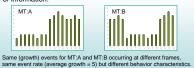
Automated Motion Detection and Quantitation of Cell Components: Application to Dynamic Populations of Microtubules in Living Cells

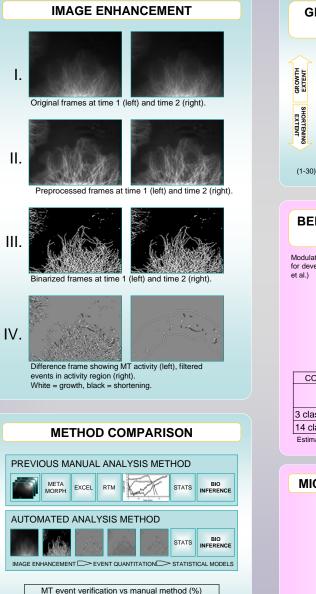
A. Altinok^{1,5}, A. J. Peck^{3,5}, S. C. Feinstein^{4,5}, L. Wilson^{3,5}, B. S. Maniunath^{2,5}, K. Rose^{2,5}

1 Computer Science, 2 Electrical and Computer Engineering, 3 Molecular, Cellular and Developmental Biology, 4 Neuroscience Research Institute, 5 Center for Bioimage Informatics, University of California at Santa Barbara, Santa Barbara, CA (Supported by NSF ITR Grant 0331697.)


ABSTRACT

Live cell imaging technologies have advanced enormously over the past decade. However, in most cases, analysis remains a painstaking, tedious and largely manual task, limiting the quantity and quality of resulting data. Here, we describe (i) the development of computational methods that detects and quantifies changes in the location of objects of interest in living cells and (ii) the application of this software to the analysis of populations of GFP-labeled microtubules (MTs). More specifically, we developed image enhancement techniques to automatically track and quantify the growing and shortening behavior of populations of MTs in living cells. Our new method improves dramatically upon the currently available means to analyze MT behavior. Through automated detection of all visible MTs in a fluorescence image stack in a visible cellular region (>100 MTs), each stack produces considerably more usable data in considerably less time while removing possible unintentional operator bias. Additionally, our technique preserves intact, ordered event histories of MT populations, possibly elucidating novel MT population behaviors which cannot be described by single event frequencies and average rates calculated from parsed data sets. Finally, global analysis of MT populations could reveal regional, behavioral specificities and MT population interrelations, possibly integral to specialized processes such as cell division and neuronal outgrowth. Taken together, this highly exportable technique improves our ability to address existing questions while making it possible to use statistics to ask novel questions regarding the behavior of MT populations (and other objects of interest) that have not been approachable previously.

LIMITATIONS OF MANUAL ANALYSIS


- Limited computational assistance
- Approximated measurements such as cutoffs to define attenuation event
- Possible user bias in MT selection and tracking
- Limited sample sizes
- Tremendous time and effort requirements per study Events are treated independently resulting in possible loss

IMPROVEMENT SUMMARY

- All manual limitations reduced or eliminated
- · Computation of statistics beyond traditional events · Broader set of descriptive statistics based on vastly
- larger data points Streamlined data flow into large databases
- Introduction of behavior patterns
- · Events are not parsed before analysis, event context is preserved
- Similarity measures based on behavior
- · Searching a database for similar behavior possible Standardization of analysis across MT research labs

broken

16 (1/6)

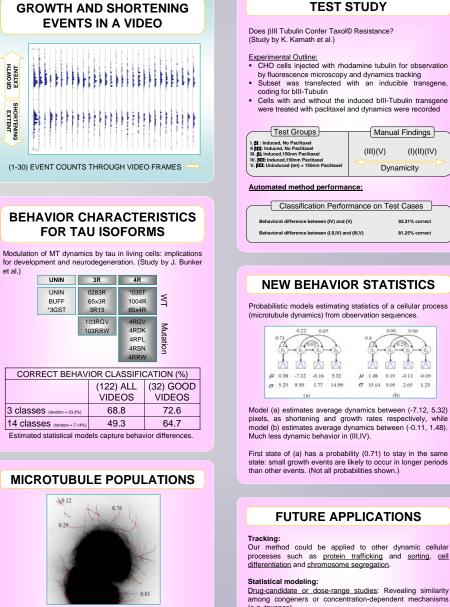
16 (1/6) 81 (49/60)

clear

95 (21/22)

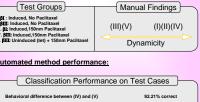
W Gaps

WO Gaps 100 (22/22)


noisy

56 (18/32)

81 (26/32)


total

66 (40/60)

Numbers describe the probability of individual MTs belonging to a particular class, based on behavior characteristics. It is possible to examine behavior patterns of MT populations.

- were treated with paclitaxel and dynamics were recorded

Model (a) estimates average dynamics between (-7.12, 5.32) pixels, as shortening and growth rates respectively, while model (b) estimates average dynamics between (-0.11, 1.48).

state: small growth events are likely to occur in longer periods

Our method could be applied to other dynamic cellular processes such as protein trafficking and sorting, cell

Drug-candidate or dose-range studies: Revealing similarity among congeners or concentration-dependent mechanisms (e.g. taxanes).

Protein mutation analyses: Evaluating individual and possible combinatorial affects of FTDP-17 mutations of tau upon MT dynamics, axonal transport,