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Abstract

Background

Dendritic spines serve as key computational structuresaimplasticity. Much remains to be learn
about their spatial and temporal distribution among nesirddur aim in this study was to perfor

exploratory analyses based on the population distribsitimindendritic spines with regard to thei

od
m
r

morphological characteristics and period of growth inaltssted hippocampal neurons. We fit a log-
linear model to the contingency table of spine features sscpine type and distance from the sgma

to first determine which features were important in modetimgy spines, as well as the relationsh

PS

between such features. A multinomial logistic regressi@s then used to predict the spine types

using the features suggested by the log-linear model, akatly neighboring spine information.

Finally, an important variant of Ripley’s K-function apgdible to linear networks was used to study

the spatial distribution of spines along dendrites.

Results

Our study indicated that in the culture system, (i) dencrigpine densities were “completely

spatially random", (ii) spine type and distance from the aamere independent quantities, and most

importantly, (iii) spines had a tendency to cluster withasthpines of the same type.
Conclusions

Although these results may vary with other systems, our amyncontribution is the set of statistic
tools for morphological modeling of spines which can be useassess neuronal cultures followi
gene manipulation such as RNAI, and to study induced plteigostem cells differentiated t
neurons.
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Background

Spines are protrusions that occur on the dendrites of mastmadian neurons. They contain the post-
synaptic apparatus and have a role in learning and memorggeto Spine distribution is a critically
important question for multiple reasons. Changes in spisigillitions and shape have been linked to
neurological disorders such as Fragile X syndrome [1]. &diatributions determine the extent to which
the neuropil will be electrically sampled, i.e. dense disttions will sample the neural connectivity
map more fully [2]. Furthermore, the nature of optimal samgplis unknown and likely depends on
the surrounding anatomy and the total information conteailable to dendrites. Because pruning takes
place during development in an activity dependent manpareglistributions may reflect activity within
neural circuits. Distributions of spine types are bioladlic important because the electrical properties
of spines, such as the spine neck resistance, promote eantiendritic processing and associated forms
of plasticity and storage [3] to enhance the computatioaphbilities of neurons.

The shapes and types of dendritic spines contribute to signalpsticity. Because neighboring spines
on the same short segment of dendrite can express a full @ngteuctural dimensions, individual
spines might act as separate computational units [4]. Nesless, the dendrite acts in a coordinated
manner and thus the spatio-temporal distributions of wifie spine types is likely to be significant.
Little is known about this population level organizationdandritic spines. Our aim was to perform an
exploratory analysis of neuronal data from different tinegigpds during the growth of rat dissociated
hippocampal neurons, a well-established model systemTB¢ observations here pertain only to the
culture system and not necessarily to in vivo settings afjhathe analytical tools used here could be
adapted to in vivo analyses.

By quantifying populations of dendritic spines with autdethtools at a global level, we were able
to perform a much larger and more comprehensive analysisrtitst previous studies. Many studies
only analyze a small region of interest on the largest déeslrior example the 50-7&m closest to
the soma [6], ol0 um segments [7], making it easier to measure manually the sppeecounts and
dimensions. Other works determine spine lengths and widfhsianually drawing a line along the
maximal length and measuring the length of that line [8], Hretefore are only able to analyze a few
neurons and a few hundred spines at a time.

In this study we determined the ratios of spine types aloegléndrites as a function of time in culture,
clustering or repulsion of spines in space, and how best efrgpine type distributions. A model that
fits the spatial distribution of spine types in healthy crdtlineurons would be useful to assess neuronal
cultures following gene manipulation such as RNAI and talgtfeatures of induced pluripotent stem
cells differentiated to neurons.

Log-Linear Models (LLM) and Multinomial Logistic Regressis (MLR) are two basic and essential
statistical methods, and have an extensive history of bagegl in biological studies. However, these
tools have not been used thus far in the analysis of spinebdisbns. We fit a log-linear model (LLM)

to the contingency table of spine features to determine ¢ipemdence between spine types (mushroom,
thin, and stubby), distance from the cell body along the denfin micrometers), the branch order of the
dendritic segment on which it lies (primary, secondaryjdey, etc.), and the day in vitro (DIV) on which

it was imaged. Once we determined which of these attribudasributed to the overall dendritic spine
model, we then asked whether these attributes can predictcturrence of spines and of spine types.



To answer this question we used a Multinomial Logistic Regian (MLR) model, which predicted
the spine type, using the attributes that were found to beitapt through the LLM and associated
contingency tables.

Finally, to understand how the dendritic spine densityacwver the length of the neuron or whether
the appearance of spines was completely spatially randoomiformly distributed over the neurites, we
made use of spatial point processes. Spatial point praeésse been used before in biological studies
to model the locations of entire neurons [9-11], locatiohamts nests [12] or xylem conduits [13].
There have also been other more ad-hoc methods creatediyotbinumber of “clustered spines” on
each dendritic segment in monkey brains, where a clustexfisat] as a group of 3 or more spines [14]
however we believe our use of the linear network K-functibs is the first work to analyze the locations
of dendritic spines and their clustering properties in sagrincipled manner. Our analysis indicated
that the density of spines is generally completely spatidhdom (CSR) over the dendritic length
probably due to the absence of instructive directionalagfound an in vivo setting in which spine
distributions are unlikely to be CSR.

Methods
Cellimaging

Dissociated hippocampal neurons from embryonic rat bi@as8) were plated onto poly-I-lysine coated
coverslips. Once neurons adhered to the coverslip, theg placed face-down on glial cells grown in
vitro for 15 days. These neurons were a primary neuronali@ystem, and no cell line was used.
Neurons were grown for specific time periods up to 21 days ieusmonal medium containing B27. This
co-culture of neurons and glia mimic the physiological déads of neuronal growth and development
in mammalian brain [5]. Work with the neuronal cultures wapraved by the UCSB animal care
committee.

To fill the neuronal processes including dendritic spinege@r Fluorescent Protein (GFP) was
expressed from a plasmid containing the beta-actin pranfG&G-GFP) [16]. Of this plasmid? ug
was transfected into each coverslip containing at36ud00 neurons (including abo@0% glial cells).
Transfection was performed as described in the manufatypeotocol (Lipofectamine 2000 from
Invitrogen) with minor changes. The transfection mix androes were incubated for two hours to
avoid toxicity caused by lipo2000. Following transfectimoverslips were flipped back onto the glial
dish, where they were originally cultured. GFP-actin tfaoted into the neurons at DIV4 (Day In
Vitro) and neurons were studied at three time points- DI\& ahd 21. These time points survey the
maturation period over which synapses and spines emerde Nate that these were not the same
neurons studied over time, but each time point representiegemt population of neurons which were
grown in culture up until the point of imaging. In this way oanalysis represents a study at the
population level. At each time point the number of imagegtager plate depended on the transfection
efficiency of that plate. On average approximat&ly of cells were transfected. The plating density
was set so that neurons were relatively isolated in ordeaptuce one neuron per image. An Olympus
FluoView laser scanning confocal microscope was used. énsdiges were2048 by 2048 pixels at
154nm per pixel resolution. There wefe-33 z-slices per stack depending on the depth of the neuron,
taken a200nm steps. This means that the stacks wai&@39 pm x 315.39 um x 1.4—6.6 um. The z
dimension slices were used to capture each depth level aftimaal focus, however we cannot claim
to have accurate volumetric information at this resolutign 40X oil objective lens with no optical
zoom was used. Numerical Aperture (NA) wh8, and illumination conditions were kept constant.
Deconvolution of the raw data before processing was notssacg because the images were clear
enough to manually annotate the neuron traces and manuttigliethe spine detections and types as
described in the following section. We performed threedgadal replicates, the results of which are



detailed below.

Although there are other higher resolution, full volume Inoels, the analysis of this data is broadly
applicable to imaged neurons in other systems [5]. We atketinip capture the entire neuron in each
image, however because of limits in available imaging tepies we found that this does not always
happen. In the cases where dendrites were truncated atdief dre image plane we assumed that the
proportion of spines in the missing data was similar to wizat Already been observed, and therefore
the resulting distributions did not change. We verified #gsumption visually by taking tiled mosaics
of a few neurons imaged in their entirety from each DIV andckirgy that the branch orders, distances
to soma and spine type counts were unchanged as comparesséodhthe same DIV. There was an
observed increase in the dendritic length truncated byrttagyé plane as the DIV increased. However
in our particular analyses the methods used, such as the.ibegr Model and Multinomial Logistic
Regression, were focused on trends between spine chéstcsesuch as distance to soma and type
and these trends are innately unaffected by the truncafiatemdrites given the above assumption.
In addition, spatial point process analyses such as tharlinetwork K-function always include the
specification of an observation window [18], which in oureags the image plane. We verified (see
Results and discussion section) that the overall spineitgearsd the density of each spine type did not
vary with distance from the soma so that we could assume sfginsity at the ends of the dendrites
which were truncated was similar to the dendritic lengthalihivas observed. We recognize that we
cannot see the proximity of labeled cells to other neuronghvhaven't taken up the GFP labeling.
These unlabeled neighboring neurons may cause some diftene spine distributions which we cannot
quantify. For this reason we have attempted to quantify dalogical findings statistically over entire
experiments and DIV time points instead of by individual roes, although in certain cases showing
results from individual randomly sampled neurons was resugs

Neuronal reconstruction

There exist many automated methods for studying neuronattgrand morphometry and therefore we
present a brief review of available software for tracingdtéas and detecting and classifying spines.
In particular, NeuronJ [19] is a widely used software; hogravis only semi- automatic and one must
click several points to trace each neurite. The labelingoisedmanually and the statistics output only
include lengths of neurites and not spine data. HCA-VisR#j |s a costly software with similar goals,
however the parameters of the neurite tracing are set nigmnwuith a sliding bar and thus results require
much hand-tuning. In addition, it is also focused on tracirgrites as opposed to spine analysis. For a
full review of existing methods and softwares for neurogitrg and spine detection see [21]. We found
NeuronStudio [22-24] to be the most user-friendly, and ffis teason we used it to annotate dendrites
and spines for this analysis.

Despite the abundance of automated softwares, neuroraigteactions are still largely performed by
hand [25] and this is is especially essential for a study fike one, where the traversed distance of
the dendrites and number of spines and their shapes wengzadah such detail. Using automated
reconstruction algorithms on raw data is prone to both fplsstive and false negative detections of
spines, as well as misleading spine shape measurement@asés where neurites from neighboring
neurons enter into an image (e.g. Figure 1 panes B and C)oN8tudio often incorrectly traces
these neurites as belonging to the neuron of interest. oreahson we manually traced each dendritic
branch and soma of each neuron, ran NeuronStudio’s autdrepitee detection/classification algorithm
and then manually inspected and verified each spine’s @catnd type. The verification and tracing
were done by the primary author and an undergraduate biangient working in the Kosik Lab (see
Acknowledgments). They were both familiar with dendrited apine morphology and the resulting
annotations from each were cross-checked by the other.



Figure 1 Examples of cell imaging results. This figure shows example images from each DIV (in
order from top to bottom: DIV7, DIV14, DIV21) along with casponding close-up images of dendritic
segments where spines were clearly visible. Scale bardavensin red in panel&-C and the yellow
rectangular boxes in panels A-C show the region of interéstiwhas been zoomed in on in panbld-
respectively. Panels D-F are all at the same resolution.

Relevant spine attributes output from the NeuronStudidwsoe include branch order (BO), type
(stubby, mushroom or thin), distance to soma along den¢Bi®, length (tip of spine to dendrite) and
width at widest point (head diameter or HD). However sinceifdaStudio uses the length and width
of the spines to determine the spine type, we chose to makefisgne type and discard the other 2
measurements. NeuronStudio uses centrifugal labelingriorch orders, meaning it starts at 1 at the
cell body and moves outwards, incrementing at every y-shéjferrcation regardless of the diameter
of the daughter branches. Note that the entire image stattkaadimension information was loaded
into NeuronStudio for the spine classification, and thatgbftware has interpolation algorithms to
estimate the spine type in 3D. For spine detection the defatdoffs were used, i.e. a required spine
height between 0.2—8m, a maximum spine width a3 ym, a minimum stubby size af0 voxels (at
the imaging resolution given above), a minimum non-stulibg ef 5 voxels, and automatic z-smear
compensation. For spine classification, the default ggttimere also used, i.e. a head-to-neck ratio
threshold of1.1 um, an aspect ratio (spine height-to-width) threshold2df pm and a minimum
mushroom head size @¥35 wm. NeuronStudio delineates spine types by these 3 threshdtds
generally known that mushroom spines have a large head aad@wneck, thin spines have a small
head and a narrow neck, and stubby spines display no obvidaivssion in head and neck. If the
head-to-neck ratio is above the threshold and the minimurshnoom head size is met, the spine is
considered mushroom. If both the head-to-neck and asp#ok rare lower than the respective
thresholds then the spine is considered stubby. The rengaagses result in thin spines. For further
information on NeuronStudio reconstruction, detectiorg apine classification algorithms please refer
to [22,23]. In addition to the spine information, a trace eutput which labels the cell body, branch
points and end points of the dendrites. The trace provideleketonization, or centerline, of the
dendrite which we used to compute the linear network digtsiit the following analyses.

Log-linear model as a tool for exploring important featuresand their dependencies

To find the most influential attributes with regard to preidictand spatio-temporal modeling of spines
we fit a log-linear model to the feature data, which is a typgesferalized linear model [26]. The co-
occurrence frequencies of the features in question aratigea large multidimensional contingency
table of counts. The standard linear models assume thaisdatamally distributed around a certain
mean, which means that the observations can take any real yaisitive, negative, integer or fractional.
Log-linear models, on the other hand, assume that datariesitially non-negative, typically counts
that could be Poisson distributed, and allow us to model $se@ation and interaction patterns among
categorical variables. The attributes under considerai@ BO, Type, SD and DIV. Again, since the
type of spine was quite directly dependent on the lengthlamti¢ad diameter of the spine, we left these
latter variables out of the modeling.

In order to analyze the data using a log-linear model, thewarfeatures must be in a categorical
form or discretized. In an exploratory analysis such as thie does not know what dependencies
among features to expect; however we would like to note thede dependencies were not lost in the
discretization process since trends in increasing ancedstrg feature values would be preserved. To
ensure that there were a reasonable number of observatitme ldigher branch orders, we pooled BO
values of5 or higher into a single category called “higher-order bresl. We created a categorical
variable to represent the continuous variable soma disté8D) where categories were determined



using thed quartiles of the SD spine data pooled over3adixperiments. Specifically, SD values of less
than65.65 pm were classified into the first group, from this value to leett08.99 um the second,
from this to less thari57.04 um the third, and the rest (less than the most distal spine wihiglat
413.25 um from the cell body) fell in the fourth group. Binning the obsed data for the continuous
variables is the best way to get a general feel for how thesetiies relate to each other. After this
post-processing of the data we arrived atategories of branch ordet,categories of soma distanc®,
spine types (mushroom, stubby, and thin), amalVs (7, 14, and 21 days).

Using the observed frequencies for the aforementionedbuatitis, we created a four-way contingency
table and fit the model using the ‘glm’ function in the R paakéstats’. The table of the frequency of
occurrences of the four attributes was modeled as Poisgbneach entry being a simple count of the
co-occurrences of that bin. We called this coigt; with each of the subscripts j, k, [ corresponding
to a different attribute. The method uses the link functign; = log( fi;x), and treats the model as a
regular linear model. Each entgy;;,; is modeled by a combination of coefficients: the intercefuts p
main effects, plus every combination of interactions bemvéhese four attributes, as shown below.

Yijkl = p+ o + B + v + 6+ (aB)ij + (ay)ik + (ad)iy + ... + error. 1)

We estimated this full interaction model using the leastasgs maximume-likelihood approach. We also
used a stepwise fit algorithm, which begins with a model theluides only the constant term, and at
each step chooses whether or not to add one additional tdrenal§jorithm begins with the main effects
then tries each possible 2-way interaction, aiming to miménthe Akaike Information Criterion (AIC).
The AIC is defined as

AIC =2k — 2Iin(L(0y,x)) 2

wherek is the number of parameters i.e the total number of coeffigibaing estimated, and

’
eynelxne_eo Xn

(3)

Yn!

N
L(@ =
01y =g [

is the maximized value of the likelihood function for theiestted Poisson model. In the above
equationsx = z1,...,zy € R* are the input vector® = 0, ... 6, are the parameter values (one per
termin egn. 1), ang = y1,...,yn € Ris the output. The AIC is a commonly used goodness-of-fit
measure for a model given the observed data. Adding or suistgaterms, whether they be main
effects, pairwise interactions, or up to 3-way interaditetween attributes, will change the AIC value
for the model. A lower AIC criterion indicates a better fit ttetdata and therefore a better model. To
compute the stepwise fit we used the R function ‘step’. Forarinoformation on the stepwise fit
algorithm as well as the AIC criterion we ask that the readefsr to the ‘step’ function reference

( [27], Chapter 6). We ran both of these LLM fitting procedufes all 3 experiments separately
expecting to find general agreement between coefficientseafdrresponding models created.

Multinomial logistic regression to predict spine type from neighbor types

In order to predict spine type we first determined which ladiies contributed most to spine type
prediction. Given the complexity of the multidimensionalM and the various interactions and
conditional frequencies that would impinge on this issue,d&cided to determine these attributes by
analyzing 2-way contingency tables for spine type vs. SD, BIY, as well as the spine types of the 3
nearest neighbors. This analysis helped us pick attriibgswould be useful as the predictors in the
multinomial logistic regression (MLR) [28] explained belo

When the response variable of a regression takes binargs/dliogistic Regression” is used. This
is an approach which uses a linear combination of the p@udiariables to predict the log-odds of



a success (the “logit” of the probability). Since our resgrariable was spine type and it can take 3
values (mushroom, stubby or thin), we needed to use a “Muttial Logistic Regression” (MLR) which
attempts to model the probability of any of multiple possibutcomes. We did not use the attributes
SD or BO as predictors variables since the results of both LM analysis and 2-way contingency
tables mentioned above told us that these quantities wedraseelevant for spine type prediction.
Therefore our model consisted of spine type as the outpighiarand the DIV, 1st, 2nd and 3rd nearest
neighbor type along the dendrite as the predictor variabMestried using only 1 or 2 nearest neighbors,
however the results proved inconclusive because the pi@diprobabilities for each of the 3 types
were predominantly close ty3. If we used more than the 3 nearest neighbors we sometimesl empd
spanning a segment of dendrite which we did not consider ttogal”, so we decided that 3 nearest
neighbors provide the most useful information in the caghisfstudy.

The MLR analysis we performed in this paper does disregarddtual inter-spine distances, meaning
that if the 3 nearest neighbors are very close or very fartaparstill treat them the same. We did
this partially because adding the distance variables wooldplicate the model significantly, but also
because we believe that over a large population of spindsasithe one we have, these differences in
distance will average out and we will still get a generalygietof the trends between neighboring spine
types. To verify that this was true we computed a histograowsig the distribution of 3rd nearest
neighbor distances for each spine, shown in Figure 2. A@hadihe maximum distance to any 3rd
nearest neighbor is extremely hight8.31 um) we can see from the histogram as well as the fact that
the median 3rd nearest neighbor distance wa$ pm that this distance is clearly an outlier case and
that the majority of 3rd nearest neighbor distances lievo&® pim.

Figure 2 Histogram of 3rd nearest neighbor distances. This figure shows the distribution of 3rd
nearest neighbor distances in order to get an idea of thegathyeighborhood of spine types used for
the MLR. It shows that although the maximum distance to adyn®&arest neighbor was extremely high
(248.31 pm) this distance was clearly an outlier case.

Suppose the output variable categories are denotedl hy2 corresponding to mushroom, stubby or
thin spines, with0 being the reference category. if denotes the observed outcome of the output
variable (spine type), and; is the corresponding vector of the 3 neighbor types and DhtHe ith
observation, one regression is run for the logit probabditeach category:, with 5, representing the
vector of regression coefficients in théh regression (eqns. 4,5). This is done for all but the refeze
category, whose probability is then obtained by subtrgcéith other probabilities from one (egn. 6).
Note that because the predictor variables were spine tygldsh were nominal as opposed to ordinal
variables, the predictor variables; must be represented with a “dummy coding”. This means each
neighbor type was represented by 2 predictor variablesrentie0) corresponded to mushroom type,
(0,1) corresponded to stubby type af@@ 0) corresponded to thin type. This does not need to be done
for the output variable. With the addition of the DIV, which does not have to be dumrogled since it

is an ordinal variable, this made ea&h vector of length 7.

The regressions are then written as:

o exp(p1X;)
Plyi=1) =1 + exp(B1X;) + exp(B82.X;) *
P(y; = 2) s ©

- 1+ eXp(,BlXZ‘) + eXp(ﬁQXi)

and
1

- 1+ eXp(,BlXi) + eXp(ﬁQXi)

Plyi=0)=1-P(yi=1) - P(y; = 2) (6)



The parameters are estimated typically by using an itergtirecedure such as “iteratively re-weighted
least squares” (IRLS) or, more commonly by a numerical agghrda quasi-Newton method) such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. In aseave create an MLR using the command
multinomin the R package nnet [29] which uses BFGS by calling the Rtionoptim It can be seen
that

Plyi=1), . o

109(7]3(% — 0)) = 01 Xi (7
Ply;=2), 4

lOQ(ip(yi — 0)) = (2 Xi (8)

so that the beta coefficients represent the change in theddg af the dependent variable being in a
particular category with respect to the reference categerythe thin type, for a unit change of the
corresponding independent variable. To check if the mattelated from all three experiments were in
agreement, we ran the MLR separately for each experiment.

To satisfy one of the major assumptions of this analysis,a@hathat the data must be a set of independent
observations, we took00 randomly sampled spines of each type from each experiméftqgines per
experiment total) to use for the parameter estimation. Véselo select equal proportions of each spine
type in order to remove any bias in the model towards the lespiént thin spines, arb0 was the
largest number we could justify using since there were 6d$thin spines in experimert We verified
that these randomly sampled spines did not lie witltinsm of the image border so that we were fairly
certain their nearest neighbors did not fall outside of thage plane. Note that due to the tortuosity of
the dendritic structure this did not mean that our sample weagssarily biased towards spines which
were proximal to the soma. We did not verify explicitly thaetsampled spines were not neighbors
of each other, since we assumed that the variation captyrébdebrandom sampling was enough to
ensure some level of independence. The idea was to aim fordapéndent set of observations which
represented the entire “population” of spines in that expent.To be clear we used &0, 285 spines

for the LLM model and K-function analysis, only the MLR modebuired random sampling since we
were using neighbor information which would have been reduanif we considered every spine.

To verify that the prediction of spine type provided by the Riwas better than what we would get purely
by their relative abundance i.e. without neighboring spiype information, we computed something
similar to a “Bayes Factor” [30]. Bayes factor is a method bbasing between two models on the
basis of the observed data. In our case, the first predictimatehwas simply the prior global probability
of finding a given spine type based on its frequency in thequaar experiment under consideration.
The second model was the MLR prediction model using the theigtype information. We computed
P(Y =i|X)/P(Y = i) and reasoned that values considerably larger than onatedithe neighboring
spine type information was helpful in the prediction of tlemtral spine type.

Linear network K-function as a tool for testing spatial point patterns

Originally proposed by Ripley in 1981 [31], the purpose @ #rfunction is to estimate whether or not
there is clustering or repulsion present in a given spataitgprocess. The common null hypothesis is
that the points within the observation window are distrlotlids a homogeneous Poisson process, which
is also termed “completely spatially random” or CSR. Thisamethat the density of points does not
vary depending on the spatial parameters i.e. x and y in th&@flidean case, or the location along
the dendritic network in our case. In order to determine ig th a valid null hypothesis for our data,
we created Q-Q plots [32] for individual dendrites which gared the quantiles of the SD values of
observed spines to the theoretical quantiles for the CSR tithe two distributions (observed and CSR)
being compared were similar, the points in the Q-Q plot wagdroximately lie on the ling = z. In
order to create the theoretical quantiles it is necessakpda the values of SD at any location on the
given network, not just at the spine locations. Once we hhigewe can partition the network into



epsilon small segments and assign each segment a V#litecontains a spine an@ otherwise based
on the CSR assumptions. We did this using code provided ty églbhan Baddeley and Gopal Nair at
the Commonwealth Scientific and Industrial Research Orgdinn (CSIRO), Australia.

The K-function computes the expected number of points withidistance of an arbitrary pointp,
therefore the empirical value in 2D Euclidean space for tB® Case will be proportional to the circular
area,\7t2. The proportionality constanit represents the density of points in the homogeneous Poisson
case, and can be estimated by finding the total number ofpaintlivided by the total area of the
observation windowA. Ripley’s K-function, which is a function of, is a very useful tool because it
describes th@™? order characteristics of the point process at several s¢allf we ignore the edge
effects due to the observation window, the obseri&d) can be written as:

= Al
K(t) = D Idij < t) (9)
i jFi
where! stands for the indicator function, aag stands for the Euclidean distance between two points
p; andp;. In the above equation, we see that the expectation is nizedaby 1/\ since\ = %, SO

we infer that theoreticallys (t) = 7t implies spatial independence of points, or a CSR point gice
Therefore, ifK (¢) is the theoretical CSR value of the function aﬁdt) is the observed function, then

I?(t) > K (t) implies clustering between points all%l(t) < K (t) implies repulsion. It is possible to

extend this function to multi-type point patterns (i.e. todficlustering or repulsion between specific
spine types) or to higher dimensional data (i.e. space;tim&D Euclidean space).

Since our particular point process consists of spines whe&talong the “linear network” of the
dendritic tree we were primarily concerned with inter-gptlistances along the dendrite as opposed to
in Euclidean space. Therefore we used a version of the Ktfumaleveloped recently for linear
networks by Okabe and Yamada [15]. This modified version efkkfunction takes into account the
structure of the linear network on which the point processdes and imitates the Euclidean space
K-function described above. The linear network K-functisicalculated as follows:

N
K(t) = % YO I(di; <) (10)

i=1 j#i
wherelr is the length of the total netwotk;. The theoretical CSR for this case is described as follows:

1
K(0) = /p iy (11)

wherep is a point belonging to the set of all poini8 = {p1,...,pn}, and4,(t) is the length of the
subset of the network,,(¢) where the distance between p and any other poirt is Note that here
the distancel;; stands for the linear network distance along the dendritzoAnting for variability in
the length/,(t) means the formula takes into account the edge effects dure tobiservation window
(in our case the image plane) inherently, but at the cost dé@domplexity. The computation of the
theoretical linear network K-function requires us to fihg (¢), the subset of.; where the network
distance between a specific pojptand any other point is¢ ¢, and/,,, (¢), the length of that subset, for
every pointp;. A visualization of the quantities;;, Lr, {1, L, (t), and/,,(t) is shown in Figure 3.

Note that although many biological applications of poinbgesses treat individual observations as
replicate patterns coming from the same underlying digtidgin, we cannot do that using the above
definition of the network linear K-function due to the charigdinear network structure from dendrite
to dendrite. The term “dendrite” here refers to the entiradiigic tree resulting from a single root
branch of a neuron. Other in-vivo studies [33,34] focus arstedring of spines which lie on the same
unbranched section of the dendrite, however we focus onritike @lendritic tree under the hypothesis



Figure 3 Visualization of the linear network K-function. This figure clarifies what is meant by the
quantitiesd;;, Lr, ¢r, Ly, (t), andf,, (t) which were used to compute the linear network K-function.
Hered,; is the linear network distance shown by the gray line betvpeentsp; andp;. L7 (in black) is
the entirety of the single dendritic network afidis the length ofL. Similarly, L,, (¢) (in blue dashed
lines) is subset of the network where the distance betweeamird p and any other point i< ¢ and

¢y, (t) is the length ofL,, (¢). In this particular example there akespines which fall withinZ,, (¢) and
would be counted in determining the empirical function eaﬁ](t), however poinp; falls outside this
radius and would therefore not be counted.

that it follows rule-based distributions of spines due tatamical constraints and integration of the a
signal over the entire dendrite. One can infer from Figurd& since the geometry of the linear
network changes from dendrite to dendrite, so do the totajthes of the networkg,, the ranges of
possible t-values and the amount of dendritic length thptésent within a given distance of any point.
We did not simply normalize the lengths of the networks {6,d] scale because it is desirable for the
t-axis to retain its real physical values in order to makectgsions about the scale (ipm) of
clustering or repulsion among spines. However, we did degr compare the linear network
K-functions of various dendrites in a meaningful way. Fastteason we used a corrected version of
the network K-function that intrinsically compensates floe geometry of the network called Ang'’s
correction [35]. The observed K-function then becomes:

Rity= —1tr >y M (12)

wherem(i, d;;) is the number of points af lying at the exact distanaeaway from the point measured
by the shortest path. That is, the contribution to the funmcfrom each pair of point&, j) is weighted
by the reciprocal of the number of points that are situatedeasame distance frofrasj is. As a result,
the theoretical CSR case is simply(t) = ¢ for all 0 < ¢ < 7. This enables direct comparison of
t-values across dendrites, as we will see in the result®sect

Simulations and g-values

To test the null hypothesis that the locations of spines enddndrites were indeed CSR, we created
a summary statistic which encompasses the difference battine empiricalf((t) and the theoretical
K (t) under CSR. The summary or “test statistic” we used, is the abaolute difference (MAD) over
t, viz.
d = max| K (t) - K(t).

One method for obtaining a distribution @fproposed by Diggle [36] is to bootstrap the residuals, or
differences between the observed and theoretical valuesettr a more heuristic and intuitive way is
to simulate the CSR case for each dendrite, compute the &ifumfor each of these simulations, and
find the simulated distribution of our test statistic. Werttieund the p-value of the observed difference
d from this simulated distribution.

Specifically, we carried out000 CSR simulations for each dendrite by placing uniform poaris line

[0, 47], and mapping them to that specific dendrite’s linear netvebricture. The number of points
simulated per dendrite equaled the number of observed spanethat dendrite, thus preserving the
overall densityA. This means the same number of spines that existed on eadhtdemere randomly
placed along the linear network specific to that dendrite. Uaed these simulations to obtaifi00
values of the summary statistic, sdly]. Then the p-value for each dendrite was simply the proportio



of simulated values that fell above the observed or expetiah@alue ofd, i.e. the rank of thigl within
the 1000 values ofd[i], or nrank/(nsim + 1).

This p-value approach is similar to the test which rejeatsrthll hypothesis if the graph of the observed
K-function lies outside the “point-wise simulation envedd at any value of t. A simulation envelope
is essentially a graphical measure of how far a function @ate from the theoretical value without
being considered significant at a given level. As mentioriEava in our case the envelope is calculated
by first creating tha 000 CSR simulations of a point pattern on a given dendritic nétwdgth the same
observed network intensity, then calculating the lineduKetion for each of these)00 simulations. To
perform a two-sided significance test at % level, the5% and95% percentiles are then calculated
based off thé0 lowest and;0 highest linear K-function valugser t-value hence the term “point-wise”.
Plotting these values as a function of t gives one a visua afghe spread that is produced by chance
mechanisms alone. If the observed K-function for a givealti does not fall outside these percentiles,
itis considered insignificant for that t-value at tH#% significance level. We make use of the R package
‘spatstat’ [18] for obtaining the point-wise simulationvetope.

Because we have a multitude of hypothesis tests and p-vétunes for each dendrite), to reach a
conclusion about the general trend for each DIV and experime&e used the concept of False
Discovery Rate (FDR) [37]. The FDR is defined as

_ #truenull tests

= 13
7o # total tests (13)

Controlling the overall FDR, or expected proportion of ieatly rejected null hypotheses termed “false
discoveries”, is a statistical method commonly used in iplglthypothesis testing which increases the
statistical power of each test. What is more general andilbetvever, is a test-specific FDR measure.
This essentially allows us to look at all possible signifimathresholds at once, as well as provide each
test with a measure of significance that can be easily irggggr This is accomplished by calculating
an analogue of the p-value for each test called a “g-valu8l. [A p-value of0.05 implies that5% of

all tests will result in false positives, whereas a g-valtie.05 implies that5% of significanttests will
result in false positives. Since the latter is clearly a faaker quantity, g-values generally indicate
fewer significant tests than p-values for a given signifieaticeshold and provide a far more accurate
indication of the level of false positives in the case of npldt hypothesis testing. For g-value estimation
we used the gvalue package available from [39].

Results and discussion

Data analyzed

We performed three biological replicate experiments tagpin a total of 75 neurons from the following
time points: DIV 7, DIV 14, and DIV 21 (Table 1). This providedich and complete data set resulting
in 485 dendritic branches and 30,285 spines. Example imageseach DIV along with zoomed in
dendritic segments where spines and annotations areevigilel shown in Figure 1. Scale bars are
shown in red in panels A-C and the yellow rectangular boxgmimels A-C show the region of interest
which has been zoomed in on in panels D-F respectively. Bané# are all at the same resolution.

Table 1 Number of neurons collected per experiment and DIV

EXP DIv7 DIvV1i4 Div21
1 8 9 7
2 10 10 10
3 7 7 7




The number of spines parmn, or A, for each dendrite in different experiments and time pagsiown in
Figure 4. We chose to include this in order to help the readepare these neuronal culture results with
other experimental paradigms with which they may be mordlif@amit is clear from the histograms that
the distribution of spine density for DIV7 is skewed towaod/er values as compared to the density for
DIV21, as expected. The image data as well as spine and tinacgagions are made publicly available
through the BISQUE system [40] and the URL is given in theisaditled “Availability of Supporting
Data”. We chose BISQUE over other databases like NeuroMo€y [41] because it allows us to
upload multiple layers of annotations as opposed to onlyifi#al reconstruction files.

Figure 4 Histograms of spine density per dendrite for each gxeriment and DIV. This figure shows
histograms of the number of spines per, or A, for each dendrite in different experiments and time
points.

We calculated a 2-way contingency table over all experisiamid spine types and obtained Table 2.
From this table we note the high frequency of mushroom arubgtspines as compared to thin spines,
and also the fact that the ratio of types does not remain tine geer experiment even though they were
indeed biological replicates. In fact, a Pearson’s Chigsea test on Table 2 shows dependence between
the spine type counts and experiment numiéfdf = 4, N = 30285) = 659.87, p < 0.0001.

Table 2 Number of each type of spine per experiment
EXP Mushroom Stubby Thin

1 4035 3224 1915
2 5400 6619 2570
3 2388 3485 649

We believe that the large experimental variation betweenestype proportions and counts in each
experiment was a positive result because this meant thastista agreement across all 3 experiments
relating to spine type clustering and density estimationiesheavier weight than if the 3 experiments
were more uniform in these quantities, or if we had poolea di@m all 3 experiments together. Also,
if all 3 experiments were unusually homogeneous there coeld possibility that it is a result of our
specific culturing, imaging or spine extraction methodsheatthan a true representation of the
underlying biological process. The various biologicalteyss to which these techniques will be
applied will certainly have this type of variability.

Spine type is independent of distance from soma

As described in the Methods section, we calculated a stegfitisf the log-linear model starting with
just a constant term, and at each step choosing to add theafifeais (div, type, bo and sd) and possible
2-way interactions between main effects one-by-one if theyreased the corresponding AIC value. The
captions above Tables 3, 4 and 5 show the final models arrivied @ach of the 3 experiments as well
as their corresponding AIC values. The tables indicate lamge in the AIC value that would occur
from adding or omitting each of the terms in the first colummisigives us an idea of how important
that term was to the model. The rows of the table are orderdddiryoverall contribution to the model,
i.e. the term in the first column of the first row of each tabld tfee lowest AIC value and was therefore
the most important to the overall model. If the reader rezpufurther information on the AIC criterion
or how to interpret this table we ask them to refer to Chaptefr[@7].

Despite the fact that they were included in the final stepvitsenodel for experiments 1 and 3, the
AIC values in Tables 3, 4 and 5 show that in all 3 experimengsittkeraction between spine type and
soma distance (“typsd”) as well as spine type and branch order (“tjgo&) were the least important



Table 3 EXP 1 stepwise final model: freg~ div + type + bo + sd + boesd + div-bo + div-type +
div-sd + typebo + type-sd, AIC = 1557.05

Df Deviance AIC
None 530.4 1557.1
Omit typesd term 6 545.0 1559.6
Omit typebo term 8 558.8 1569.4
Omit div-sd term 6 569.6 1584.2
Omit div-type term 4 648.0 1666.6
Omit div-bo term 8 1324.1 2334.7
Omit bosd term 12 4142.4 5145.0

Table 4 EXP 2 stepwise final model: fregv div + type + bo + sd + bosd + div-bo + div-sd + div-type,
AlIC =1243.13

Df Deviance AlIC
None 470.2 1243.1
Add typesd term 6 461.3 1246.3
Add typebo term 8 465.5 1254.4
Omit div-type term 4 610.4 1375.3
Omit div-sd term 6 696.0 1456.9
Omit div-bo term 8 906.5 1663.5
Omit bosd term 12 5208.2 5957.1

Table 5 EXP 3 stepwise final model: freq~ div + type + bo + sd + bosd + div-sd + div-type +
div-bo + type-sd + typebo, AIC = 1441.29

Df Deviance AlIC
None 482.24 1441.3
Omit typebo term 8 522.95 1466.0
Omit typesd term 6 542.08 1489.1
Omit div-bo term 8 606.34 1549.4
Omit div-type term 4 630.62 1581.7
Omit div-sd term 6 715.38 1662.4
Omit bosd term 12 2825.69 3760.7

in modeling the overall frequency table of occurrencessTiiplies that the correlation between these
gquantities was not very high, therefore we reason that itnegecessary to use either SD or BO to
predict the spine type in the MLR created in the followingtest We also noticed that the term marking
the interaction between BO and SD was the most importantvisrterm in all stepwise fit models. It
is expected that BO and SD are correlated because both ngbebgrease as we move away from the
cell body. Indeed, running a 2-way Chi-square test on thémgency table of the discretized versions
of these variables showed us high dependegéglf = 12, N = 30285) = 11635.19,p < 0.0001. We
also saw a high level of dependence between DIV and 8df = 6, N = 30285) = 681.76,p <
0.0001) and between DIV and BOxg(df = 8, N = 30285) = 1604.75,p < 0.0001). This was
intuitive as well since we expect both BO and SD to generaltyaase with DIV.

Itis possible that the Type vs. SD relationship could hage bken estimated using a Sholl-type analysis
([42]) where we count the number of each type occurring wittincentric circles from the soma and
verify that it is constant, however this would not nece$ggrroduce the same results. The crucial
difference between our approach and the Sholl approachtigtlour approach the “distance from soma



measures” the actual distance along the centerline of tharie instead of the radial distance from the
cell center. This is especially important for dendriteshwitgh tortuosity (which we find prevalent in
our data), since the radial distance in those cases willmwéspond to the dendritic distance from the
cell body. Many studies of cultured neurons use Sholl argiywwever they use it in its original form
for counting dendritic intersections and do not commenthanrélation to spine density or type. To our
knowledge this is the first study to quantify the spine dgnest distance to the soma in dissociated
neuronal cultures.

Three-way and 4-way interactions are generally known to bakw(not as explanatory as the main
effects and 2nd order interactions) and difficult to intetpthowever in the interest of exploring all
possibilities we computed the maximum likelihood fit usidg4aattributes as well as a stepwise fit
model which allows for 3-way interactions between att@sut The table presented in Additional file
1 results from the LLM which models all possible interactiarf all 4 attributes, i.e. up to the fourth
order. The coefficients presented in the table are thosehwhse significant at the.1% level, and
the corresponding p-values are shown in the last column. tdlble contains the interactions which
were more important to the model, and shows that of theseaittiens only one (highlighted in green)
between type and either BO or SD, was shown as being sigrtificam all experiments. This verifies
once again that neither BO nor SD were highly correlated Wighspine type. In addition to this, the
stepwise fit models in Additional file 2 show that if we did a8rd order interactions, the strongest 3rd
order correlation over all experiments was that of DIV, SO &0, again affirming that all 3 of these
quantities should intuitively increase together.

Spines tend to cluster with other spines of the same type

In creating a regression model, we first ascertain that thdigtior variables used are not only useful
in predicting the output variable, but also that they do mowjgle redundant information as this can
throw off the model fitting process. Using all spines in theéadat, we performed a Chi-square test
on the 2-way contingency tables of spine type versus bini2ai®l BO, DIV, and the types of the
3 nearest neighbors (N1, N2, N3) as described in the Logdtiddodel section above. Due to the
aforementioned dependence between the type and expemumaier we performed the test separately
for each experiment and the results are shown in Table 6. Erertable we can see that the DIV and
the 3 nearest neighbors showed clear dependency with sgieeart all experiments, whereas SD and
BO showed independence at thi% significance level in experimentsand?2 respectively. Since we
expected SD and BO to have a similar relationship with type @uthe high correlation mentioned
above, and we had found this was not a very strong relatipnsré chose to use only DIV, N1, N2 and
N3 as predictors for spine type in the MLR model.

Table 6 Chi-square results for spine type vs. other attribues
EXP1, N = 9174 EXP2, N = 14589 EXP3, N = 6522
TypeSD,df =6  x?=9.13,p = 0.1665  x? = 33.64,p < 0.0001 x? = 25.08, p = 0.0003302
TypeBO, df =8 x? =29.02,p = 0.0003147 x? =12.39,p = 0.1348 x? = 26.53,p = 0.0008516
TypeDIV, df =4 x? =119.78,p < 0.0001 % = 358.25,p < 0.0001 2 = 139.28,p < 0.0001
TypeN1,df =4 x? =225.93,p < 0.0001 x? =212.87,p < 0.0001 2 = 246.74,p < 0.0001
TypeN2,df =4 x? =163.67,p < 0.0001 x? =226.31,p < 0.0001 2 = 127.91,p < 0.0001
TypeN3,df =4 x?=190.33,p < 0.0001 x? =153.11,p < 0.0001 x? = 131.96,p < 0.0001

The resulting beta coefficients for each of the predictoiatdes are shown in Table 7. Here “N1-Varl”
refers to the beta coefficent of the first dummy variable fa type of the first nearest neighbor;
“N1-Var2” refers to the second dummy variable, and so on. “fingshroom” row is omitted because it
is the reference category and its probability is obtaineshasvn in eqn. 6. We computed the prediction
probabilities for each spine type given each combinatiomnefhbor types for each experiment



separately to determine the agreement between experimfestdected set of results are shown below
in Tables 8, 9 and 10. The highest probability for each rowask®ad by an asterisk. Note that in these
tables all DIVs in all experiments predicted the spine typebe mushroom when its 3 nearest
neighbors were mushroom type, and stubby when the 3 neaigsiors were stubby type. Thin types
were the most probable when the three nearest neighborstietype in all but experiment 2 DIV14

and DIV21. The probabilities for cases where all 3 of the estaneighbors were not of the same type
have been omitted for brevity and because they did not shgwelaar trends.

Table 7 MLR beta coefficients for all 3 experiments

EXP1 (Intercept) N1-Varl N1-Var2 N2-Varl N2-Var2 N3-Varl N3-vVar2 DIV
Stubby 0.06 0.04 0.47 -0.52 0.10 0.09 0.25 -0.01
Thin 1.05 -0.57 -0.34 -0.84 -0.57 -0.23 -0.32 0.00

EXP2 (Intercept) N1-Varl N1-Var2 N2-Varl N2-Var2 N3-Varl N3-var2 DIV
Stubby 0.08 0.03 0.67 -0.14 0.05 -0.20 -0.09 -0.02
Thin 0.25 -0.76 -0.17 -0.61 -0.37 -0.06 -0.05 -0.02
EXP3 (Intercept) N1-Varl N1-Var2 N2-Varl N2-Var2 N3-Varl N3-var2 DIV
Stubby -0.36 -0.24 0.33 -0.14 0.19 -0.03 0.30 0.01
Thin 0.35 -0.66 -0.58 -0.33 -0.28 -0.25 -0.33 -0.02

Table 8 Prediction Probabilities: N1 = mushroom, N2 = mushrom, N3 = mushroom

DIV7 EXP P(mushroom) P(stubby) P(thin)
1 0.45* 0.30 0.25
2 0.51* 0.35 0.13
3 0.54* 0.27 0.20

Div14 EXP P(mushroom) P(stubby) P(thin)
1 0.45* 0.28 0.26
2 0.55* 0.33 0.12
3 0.54* 0.28 0.18

DIv21 EXP P(mushroom) P(stubby) P(thin)
1 0.46* 0.27 0.27
2 0.59* 0.30 0.11
3 0.54* 0.30 0.16

* denotes the highest probability per row.

Table 9 Prediction probabilities: N1 = stubby, N2 = stubby, NB = stubby

DIV7 EXP P(mushroom) P(stubby) P(thin)
1 0.24 0.55* 0.21
2 0.30 0.52* 0.18
3 0.32 0.55* 0.12

DIvV14 EXP P(mushroom) P(stubby) P(thin)
1 0.25 0.53* 0.22
2 0.33 0.50* 0.17
3 0.32 0.58* 0.11

DIv21 EXP P(mushroom) P(stubby) P(thin)
1 0.26 0.51* 0.23
2 0.37 0.47* 0.16
3 0.31 0.60* 0.09

* denotes the highest probability per row.



Table 10 Prediction Probabilities:

N1 = thin, N2 = thin, N3 = thin

DIV7 EXP P(mushroom) P(stubby) P(thin)
1 0.20 0.20 0.60*
2 0.33 0.31 0.36*
3 0.33 0.25 0.42*

Div14 EXP P(mushroom) P(stubby) P(thin)
1 0.20 0.19 0.61*
2 0.37* 0.30 0.34
3 0.34 0.27 0.39*

DIvV21 EXP P(mushroom) P(stubby) P(thin)
1 0.20 0.17 0.62*
2 0.41* 0.28 0.32
3 0.34 0.30 0.36*

* denotes the highest probability per row.

The Bayes factor results in Table 11 show that the propatigain in information for the spine type

in question was always greater than one for the predicticm fdrticular type when the neighborhood
types were all of that same type. Due to the low frequency iof $pines, their corresponding Bayes
factors were higher than that of other types, meaning tleat ginediction probabilities benefit more than
other types from neighborhood type information.

Table 11 Bayes factors
BF(mushroom): N1 = mushroom, N2 = mushroom, N3 = mushroom

EXP DIV7 DIV14 DIV21
1 1.02 1.03 1.05
2 1.39 1.49 1.60
3 1.47 1.47 1.47
BF(stubby): N1 = stubby, N2 = stubby, N3 = stubby
EXP DIV7 DIV14 DIV21
1 1.56 1.50 1.44
2 1.15 1.10 1.05
3 1.03 1.08 1.12
BF(thin): N1 = thin, N2 = thin, N3 = thin
EXP DIV7 DIV14 DIV21
1 2.85 2.91 2.98
2 2.04 1.92 1.79
3 4.22 3.87 3.54

Dendritic spine densities are completely spatially random

We created Q-Q plots as described above based on the gaaftdpine counts vs. distance from the
soma and found that upon visual inspection almost all daxrollow the theoretical uniform
distribution closely enough to assume that the density@&iiines was homogeneous and therefore the
CSR case was a viable null hypothesis. We selected 9 (out®)f@&mple dendrites and their Q-Q
plots are shown in Figure 5. We randomly selected 1 dendrite feach DIV and each biological
replicate (experiment) to ensure the diversity of the sdte J = z line is marked in red, and the
observed Q-Q values are marked as black circles. Note tlzaube this is a graphical method for
comparing two probability distributions there was no paeabr significance level associated.



Figure 5 Q-Q Plots of spine density vs. soma distance for a set 9 example dendrites. This figure
presents the Q-Q plots of spine density vs. distance fronagon® (of the 485) example dendrites. We
randomly selected 1 dendrite from each DIV and each bioctdgieplicate (experiment) to ensure the
diversity of the set. Thg = x line is marked in red, and the observed Q-Q values are maskbthek
circles. Visual inspection of these plots show that theljpoiolthe liney = x closely enough to assume
that the spine locations being CSR was a viable null hypathes

Of all the 485 dendrites analyzed, only three of them (Exp.I\M 21, Exp. 2 DIV 14, and Exp. 2 DIV
21) were considered non-CSR at ifg significance level. Figure 6 shows histograms of the p-\sabfe
all 485 dendrites separated into each DIV and experimenteunThe5% significance level is shown
by the red vertical line in each case. We then computed thaluwes for each dendrite and found that
they are all equal ta. This is not surprising according to the explanation of thealyje above. Recall
that g-values equal tbimply that100% of the significant tests resulted in false positives, i.erétwere

no significant tests. We therefore conclude that regardiedse maturity of the neuron, or the variation
over biological replicate experiments, the locations afiep along all of the dendrites we analyzed were
completely spatially random.

Figure 6 P-values of linear network K-function MAD statistic for each experiment and DIV. This
figure shows histograms of all dendrite p-values per exmmtrand DIV before FDR was applied. In
each case the% significance level is marked by a red vertical line. Q-valuese not included as a
separate figure because they were all zero.

As mentioned above, the K-function is a function of the igieint distancet, that we consider around
each observed point. The range of t-values is determineldebptal length of the networls-, therefore
because each dendrite has a different network length ita@sa different range of t-values. Our chosen
summary statistic throws away this information by compyitime maximum absolute deviation (MAD)
over allt in order to determine whether that value deviates signifigdrom the spatially random case.
However it may be of interest to determine whether clustednrepulsion between spines occured at
specific inter-point distances Ang’s correction normalizes the K-function such that thedretical

K (t) = t for all t, so we can easily use this as a reference point. Figure 7 sth@nis-function for
the same 9 example dendrites used for the Q-Q plots of Figueaéh graph shows the observE’cat)
function (black), the theoreticak (¢) function (red) as well as the two-sidéd; and95% point-wise
simulation envelopes as a function of the radiusollowing the description of the point-wise simulation
envelope above we calculated these lower and upper ensadoiess % and95% percentiles per t-value
in the interest of checking #ény t-value fell outside of this range. Since the black curvesidbleave
the gray shaded area for any value of t, the deviation froniadjyarandom was insignificant at the
10% level for every t-value and is in agreement with our previoasclusion using the MAD statistic.
This observation holds for almost all of the 485 dendritesngpected visually, with no specific t-value
evidencing either repulsion or clustering.

Figure 7 Theoretical and observed K-functions and simulathn envelopes for a set of 9 example
dendrites. This figure shows the K-function for the same 9 (of 485) exang@ndrites used for the
QQ-plots of Figure 5. We randomly selected 1 dendrite frowhealV and each biological replicate
(experiment) to ensure the diversity of the set. Each grhptvs the observefl (t) function (black), the
theoretical K (¢) function (red) as well as the two-sidéd and95% point-wise simulation envelopes
as a function of the radius We see here that the black curves do not leave the gray slaadador
any value of t, which means that the deviation from spatiahdom is insignificant at the0% level for
every t-value.




Conclusions

The models used in this work allow spatial prediction of spigpes, which has not previously been
studied. The conclusions presented here relate to gqsalifieneurons in dissociated culture. We
acknowledge that some of these results will most likely rat Hor in vivo settings due to neuronal
interactions not modeled here, but maintain that the sitatlsnethods used here will be useful and
easily applicable. Specifically, we found here that spingetand density are not dependent on the
distance from the cell body, and these observations ardy litee change for in vitro slices or
micro-injection of fixed brain tissue.

We also note that we chose not to deconvolve our data bechiiséigh contrast. We acknowledge that
this choice may have precluded the image analysis softwane detecting some stubby spines among
the halo of the bright dendrites, but we do not feel this digaintly impacted our results. As a partial
compensation for this effect we used NeuronStudio’s iftlawitomatic z-smear compensation, and for
more details on this we refer the reader to [22,23].

Although in this study the spine distributions seemed to dmapletely spatially random it is possible
that we will find studies using different neuronal types amétments where this is not true. In these
cases, where spine density may vary with distance from théagy, it would be interesting to test for
inhomogeneous patterns of points such as the hard coresStPaocess used in [43]. We could also
place an exponentially decaying function to model the atdton between spine types within a certain
radius or experiment with other pairwise interaction fimt$ such as those used by Diggle, Gates and
Stibbard [44] or Diggle and Gratton in [45].

We find it an interesting result that spines were not spgtelistered when type was disregarded, as
shown by the linear network K-function analysis, howevanspypes do tend to group together as
shown by the MLR analysis. We would like to note that thesaltesre not contradictory because they
are in fact measuring different quantities. The MLR restétis us that, regardless of their densities
along the dendrite, if we have a spine which is of a given titse8 nearest neighbors are likely to be of
the same type. The K-function, on the other hand, tells usrdgardless of type the spines’ locations
along the dendritic network are spatially random. Theseragalts provide complementary information
and together could aid us in future modeling tasks such aglaiion of neuronal growth. For example,
we could first place spines uniformly along the dendritionurk, and then decide the types of those
spines based on the type of information given by the MLR mo8isfuture work we plan to analyze the
network cross K-function [15] of the dendritic network, whimodels the spine distribution as a multi-
type point process and therefore provides information iepulsion and clustering of each spine type
with each other spine type, modeling both density and typeikaneously.

Generally previous studies such as [46-49] have relied griplogy or biochemical markers to validate
their neuronal properties. The quantitative morpholddieatures described here provide an additional
phenotypic dimension for these analyses. Likewise thepeoaphes can be applied to phenotypic
analyses of neuronal cultures following over-expressiosuppression of specific genes to capture their
effect on a complex phenotype. As mentioned in the Intrddnctection, the only other study we are
aware of which analyzes clustering of dendritic spines imkey brains is [14]. The authors of this
work study the number of “clustered spines” on each dewrds#égment, where a cluster is defined as a
group of 3 or more spines. The method used here defines chgstes a statistically significant positive
deviation in the linear K-function from the theoretical walof the spatially random linear K-function.
We believe our method to be more principled and our resulieeto interpret than those of [14] due to
the more formal statistical definition of clustering.



We chose to use dissociated hippocampal cultures becagygarth widely used and they allow us to
perform an in-depth and automated analysis with largerespopulations than most previous studies.
These approaches will be important in assessing featuregurons derived from human induced
pluripotent stem cells which have so far not been charaet@iby detailed morphological features. Our
paper utilized a highly simplified neuronal culture systemdévelop the statistical and computational
tools for more advanced in vivo studies needed to addressafttrementioned bigger biological
questions. Our overall hypothesis was that we can utilizaging and statistical analyses to capture
features of spine distributions that can be used for testygptheses in in-vivo settings. Indeed, we
have been conservative about hypotheses and findings camgespine type clustering because any
conclusions we might reach on the specifics of spine digtabuwvould be limited to the neuronal
culture system we studied.
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Additional files

Additional_file_1 as PDF

Additional file 1. Table of 4-way LLM coefficients. This table shows the 4-way interaction LLM
coefficients which are significant at tlel% level. Note that only one interaction between type and
either branch order or soma distance (highlighted in gresesignificant in the entire table. This further
proves the result that these interactions are not very itaptoto the overall model of frequencies.

Additional_file_2 as PDF

Additional file 2: AIC Stepwise models for 3-way LLM. This table shows the results of the AIC
stepwise algorithm using an LLM with up to 3-way interacBomhe models arrived at by this method
are shown in the caption above the table. From this table wesea that if we do allow 3rd order
interactions, the strongest 3rd order correlation oveexderiments is that of DIV, SD and BO, which
makes sense because all three of these quantities shautt/ély increase together.
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