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Abstract

A variational approach for the background/foreground
segmentation of multiple views of the same scene is pre-
sented. The main novelty is the introduction of cost func-
tions based on pairwise similarity between pixels across dif-
ferent images. These cost functions are minimized within a
level set framework. In addition, a warping model (rigid
or non-rigid) between the emerging foregrounds in the dif-
ferent views is imposed, thus avoiding the introduction of
a specific shape term in the cost function to handle occlu-
sions. The thin plate spline (TPS) warping is for the first
time employed within the level set framework to model non-
rigid deformations. The minimization of these cost func-
tions leads to simultaneous segmentation and registration
of the different views. Examples of segmentations of a vari-
ety of objects are shown and possible applications are pro-
posed.

1. Introduction
Image segmentation is one of the primary tasks in com-

puter vision. It can be, in fact, considered the first step to-
wards any further analysis and processing.

A fundamental variational approach to region-based im-
age segmentation was presented by Mumford and Shah in
[14, 15], where they minimized a functional to approximate
the image in a piecewise smooth way, penalizing at the same
time the excessive length of the contours between regions.
Later on, Chan and Vese minimized this functional within
the level set framework [17], for both piecewise constant
[4] and smooth approximations of the image. Other rele-
vant work in variational segmentation include region based
methods [30, 29, 25] and edge driven approaches [3, 11].

In the recent past many attempts have been made to
include shape information in the variational segmentation
framework [5, 23, 19, 20, 12, 6, 7, 9]. These methods are

motivated by the need to segment partly occluded objects.
In most of the cases a shape term is added to the variational
cost function and the minimization is performed with re-
spect to both the specific segmentation term and the prior
term. The prior shape term is used to penalize the pres-
ence of non-overlapping areas between the known desirable
shape and the evolving shape. Some models assume the ex-
istence of a well defined shape prior [5, 23, 19, 8, 18, 21],
which is then utilized to recover the boundaries of the oc-
cluded or partially missing objects along with the transfor-
mation that aligns the shape prior on top of the target im-
age. All these methods involve only rigid registrations and
are not suitable for coping with non-rigid deformations of
the prior. To address this issue, in [7, 6, 12, 24] statistical
inferences are made by exploiting a set of reference shapes,
that form a basis for the admissible shapes. Recently, a prior
based level set framework to model non-rigid deformations
using a deformation vector field has been proposed in [26].

In practical applications the information about the shape
may not be directly available. Multiple views of the same
scene can be instead exploited to correctly segment and
identify objects, even if in some of the views the objects
of interest are occluded. Relevant work in this field in-
cludes [20], where two images are concurrently segmented
and registered and the emerging shape in one image is used
as a prior for the second one. In [28, 26] multiple images are
segmented evolving a single contour as well as the mapping
of that contour into each image. No direct connection be-
tween the different views is defined, except for the common
contour. In [10] a set of similar shapes is used to complete
missing parts applying majority rules.

In this paper we introduce a direct connection between
the multiple views of the same scene, by defining novel
variational cost functions based on pixel pairwise dissim-
ilarities across images. After imposing a warping constraint
between the views, and therefore between the emerging
segmentations, we minimize these cost functions by evolv-



ing only one contour and registering it across the different
views. In this way, we avoid the need of introducing a spe-
cific shape term in the cost function and, at the same time,
we exploit the prior in a more complete way, taking into
account also intensity or color information of the emerging
regions and not just using it as a binary mask. Finally, we
introduce thin plate spline interpolation within the level set
framework to cope with non-rigid deformation of the ob-
ject shape, which, to the best of our knowledge, is the first
attempt in this direction.

1.1. Segmentation based on Pixel Pairwise Dissimi-
larities

Pairwise pixel dissimilarities can be integrated within a
variational approach, see for example [22]. A correspond-
ing cost function can be written as:

E(C) = −
∫
x1∈Ro(C)

∫
x2∈Ri(C)

w(x1,x2)dx1dx2 (1)

where x1,x2 are points in the image domain, Ri(C) and
Ro(C) are respectively the regions inside and outside of the
curve C and w(x1,x2) is the pairwise dissimilarity between
point x1 and point x2. Minimizing E(C) with respect to
C, we obtain a partitioning of the image, which maximizes
the dissimilarity between regions Ri(C) and Ro(C). The
curve evolution corresponding to the steepest descent mini-
mization of (1) is given by:

∂C

∂t
=

( ∫
x∈Ro(C(t))

w(c,x)dx−
∫
x∈Ri(C(t))

w(c,x)dx
)−→
N

(2)
where c is a point on the curve C. An intuitive interpreta-
tion of this evolution force is the following: the similarity
of every point c belonging to the curve C is compared to
Ri(C) and Ro(C). If c is more similar (less dissimilar) to
the interior of C the curve expands, otherwise it shrinks.

The rest of this paper is organized as follows: in Sec-
tion 2 we extend the above formulation to the multi-view
case. In Section 3, imposing a warping constraint between
the emerging backgrounds and foreground of the multiple
views, we provide an effective way to handle occlusions.
The different warping models for rigid as well as for non-
rigid registration are described in Section 4. After present-
ing experimental results and proposing potential applica-
tions in Section 5, we conclude in Section 6.

2. Multiple View Background/Foreground
Separation

Consider two images I1 and I2, and the dissimilarity
measure w(x1,x2), where xi = (xi, yi) is a 2D point in
the image Ii. Define:

diss(A1, A2) ,
∫
x1∈A1

∫
x2∈A2

w(x1,x2)dx1dx2 (3)

and

diss(B1, B2) ,
∫
x1∈B1

∫
x2∈B2

w(x1,x2)dx1dx2 (4)

where Ai, Bi form a partitioning such that Ai ∪ Bi = Ωi

and Ωi represents the whole image domain (of image Ii).
We can formulate a multiple-view cost function based on
pairwise dissimilarity as:

ED = diss(A1, A2) + diss(B1, B2) (5)

The regions in (5) can be represented within a level set
framework. Define a 3D surface φi such that its zero level
set is the curve Ci, which is the boundary between fore-
ground and background. We can write:

Ci = {x ∈ Ωi|φi(x) = 0} (6)

Ai = {x ∈ Ωi|φi(x) > 0} (7)

Bi = {x ∈ Ωi|φi(x) < 0} (8)

Now using the Heaviside function H(z), equal to 1 if z > 0
and 0 if z < 0, we can rewrite (5) as follows:

ED =
∫

Ω1

∫
Ω2

w(x1,x2)H(φ1(x1))H(φ2(x2))dx2dx1 + (9)∫
Ω1

∫
Ω2

w(x1,x2)(1−H(φ1(x1)))(1−H(φ2(x2)))dx2dx1

The cost function in (9) has to be minimized with respect
to both φ1 and φ2. Let us first minimize with respect to φ1.
The gradient projection method minimizing

∫
f(φi(x))dx,

using t as the descent variable leads to:

∂φi

∂t
= − ∂f

∂φi
(10)

In our case we can manipulate (9) so that:

f(φ1(x1))=
∫

Ω2

w(x1,x2)H(φ1(x1))H(φ2(x2))dx2 (11)

+
∫

Ω2

w(x1,x2)(1−H(φ1(x1)))(1−H(φ2(x2)))dx2

Applying (10) to (11) yields:

∂φ1(x1)
∂t

=−
∫

Ω2

w(x1,x2)δ(φ1(x1))H(φ2(x2))dx2 (12)

+
∫

Ω2

w(x1,x2)δ(φ1(x1))
(

1−H(φ2(x2))
)

dx2

(13)

Rearranging the terms, we can rewrite (12) as:

∂φ1(x1)
∂t

= δ(φ1(x1))
[ ∫

Ω2

w(x1,x2)
(

1−H(φ2(x2))
)

dx2

−
∫

Ω2

w(x1,x2)H(φ2(x2))dx2

]
(14)



(a) (b) (c)

(d) (e) (f)

Figure 1. Mutual Segmentation of two views according to (14).
(a-b) Initialization of φ1 and φ2 in multiple sub-parts. (c-d) In-
termediate phase of the evolution. (e-f) Final segmentation result.

Every point on the curve C1 in image I1 is therefore com-
pared in similarity with the points inside and outside C2 in
image I2. The curve is then expanded or shrunk accord-
ingly. Similar derivation can be conducted for φ2. The al-
gorithm evolves alternatively φ1 and φ2 until convergence
is reached. Fig. 1 shows some snapshots of this concur-
rent evolution process. The evolution equation in (14) can
be normalized with respect to the areas of the evolving re-
gions, obtaining therefore comparisons in terms of average
similarity rather than total similarity.

The cost function presented in (5) for the two-image case
can be easily extended to more than two images considering
the cross-image dissimilarities between pixels of a reference
image, I1 for instance, and all the other views of the same
scene, i.e. Ii for i = 2 . . . n. We can therefore rewrite (5)
as:

ED =
n∑

i=2

diss(A1, Ai) + diss(B1, Bi) (15)

where n is the number of views. The curve evolution equa-
tions for each φi can be derived following the same ap-
proach described above.

Similar to all the active contours techniques, a regular-
ization term is needed in the cost function to prevent over-
segmentation. This is done by adding a term proportional
to the length of the zero level set of φi (see [17, 4, 16]):

EL = µ
n∑

i=1

∫
Ωi

|∇H(φi(x))|dx (16)

Minimizing (16) we obtain the associated steepest descent
equation for each φi:

∂φi(x)
∂t

= µδ(φi(x))div
( ∇φi(x)
|∇φi(x)|

)
(17)

3. Shape Prior Without Shape
The model described so far allows the two level set func-

tion φi to freely evolve, one independently of the other one.
This is not suitable for handling occlusion. If in one of the
two views the object of interest is occluded, a desirable seg-
mentation result should be able to preserve and recover its
shape. A common approach, extensively utilized in the lit-
erature (see for example [23, 19, 20, 5]), consists of intro-
ducing a shape term in the cost function, that penalizes the
presence of non-overlapping areas between the shape prior
and the evolving shape. Therefore, such a shape term can
be written as:

ES = ν

∫
Ω

(
H(φ(x))−H(TP ◦ φp(x))

)2

dx (18)

where φp is a labeling function for the prior shape (i.e. φp

is positive inside of the shape and negative elsewhere) and
TP is a suitable geometric transformation which registers
φp with φ. The main drawback of this approach is that the
choice of the parameter ν, the weight of the shape term, is
image dependent and can be critical to obtain good segmen-
tation results. In addition the shape is used as a binary mask,
without exploiting the information content of the prior im-
age in terms of intensity or color (see Fig. 4).

In this section we reformulate the cost function in (9)
imposing a projective warping on the shape of the evolv-
ing regions. By doing this, the prior shape information is
embedded into the cost function in an implicit way (hence,
“Shape Prior Without Shape”), eliminating the need of ad-
ditional tuning parameters.

First, let us assume that two views are related through
a warping model W : R2 → R2, parameterized in terms
of the parameters vector θ = (θ1, . . . , θn). Therefore, a
point x in one view is mapped onto the transformed view
according to x′ = W(x,θ).

Now consider a function φ(x1), whose zero level set
function defines a curve in image I1. The function
φ(W(x2,θ)) defines a zero level set curve in the trans-
formed view I2. We can therefore rewrite (9), substituting
φ1 and φ2 with φ(·) and its warped version φ(W(·,θ)):

E =
∫

Ω1

∫
Ω2

w(x1,x2)H(φ(x1))H(φ(W(x2,θ))))dx1dx2 + (19)∫
Ω1

∫
Ω2

w(x1,x2)
(
1−H(φ(x1))

)(
1−H(φ(W(x2,θ)))

)
dx1dx2

Now the minimization has to be performed with respect to
both φ and the parameters vector θ, which characterizes the
warping, yielding:

∂φ(x1)
∂t

= δ(φ(x1))
[ ∫

Ω2

w(x1,x2)
(

1−H(φ(W(x2,θ)))
)

dx2

−
∫

Ω2

w(x1,x2)H(φ(W(x2,θ)))dx2

]
(20)



and

∂θ

∂t
=

∫
Ω1

∫
Ω2

[
w(x1,x2)

(
1− 2H(φ(x1))

)
δ
(
φ(W(x2,θ))

)
·

[
∇φ(W(x2,θ))

∂W(x2,θ)
∂θ

]T
]
dx1dx2 (21)

4. Warping Model
Almost all techniques present in the literature, concern-

ing shape based level set methods, involve only rigid reg-
istration models as the transformation between the prior
shape and the target image (see [5, 23, 19, 28, 18]). In a
recent work [26], the authors modeled non rigid deforma-
tion between boundaries, using a deformation vector field.
Within the framework presented in this paper, we have ex-
perimented two classes of transformations: rigid (affine and
homographic) and non-rigid (thin plate splines). To the best
of our knowledge this work represents the first attempt to in-
troduce thin plate spline warp within a level set framework.

4.1. Rigid Warping

Within the rigid transformation class, we experimented
using affine and homographic warpings (parameterized re-
spectively by θ ∈ R6 and θ ∈ R8):

x′ = Ax + T =
[
sx α
0 sy

][
cos θ sin θ
− sin θ cos θ

]
x +

[
tx
ty

]
(22)

and [
x′

1

]
∼ H

[
x
1

]
(23)

where H ∈ R3×3 describes a planar projective transforma-
tion. The rigid warping models do not need regularization.

4.2. Non-Rigid Warping

The thin plate spline warp [2] is a composition of an
affine transformation and a non-rigid warping:

x′ =
[
A T W

]  x
1

U(||x− x̂(:)||)

 (24)

where A ∈ R2×2 and T ∈ R2×1 describe the affine/rigid
transformation, while the weight matrix W ∈ R2×K and
set of K control points x̂ = (x̂1, x̂2, . . . , x̂K) character-
ize the non-rigid deformation. U(r) = r2 log r2 is the ra-
dial basis function of the spline. Constraints on the square-
integrability of the second derivatives of the spline-based
interpolation functions give the following additional rela-
tionship:

W
[
x̂T 1

]
= W P = 0 (25)

where 1 ∈ RK×1 and 0 ∈ R2×3 (matrices with respectively
only one and zero entries). The unknown transformation

parameters in A, T and W can be uniquely determined if
the transformed control points x̂′ are available. In this case,
combining (24) and (25), one could write:[

x̂′ 0
]

=
[
A T W

] [
PT O
Z P

]
(26)

where Zij = U(||x̂i− x̂j ||) and O is a zero matrix ∈ R3×3.
The warping model in (24) can be therefore parameterized
only in terms of the transformed control points x̂′, via a
linear mapping [13]:

x′ =
[
x̂′ 0

] [
PT O
Z P

]−1
 x

1
U(||x− x̂(:)||)

 (27)

This linear relation makes extremely efficient the compu-
tation of the Jacobian of the warp with respect to the pa-
rameter vector (in this case the transformed control points)
∂W(x,θ)

∂θ in (21). Regularization can be obtained adding to
the cost function a term proportional to the bending energy
as in [27]. In this work we rather used the approach sug-
gested in [13], consisting in replacing the matrix Z with
Z + λI, where I is the identity matrix. This is equivalent
to adding a further constraint on the TPS smoothing. The
bigger λ, the more rigid is the warping.

5. Experimental Results
In this section we present segmentation results on a va-

riety of images to demonstrate the capabilities of the pro-
posed model. In all the experiments dissimilarities are eval-
uated as L2 distances in the CIE-Lab color space. The curve
evolution has been implemented using a semi-implicit finite
difference scheme 1. The curvature parameter µ is chosen
between 2000 and 2500.

Rigid Registration The first experiment (Fig. 2) is meant
to show robustness to increasing levels of occlusion. The
reference image not occluded is shown in Fig. 2(a), while
in Fig. 2(c-f) we show the segmentations of the occluded
views. The reliability of the recovered homography param-
eters is demonstrated in Table 1, where they are compared
with ground truth values obtained by point correspondence
with sub-pixel accuracy (H is normalized so that θ9 = 1).

The second experiment (Fig. 3) consists of two differ-
ent outdoor views of a tower (related by affinity), where an
occlusion has been generated in the second view by putting
the camera string in front of the objective. The proposed
algorithm is able to recover the boundaries in both views.

The following experiment, presented in Fig. 4, high-
lights one of the novel assets of the proposed method. Im-
ages of a hand with increasing occlusions are displayed.

1H and δ are regularized as follows: H(z) = 1
2
[1 + 2

π
arctan( z

ε
)]

and δ(z) = 1
π

ε
ε2+z2



Table 1. Homography parameters for the experiments in Fig. 2. The Ground Truth is calculated using point correspondences with sub-pixel
accuracy. The mean µ and standard deviation σ are evaluated using the results of the segmentation for the four different occlusion pairs
((a-c), (a-d), (a-e), (a-f)).

H parameters θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Ground Truth 0.945568 0.166809 0.000002 -0.203228 0.904125 -0.000298 52.586173 -0.061305
Proposed Method µ 0.943369 0.167061 -0.000007 -0.199886 0.905191 -0.000270 52.761128 0.160094
Proposed Method σ 0.020410 0.014676 0.000093 0.007183 0.004465 0.000050 0.517181 1.763819

(a) (b) (c)

(d) (e) (f)

Figure 2. An image of bottles and its projective transformation
with increasing level of synthetically generated occlusions. (a)
Segmented reference (b) Superposition of boundaries of one view
onto the second one to demonstrate misalignment. (c-f) Segmenta-
tion of the occluded views. The homography parameters are com-
pared with the ground truth in Table 1.

(a) (b) (c)

Figure 3. Images of a tower. (a) Segmented reference (b) Super-
position of boundaries of one view onto the second one to demon-
strate misalignment. (c) Segmentation of the occluded view.

The peculiar aspect of these images is that the occluding
object has shape similar to the object of interest. The dis-
tinctive feature which can help to discriminate between the
two is the color (or intensity) information. Fig. 4(b-c)
demonstrate how the proposed model is capable to success-
fully recover the boundaries of the occluded hand, even with
a significant level of occlusion. In comparison, Fig. 4(f)
shows that using just a binary shape (as suggested in [23],
[5], see Fig. 4(e)), which does not take into account the

(a) (b)

(c) (d)

(e) (f)

Figure 4. Images of hands. (a) Segmented reference image. (b-
c) Segmented occluded views. (d) Superposition of the views (a)
and (b or c) to demonstrate misalignment. (f) Binary prior used to
segment the image in (f). (f) Segmentation using the Chan-Vese al-
gorithm (vector valued version) using the binary shape prior from
(e) (as in [23]). Since intensity or color information about the prior
is not utilized, the algorithm selects the hand with the glove since
it is darker and not occluded.

color information of the prior, leads to mis-segmentation.
In this particular case, the algorithm selects the hand with
the glove since it is darker and not occluded.

As a potential application of the framework introduced in
this paper, we present several results on automatic segmen-
tation and registration of aerial images. Fig. 5(a-b) show
two aerial views of a pier, one of which occluded by clouds,
segmented and registered using the proposed method. The



(a) (b)

(c) (d)

Figure 5. (a-b) Automatic segmentations and registration of two
views of a pier. The second one is occluded by clouds. (c) Seg-
mentation of the occluded view by itself. (d) Superposition of
segmentation results to demonstrate misalignment.

(a) (b)

(c) (d)

Figure 6. (a-b) Two aerial views of a harbor automatically seg-
mented and registered (c) Superposition of the segmentation re-
sults to demonstrate misalignment. (d) Overlapping area between
the two views.

segmentation of the occluded image by itself is shown in
Fig. 5(c). An important consideration regarding this im-
age pair is that feature point based registration methods
are likely to produce inaccurate results. In fact, the valid
point matches are arranged in an ill-conditioned configu-
ration (along the pier line) and the homography estimate

Table 2. Homography parameters for the experiments in Fig. 6.
Ground Truth is evaluated using point correspondences.

H parameters Ground Truth Proposed Method
θ1 0.98236679 0.98325788
θ2 0.12069941 0.12113208
θ3 0.00000302 0.00000447
θ4 -0.12144333 -0.12156598
θ5 0.97370151 0.97438497
θ6 -0.00006800 -0.00006625
θ7 18.53983280 18.48239430
θ8 -25.02214483 -25.12943160

computed via the DLT (direct linear transform) algorithm
is biased. This suggests possible advantages of registration
using region based methods.

In the last example (Fig. 6) we present successful seg-
mentation and registration of two aerial views of a harbor.
The accuracy of the recovered homography parameters is
demonstrated in Table 2, where they are compared with the
ground truth, evaluated using point correspondences. To
verify the accuracy we introduce the followng distance mea-
sure between two transformations. Let W : (x;θ) 7→ x′ =
W(x;θ) be the warping (parametrized by θ) which maps
the point x to the point x′. We define the distance between
θ and θ′ (with respect to the point configuration X ) as:

DX (θ,θ′) =
1
|X |

∑
x∈X

||W(x;θ)−W(x;θ′)|| (28)

where | · | denotes cardinality. This tells on average how
close are the mappings via W using the parameters θ or
θ′. Using as X the four corners of the image, for the two
homogrophies in Table 2 we obtain DX = 0.126 pixels,
which demonstrates the accuracy of the proposed method.

Non-Rigid Registration The first experiment with non-
rigid deformation of the object of interest is shown in Fig.7.
The deformed view of Fig. 7(c) is synthetically generated
applying a non-rigid warping to Fig. 7(a), such that the ten
control points (denoted by a blue cross) are mapped onto the
ten correspondent points in Fig. 7(c) (again denoted by a
blue cross). The magenta crosses represent the transformed
points according to the recovered warping. The distance
measure defined in (28), using the ten points as the config-
uration X , turns out to be 2.9246. The stiffness parameter
λ defined in Section 4.2, as coefficient of the regulariza-
tion term, plays an important role in order to accomodate
for local deformation and, at the same time, preserving the
information about the original shape, gaining therefore ro-
bustness to occlusion.

The second set of experiments involves real images,



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. (a,e) Segmented reference (in cyan is the 9×9 control points grid). (b,f) Superposition of the views to demonstrate misalignment.
(c-d,g-h) Successful segmentation of the occluded views (in cyan is the grid representing the estimated warp).

(a) (b)

Figure 7. (a) Segmented reference. The blue crosses are the con-
trol points used to synthetically warp the image. Top right: over-
lapping of the two views to demonstrate misalignment. (b) Seg-
mentation of the deformed and occluded view. The blue crosses
represent the ground truth and magenta ones are estimated using
the proposed algorithm.

where the object of interest is first deformed and then oc-
cluded using other objects. A grid of 9 × 9 control points
(shown in cyan in Fig. 8(a) and Fig. 8(e)) is used. The re-
covered warping is depicted in Fig. 8(c-d) and Fig. 8(g-h)
along with the final segmentation result.

Numerical Considerations The stability of numerical
techniques utilized in our algorithm is an important issue
that deserves further investigation. A consideration related
to the proposed model can be made in terms of the dynamic
range of the warping parameters. For the rigid warping
models, the parameters have very different dynamic ranges.
The steepest descent search in the parameter space can be

therefore extremely slow. A solution to this consists in pre-

multiplying the transpose Jacobian of the warp ∂W(x,θ)
∂θ

T

in (21), by a diagonal matrix. The entries of this matrix
can be estimated using the reciprocal diagonal elements of
the Hessian of the cost [1]. The problem does not arise in
the case of TPS warping, where control points are used as
transformation parameters and therefore they have the same
dynamic range (pixels). This suggests possible advantages
of indirect estimation of transformations, using a set of con-
trol points.

6. Conclusion
In this paper we presented a novel variational approach

to the background/foreground segmentation of multiple
views of the same scene. The main contributions of this
work can be summarized as follows:

• We introduced variational cost functions, based on
pairwise pixel dissimilarity across the different im-
ages, and we minimized these cost functions within the
level set framework.

• We imposed a warping constraint between the emerg-
ing foregrounds in the different images. In this way we
handled presence of occlusions, avoiding the introduc-
tion of a specific shape term in the cost function.

• The prior image is utilized in a more complete way,
exploiting also intensity and color information, and not
only as a binary mask.



• We introduced the use of the thin plate spline warp
within the level set framework to model non-rigid de-
formations of the object of interest across the different
views.
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