression in retinal cells and the expression patterns of
these proteins in the different layers of the retina. The fluores-
cently tagged probes are visualized by immunohistochemistry
using a confocal microscope. Multiple proteins can be visu-
alized in a single image, with each protein represented by a
different color channel. Images are taken from retinas that are
normal or have been detached for 1, 3, 7, 28 days or re-attached
for 3, 6, 28 days after detachment [11].

An excellent survey on the recent methods of content-
based image retrieval (CBIR) and region-based image re-
trieval (RBIR) methods developed by the image processing
community can be found in [9]. Some older surveys are
in [27, 29]. A semantics-sensitive image retrieval approach
was proposed in [34]. Semantic categories, region segmenta-
tion with wavelet features and integrated region matching [20]
were used as part of it. Wavelet features and region match-
ing with maximum area overlap was used by [24]. Many ad-
ditional systems for CBIR and/or RBIR have been developed
[2, 5, 6, 18, 22, 33, 35, 36]. RBIR has also been extended to
incorporate fuzzy logic [7], perceptual grouping rules [16], sta-
tistical tests [30], vantage points [25], fractal parameters [26],
salient points [31], etc. Most of these methods use automatic
or manual region segmentation in order to characterize regions
and then use one-to-one or many-to-one mapping to match re-
gions. None of them discern between foreground and back-
ground. Dagli et al. [8] partitioned an image into small (4× 4)
non-overlapping tiles and used local low-level features to get
rid of irrelevant background. The query region was segmented
into foreground and background and only the foreground re-
gion was searched in the database. One important work in
medical imagery was by Shyu et al. [28] in the domain of
high-resolution computed tomography of the lung. They used
expert-annotated perceptual categories and applied various op-
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erators to detect presence or absence of these categories in an
image. The discriminatory power of the categories were tested
by statistical tests. Key patterns (keywords) in a dataset was
discovered using a visual vocabulary in [3]. A texture the-
saurus was used for pattern annotation in [21].

9. Conclusions

In this paper, we developed a novel method QUIP to ad-
dress the problem of querying significant patterns from a im-
age database. The advancement of high-throughput and high-
quality image acquisition techniques coupled with the abil-
ity of images to reveal spatio-temporal information not read-
ily available from other data sources makes this an important
mechanism of gaining scientific knowledge.

A scoring scheme was developed to capture the relevant
pattern information from a tiled image region. Each tile was
adjudged a background value and the smaller this value, the
higher it scored with a similar tile. A query pattern was spec-
ified as a rectangular region of tiles. We proved that the prob-
lem of finding the maximal weighted connected subgraph from
a vertex-weighted graph of both positive and negative weights
is NP-hard, even for planar graphs of degree at most 4. An ef-
fective dynamic programming heuristic was proposed to solve
it. We adopted the threshold algorithm to efficiently find the
overlapping candidate database regions. For each result, we
developed an algorithm to calculate the statistical significance
of the match.

We showed that QUIP was able to retrieve patterns that are
scientifically meaningful and important. Finally, we illustrated
that our method has practical running times and scales with
respect to database and query sizes.
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Appendix

A. Background on Retinal Images

Peanut-agglutinin (PNA) is a lectin composed of four iden-
tical subunits. In the retina, it is found within the extracellular
matrix between the photoreceptor outer segments and the reti-
nal pigmented epithelial (RPE) cells. Photoreceptor cells are
responsible for the detection and harvesting of light. During
retinal detachment, the photoreceptors are detached from the
underlying RPE cells. This detachment causes a redistribu-
tion of the extracellular matrix surrounding the photoreceptor
cells. When the retina becomes reattached, there is further re-
arrangement of the extracellular matrix surrounding the pho-
toreceptors.

Neurofilament (NF) is an intermediate filament protein that
is expressed highly in the axons of neurons. During retinal
detachment, there is a significant rearrangement of the neural
connections in the retina which often results in loss or compro-
mised function of the photoreceptor signaling pathways via the
optic nerve to the brain.

Glial fibrillary acidic protein (GFAP) is an intermediate fil-
ament protein expressed in glial cells of retina including the
Müller cells. These cells support the functions of nerve cells.
When the retina is injured, glial cells react by rapidly produc-
ing more GFAP. During retinal detachment, GFAP’s expres-
sion becomes up-regulated.

Rhodopsin is expressed in photoreceptor cells of the retina.
In the normal retina, rhodopsin is localized exclusively to the
photoreceptor outer segments. During retinal detachment, the
photoreceptor outer segment rapidly degenerates. For reasons
unclear to biologists, this causes a redistribution of rhodopsin
to other portions of the photoreceptors.

Figure 16. A query from the NF dataset.

Figure 17. Top result from the NF dataset.

B. More Biological Results

Figures 16 and 17 show a query from the NF dataset and
the first result, respectively. The query captures the growth of
several axons. The result also centers on a region of new axon
growth demonstrating a true result.
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