
REDUNDANCY IN ALL PAIRS FAST MARCHING METHOD

Luca Bertelli, Baris Sumengen, B.S. Manjunath

Dept. of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106

ABSTRACT

In this paper, we analyze the redundancy in calculating all
pairs of geodesic distances on a rectangular grid. Fast march-
ing method is an efficient way to estimate the geodesic dis-
tances from a point. But when calculated for all the points
on the grid, this introduces certain redundancy. Our analysis
shows that over 90% of the distances are actually recalculated.
We propose a novel solution which exploits this redundancy
to reduce the number of distances evaluated using the Fast
Marching Method and enforces the symmetry of the distance
matrix. Experimental results show the improved accuracy ob-
tained with our implementation.

1. INTRODUCTION

The concept of pairwise similarity between pixels is impor-
tant in several applications. Many kernel-based or graph-
based image processing methods such as spectral clustering,
support vector machines, etc., depend on the availability of
good pairwise similarities between pixels that can be com-
puted in an efficient manner. Building a similarity graph by
calculating similarities between pixels can be ultimately re-
duced to a distance computation, traditionally meant as spa-
tial or feature distance. In [1], we introduced and utilized all
pairs geodesic distances for image segmentation. Values of
an edge function represent the cost of crossing a pixel when
connecting two pixels along the shortest path. Fig. 1 shows
geodesic distances from point 10× 600.

Fast Marching Method (FMM) [2] is an efficient algo-
rithm which can be used to find geodesic distances between
pixels. The distance between two pixels can be formulated as
the minimum number of edges that one needs to cross while
traveling from one pixel to another. To achieve this, first an
edge strength function is generated from the image gradients
and then this function is used as a cost function for cross-
ing the pixels. By calculating distances from each pixel to
all other pixels and expressing similarities as a monotonically
decreasing function of the distances, we can obtain a similar-
ity matrix, which can be fed to a graph partitioning or kernel

This work was supported by the National Science Foundation award NSF
ITR-0331697.

(a) (b)

Fig. 1. a) Original image of size 480 × 640 b) Geodesic
distances calculated from the point (10,600) using an edge
strength function as the cost function in Fast Marching al-
gorithm. The black cross in a) is the point from which Fast
Marching is run.

based method.
There is redundancy when naively calculating distances

from each pixel to all other pixels. This redundancy can be
exploited in order to reduce the number of distance calcula-
tions when Fast Marching Method is used. When distances
from a pixel to all the other ones are calculated, we can actu-
ally obtain distances among some other points in the image.
This is performed as follows: we store minimum paths from a
starting point (zero distance) to the rest of image and then we
evaluate the distances between the points along each path. In
fact, when we calculate the minimum path between A and B,
we also know the minimum path between any pair of points
along the path (see Fig. 2). This information is used in the
following Fast Marching runs, reducing the number of opera-
tions required.

The main observations in this paper are as follows: 1)
There is high redundancy, which is introduced by naively re-
peating the Fast Marching Method for each point in the im-
age. 2) Exploiting this redundancy will significantly reduce
the number of distances evaluated using the Fast Marching
Method. 3) We can ensure that the pairwise distance matrix
is symmetric resulting in a symmetric positive definite sim-
ilarity matrix required in graph partitioning or kernel based
methods.

The rest of the paper is organized as follows. In Section
2 we give a brief description of the Fast Marching algorithm
and our implementation, in Section 3 we describe how to ex-

A

B

C

D

Fig. 2. The black path is the shortest path connecting A and
B, which is also the shortest path between any other pair of
points along the same path (in this example C and D). Any
other path between C and D would result a higher distance.

ploit, using a geodesic tree, the redundancy generated by the
naive All Pairs Fast Marching Method. Section 4 measures
this redundancy and compares the results and the accuracy of
the proposed method with the naive approach. We then con-
clude in Section 5.

2. FAST MARCHING METHOD FOR DISTANCE
CALCULATION

Fast Marching Method (FMM) introduced by Sethian [2, 4,
6], is an efficient algorithm to estimate geodesic distances in
continuous domain using a first order approximation. In gen-
eral, to find shortest paths on a graph, Dijkstra’s algorithm
can be used [3]. A major drawback of Dijkstra’s algorithm is
that if we create a graph from an image using 4-neighbors of
pixels, the shortest paths on the graph will calculate L1 dis-
tance, e.g. the diagonal of a unit square is 2 (instead of

√
2)

regardless of how much we refine the grid.
On the other hand, Fast Marching Method is an efficient

algorithm to calculate geodesic distances by solving an eikonal
equation in discrete domain, where 4-neighbors are used to
estimate actual distances. The general expression of the eikonal
equation in 2D is as follows:

|∇T (x, y)| = F (x, y). (1)

The function F (x, y) gives the local weights used in arc length
calculation: ds2 = F 2(x, y)(dx2+dy2). If F is constant over
the whole domain, the solution of the eikonal equation is ex-
actly the Euclidean distance. If F is an edge strength function
then the solution T gives us the geodesic distances based on
image gradients. The boundary conditions are given as a set
of points for which T (x, y) is known.

In our implementation of FMM we utilize three static ma-
trices T , S and P and one priority queue QFM . In the matrix
T we store the solution of the eikonal equation (geodesic dis-
tances). The matrix S tells us the state of each point: 1 corre-
sponds to decided, 0 to far away and -1 to close. The matrix
P contains the positions of close points in the priority queue.

To initialize the algorithm we set S(x, y) = 0 and T (x, y) =
∞ ∀ x, y. Then for every point (x, y), whose value T0(x, y)
is known, we set T (x, y) = T0(x, y), we update their state as

decided (S = 1) and we add their 4-neighbors to the prior-
ity queue, updating their state to close (S = −1). For every
point in the queue, we solve a quadratic equation to update
their value and their position in the queue.

After this initialization phase, the main cycle of the algo-
rithm begins, as described in Algorithm 1.

Algorithm 1 Main Loop of Fast Marching Algorithm.
while QFM is not empty do

Extract q=Minimum(QFM).
Add q to the decided Set (S(xq, yq) = 1).
Set the state of the neighbors of q as close (S = −1).
Add 4-neighbors of q to QFM or if a neighbor is already
in the queue then update its distance accordingly.

end while

Depending on the type of the priority queue used, com-
plexity of this process is O(Nlog(N))[2] or O(N) [5].

3. DISTANCES ALONG MINIMUM PATHS

The Fast Marching algorithm described in the previous sec-
tion can be used to find the geodesic distances of one point
(x0, y0) of the image to all the other points, simply by set-
ting the initial condition T (x0, y0) = 0 and solving (1) for
T . By repeating this process for all the points naively, we can
obtain distances between all pairs of points. In this section
we propose a way to reduce the number of distance evalua-
tions (number of distances obtained by extracting the mini-
mum from the priority queue q of Section 2) by exploiting
previously calculated distances. By doing this, we also guar-
antee the symmetry of the distance matrix. Symmetry is not
available when the naive approach is used. This is because
of the recalculation of the same distances but with different
discretization errors.

After minimum paths from a starting point to all other
points in the image are calculated, we can show that we have
enough information to evaluate the distances among all the
points within each minimum path. Consider for example the
case depicted in Fig. 2. The point A is the starting point while
B is the last point along the minimum path. It can be easily
shown that

||C −D|| = ||A−D|| − ||A− C|| (2)

where || · || represent the geodesic distance. Suppose we
have another path connecting C and D that is shorter: ||C −
D||path2 < ||C−D||path1. We can then write: ||A−C||path1+
||C − D||path2 + ||D − B||path1 < ||A − B||path1, which
results a contradiction and proves that ||C − D||path1 is the
minimum path. This shows that (2) can be used to evaluate
the distance between C and D.

Using minimum paths, we can build a distance tree where
the root of the tree is the starting point (zero distance) and all

(x0,y0)
T=0

(x1,y1)
T=T1

(x2,y2)
T=T2

(x4,y4)
T=T4

(x3,y3)
T=T3

(x5,y5)
T=T5

Root

Leaf

Minimum
Path

Fig. 3. Geodesic Tree: in every node we store the position
of the point and the value of T , solution of the current FM
iteration.

other points are nodes of the tree. The parent of a node is se-
lected as the previous point along the minimum path. For each
Fast Marching run, we build a tree containing all the points in
the image. In this tree we can distinguish between three kinds
of nodes (see Fig. 3): 1) The root, the starting point of the
Fast Marching, which has 0 distance and has no parents. 2)
The internal nodes, points, which have both parents and chil-
dren. 3) The leaves, points with no children. Starting from
the leaves and moving towards the root (or starting from the
root and moving to the leaves), distances between points be-
longing to the same minimum path can be estimated. The
geodesic distance between two points on a shortest path is the
difference between their distances from the root node. In Fig.
3, the distance between (x1,y1) and (x5,y5) is simply T5−T1.

4. EXPERIMENTAL RESULTS

In this section we compare accuracy and number of total dis-
tance calculations using our algorithm and the naive All Pairs
Fast Marching Method. In particular, we are interested in
evaluating the accuracy of our implementation and in mea-
suring the redundancy generated with the naive approach.

We calculated the all pairs euclidean distances using both
the naive method and by exploting the redundancies on a unit
square discretized at various grid resolutions. Parents in dis-
crete domain are calculated as follows. At the end of each
Fast Marching iteration, we take the gradient of T (x, y)–the
solution of (1)–which represents the direction of propagation
of the distance front. After discretizing the gradient direction
at 45 degree increment, the parent of each pixel becomes one
of the 8 neighbors at the opposite direction of the gradient.
We compare these results with the ground truth represented
by the exact euclidean distances. The results reported in Ta-
ble 1 show that by avoiding recalculation of same distances,
root mean squared error goes down significantly.

As expected, the accuracy of the two algorithms increases
with increasing the grid resolution and the Shortest Path based
implementation turns out to be more accurate than the naive
All Pairs FM across all the different resolutions (see Fig. 4

Table 1. Root Mean Square Error of the approximate solu-
tions with respect to the exact euclidean distances at different
grid resolutions.

Naive All Pairs AP with Trees Resolution

4.60 ·10−2 2.39 ·10-2 10 × 10

2.89 ·10−2 1.22 ·10-2 20 × 20

2.18 ·10−2 1.05 ·10-2 30 × 30

1.77 ·10−2 1.00 ·10-2 40 × 40

1.51 ·10−2 1.00 ·10-2 50 × 50
1.32 ·10−2 0.99 ·10-2 60 × 60

10 20 30 40 50 60
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Side Resolution

R
o

o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Shortest Path−based All Pairs
Naive All Pairs

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

6

7

8
x 10

5

Error

F
re

q
u

en
cy

Shortest Path−based All Pairs
Naive All Pairs

(b)

Fig. 4. a) We compare the accuracy of our shortest path-based
algorithm (blue) with the naive Fast Marching All Pairs Im-
plementation (green) for different grid resolutions. b) The
error curves at the 50×50 resolution. With the Shortest Path-
based approach most of the errors are concentrated around
zero and the number of points with error bigger than maxi-
mum error in the Naive approach is small.

(a)). Since full matrices are kept in memory for this calcula-
tions, we are not increase grid size more than 60×60. Ideally,
sparse multi-resolution distances [1], where values are com-
pressed as distances increase, should be used.

Table 2 shows how many Fast Marching computations we
can save at each resolution. In other words, we evaluate how
many distances are actually calculated using Fast Marching
and how many are reused from previous calculations. This
is a measure of how much redundancy is present in the naive
implementation, which recalculates the same distances again
and again. The computational savings by exploiting this re-
dundancy become more relevant as the grid becomes large
(e.g. a big image).

The longer the shortest paths are, the more pairwise dis-
tances we can estimate ahead of time. For boundary points,
shortest paths are longer than a point at the center of the im-
age. Therefore pixels are visited by following a spiral-like
order, starting from the borders of the image and going to-
wards the center. Within each square ring, the order is ran-
domized. This is done to distribute the inaccuracy uniformly
over the image. In Fig. 6 distance maps obtained using the
Shortest paths based algorithm and the ideal euclidean solu-
tion is shown. As we move close to the center point some
spatial artifacts are visible more and more. As shown in Fig.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of points for which the tree is built

O
p

er
at

io
n

s
sa

ve
d

 (
%

)

(a)

0 0.02 0.04 0.06 0.08
0

2

4

6

8
x 10

5

Error

F
re

q
u

en
cy

Naive Implementation
Shortest Path−based (30%)

10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

Side Resolution

R
o

o
t

M
S

E

Naive Implementation
Shortest Path−based (30%)

(b) At 30%

Fig. 5. a) We show the computational savings if we build the
tree only for a certain percentage of points. A value around
30% gives a percentage of operations saved close to 80, which
means that most of the redundancy can be exploited building
the tree for one pixel out of three. b) Error plots as in Fig. 4,
but building the tree for 30% of the points.

Table 2.
Redundancy Removal

Grid Resolution Operations Saved (%)
10 × 10 69.78
20 × 20 81.76
30 × 30 87.03
40 × 40 89.98
50 × 50 91.65
60 × 60 92.69

4, the mean of the root mean squared error plot is very low
but at some outlier points we observe higher errors than naive
method.

Building the shortest path trees for every point is also not
optimal. Two neighboring pixels may have very similar short-
est path trees resulting in reestimation of same distances. So,
we don’t need to build a tree at every point. Fig. 5 shows that
for a 50× 50 grid building the tree for only 30% of the points
in the image reduces the number of distances calculated via
Fast Marching by 80% . Therefore the cost of building and
navigating the tree can be strongly reduced, still exploiting
most of the redundancy present in the naive implementation.
In addition, we also observe best RMSE rates when for only
30 to 40% of the pixels the geodesic trees are built. This op-
timal percentage goes down as the grid size increases.

5. CONCLUSIONS

In this paper we addressed the problem of all pairs distances
calculation using the Fast Marching Method. We analyzed
its redundancy, which is observed when repeating the Fast
Marching Method for each pixel in the image. We showed
that the number of distances evaluated using the Fast March-
ing Method can be reduced up to 90% and the symmetry of
the distance matrix is enforced, which guarantees a symmetric
positive definite similarity matrix needed in graph partition-
ing and kernel based methods. We showed that the accuracy

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. a) b) and c) euclidean distances from the points (1,50),
(12,12) and (25,25) respectively. d) e) and f) distances eval-
uated with the Shortest Path algorithm, building the tree for
30% of the points. g) h) and i) distances evaluated with the
Shortest Path algorithm, building the tree for every point.

of our approximation is comparable to the naive case.

6. REFERENCES

[1] B. Sumengen, Luca Bertelli, and B. S. Manjunath, “Fast
and adaptive pairwise similarities for graph cuts-based
image segmentation,” Tech. Rep., November 2005.

[2] J. A. Sethian, “A marching level set method for monoton-
ically advancing fronts,” Proc. Nat. Acad. Sci., vol. 93,
no. 4, 1996.

[3] E. W. Dijkstra, “A note on two problems in connec-
tion with graphs,” Numerische Mathematik, vol. 1, pp.
269271, 1959.

[4] J A Sethian, Level set methods and fast marching meth-
ods: evolving interfaces in computational geometry, fluid
mechanics, computer vision, and materials science, Cam-
bridge University Press, 1999.

[5] Liron Yatziv, Alberto Bartesaghi, and Guillermo Sapiro,
“O(n) implementation of the fast marching algorithm,”
Journal of Computational Physics, September 2005.

[6] L. Cohen and R. Kimmel, “Fast marching the global
minimum of active contours,” in in Proc. IEEE Interna-
tional Conference on Image Processing (ICIP’96), 1996,
pp. 473–476.

