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Abstract

Background

Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned
about their spatial and temporal distribution among neurons. Our aim in this study was to perform
exploratory analyses based on the population distributions of dendritic spines with regard to their
morphological characteristics and period of growth in dissociated hippocampal neurons. We fit a log-
linear model to the contingency table of spine features suchas spine type and distance from the soma
to first determine which features were important in modelingthe spines, as well as the relationships
between such features. A multinomial logistic regression was then used to predict the spine types
using the features suggested by the log-linear model, alongwith neighboring spine information.
Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study
the spatial distribution of spines along dendrites.

Results

Our study indicated that in the culture system, (i) dendritic spine densities were “completely
spatially random", (ii) spine type and distance from the soma were independent quantities, and most
importantly, (iii) spines had a tendency to cluster with other spines of the same type.

Conclusions

Although these results may vary with other systems, our primary contribution is the set of statistical
tools for morphological modeling of spines which can be usedto assess neuronal cultures following
gene manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to
neurons.
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Background

Spines are protrusions that occur on the dendrites of most mammalian neurons. They contain the post-
synaptic apparatus and have a role in learning and memory storage. Spine distribution is a critically
important question for multiple reasons. Changes in spine distributions and shape have been linked to
neurological disorders such as Fragile X syndrome [1]. Spine distributions determine the extent to which
the neuropil will be electrically sampled, i.e. dense distributions will sample the neural connectivity
map more fully [2]. Furthermore, the nature of optimal sampling is unknown and likely depends on
the surrounding anatomy and the total information content available to dendrites. Because pruning takes
place during development in an activity dependent manner, spine distributions may reflect activity within
neural circuits. Distributions of spine types are biologically important because the electrical properties
of spines, such as the spine neck resistance, promote nonlinear dendritic processing and associated forms
of plasticity and storage [3] to enhance the computational capabilities of neurons.

The shapes and types of dendritic spines contribute to synaptic plasticity. Because neighboring spines
on the same short segment of dendrite can express a full rangeof structural dimensions, individual
spines might act as separate computational units [4]. Nevertheless, the dendrite acts in a coordinated
manner and thus the spatio-temporal distributions of different spine types is likely to be significant.
Little is known about this population level organization ofdendritic spines. Our aim was to perform an
exploratory analysis of neuronal data from different time periods during the growth of rat dissociated
hippocampal neurons, a well-established model system [5].The observations here pertain only to the
culture system and not necessarily to in vivo settings although the analytical tools used here could be
adapted to in vivo analyses.

By quantifying populations of dendritic spines with automated tools at a global level, we were able
to perform a much larger and more comprehensive analysis than most previous studies. Many studies
only analyze a small region of interest on the largest dendrites, for example the 50–75µm closest to
the soma [6], or10 µm segments [7], making it easier to measure manually the spinetype counts and
dimensions. Other works determine spine lengths and widthsby manually drawing a line along the
maximal length and measuring the length of that line [8], andtherefore are only able to analyze a few
neurons and a few hundred spines at a time.

In this study we determined the ratios of spine types along the dendrites as a function of time in culture,
clustering or repulsion of spines in space, and how best to model spine type distributions. A model that
fits the spatial distribution of spine types in healthy cultured neurons would be useful to assess neuronal
cultures following gene manipulation such as RNAi and to study features of induced pluripotent stem
cells differentiated to neurons.

Log-Linear Models (LLM) and Multinomial Logistic Regressions (MLR) are two basic and essential
statistical methods, and have an extensive history of beingused in biological studies. However, these
tools have not been used thus far in the analysis of spine distributions. We fit a log-linear model (LLM)
to the contingency table of spine features to determine the dependence between spine types (mushroom,
thin, and stubby), distance from the cell body along the dendrite (in micrometers), the branch order of the
dendritic segment on which it lies (primary, secondary, tertiary, etc.), and the day in vitro (DIV) on which
it was imaged. Once we determined which of these attributes contributed to the overall dendritic spine
model, we then asked whether these attributes can predict the occurrence of spines and of spine types.



To answer this question we used a Multinomial Logistic Regression (MLR) model, which predicted
the spine type, using the attributes that were found to be important through the LLM and associated
contingency tables.

Finally, to understand how the dendritic spine density varied over the length of the neuron or whether
the appearance of spines was completely spatially random i.e uniformly distributed over the neurites, we
made use of spatial point processes. Spatial point processes have been used before in biological studies
to model the locations of entire neurons [9-11], locations of ants nests [12] or xylem conduits [13].
There have also been other more ad-hoc methods created to study the number of “clustered spines” on
each dendritic segment in monkey brains, where a cluster is defined as a group of 3 or more spines [14]
however we believe our use of the linear network K-function [15] is the first work to analyze the locations
of dendritic spines and their clustering properties in sucha principled manner. Our analysis indicated
that the density of spines is generally completely spatially random (CSR) over the dendritic length
probably due to the absence of instructive directional signals found an in vivo setting in which spine
distributions are unlikely to be CSR.

Methods

Cell imaging

Dissociated hippocampal neurons from embryonic rat brains(E18) were plated onto poly-l-lysine coated
coverslips. Once neurons adhered to the coverslip, they were placed face-down on glial cells grown in
vitro for 15 days. These neurons were a primary neuronal culture system, and no cell line was used.
Neurons were grown for specific time periods up to 21 days in a neuronal medium containing B27. This
co-culture of neurons and glia mimic the physiological conditions of neuronal growth and development
in mammalian brain [5]. Work with the neuronal cultures was approved by the UCSB animal care
committee.

To fill the neuronal processes including dendritic spines Green Fluorescent Protein (GFP) was
expressed from a plasmid containing the beta-actin promoter (CAG-GFP) [16]. Of this plasmid,2 µg
was transfected into each coverslip containing about50, 000 neurons (including about20% glial cells).
Transfection was performed as described in the manufacturer’s protocol (Lipofectamine 2000 from
Invitrogen) with minor changes. The transfection mix and neurons were incubated for two hours to
avoid toxicity caused by lipo2000. Following transfection, coverslips were flipped back onto the glial
dish, where they were originally cultured. GFP-actin transfected into the neurons at DIV4 (Day In
Vitro) and neurons were studied at three time points- DIV7, 14 and 21. These time points survey the
maturation period over which synapses and spines emerge [17]. Note that these were not the same
neurons studied over time, but each time point represents a different population of neurons which were
grown in culture up until the point of imaging. In this way ouranalysis represents a study at the
population level. At each time point the number of images taken per plate depended on the transfection
efficiency of that plate. On average approximately1% of cells were transfected. The plating density
was set so that neurons were relatively isolated in order to capture one neuron per image. An Olympus
FluoView laser scanning confocal microscope was used. Image slices were2048 by 2048 pixels at
154nm per pixel resolution. There were7–33 z-slices per stack depending on the depth of the neuron,
taken at200nm steps. This means that the stacks were315.39 µm× 315.39 µm× 1.4–6.6 µm. The z
dimension slices were used to capture each depth level at theoptimal focus, however we cannot claim
to have accurate volumetric information at this resolution. A 40X oil objective lens with no optical
zoom was used. Numerical Aperture (NA) was1.3, and illumination conditions were kept constant.
Deconvolution of the raw data before processing was not necessary because the images were clear
enough to manually annotate the neuron traces and manually edit all the spine detections and types as
described in the following section. We performed three biological replicates, the results of which are



detailed below.

Although there are other higher resolution, full volume methods, the analysis of this data is broadly
applicable to imaged neurons in other systems [5]. We attempted to capture the entire neuron in each
image, however because of limits in available imaging techniques we found that this does not always
happen. In the cases where dendrites were truncated at the end of the image plane we assumed that the
proportion of spines in the missing data was similar to what had already been observed, and therefore
the resulting distributions did not change. We verified thisassumption visually by taking tiled mosaics
of a few neurons imaged in their entirety from each DIV and checking that the branch orders, distances
to soma and spine type counts were unchanged as compared to those of the same DIV. There was an
observed increase in the dendritic length truncated by the image plane as the DIV increased. However
in our particular analyses the methods used, such as the Log-Linear Model and Multinomial Logistic
Regression, were focused on trends between spine characteristics such as distance to soma and type
and these trends are innately unaffected by the truncation of dendrites given the above assumption.
In addition, spatial point process analyses such as the linear network K-function always include the
specification of an observation window [18], which in our case was the image plane. We verified (see
Results and discussion section) that the overall spine density and the density of each spine type did not
vary with distance from the soma so that we could assume spinedensity at the ends of the dendrites
which were truncated was similar to the dendritic length which was observed. We recognize that we
cannot see the proximity of labeled cells to other neurons which haven’t taken up the GFP labeling.
These unlabeled neighboring neurons may cause some difference in spine distributions which we cannot
quantify. For this reason we have attempted to quantify our biological findings statistically over entire
experiments and DIV time points instead of by individual neurons, although in certain cases showing
results from individual randomly sampled neurons was necessary.

Neuronal reconstruction

There exist many automated methods for studying neuronal growth and morphometry and therefore we
present a brief review of available software for tracing dendrites and detecting and classifying spines.
In particular, NeuronJ [19] is a widely used software; however it is only semi- automatic and one must
click several points to trace each neurite. The labeling is done manually and the statistics output only
include lengths of neurites and not spine data. HCA-Vision [20] is a costly software with similar goals,
however the parameters of the neurite tracing are set manually with a sliding bar and thus results require
much hand-tuning. In addition, it is also focused on tracingneurites as opposed to spine analysis. For a
full review of existing methods and softwares for neuron tracing and spine detection see [21]. We found
NeuronStudio [22-24] to be the most user-friendly, and for this reason we used it to annotate dendrites
and spines for this analysis.

Despite the abundance of automated softwares, neuronal reconstructions are still largely performed by
hand [25] and this is is especially essential for a study likethis one, where the traversed distance of
the dendrites and number of spines and their shapes were analyzed in such detail. Using automated
reconstruction algorithms on raw data is prone to both falsepositive and false negative detections of
spines, as well as misleading spine shape measurements. In cases where neurites from neighboring
neurons enter into an image (e.g. Figure 1 panes B and C), NeuronStudio often incorrectly traces
these neurites as belonging to the neuron of interest. For this reason we manually traced each dendritic
branch and soma of each neuron, ran NeuronStudio’s automated spine detection/classification algorithm
and then manually inspected and verified each spine’s location and type. The verification and tracing
were done by the primary author and an undergraduate biologystudent working in the Kosik Lab (see
Acknowledgments). They were both familiar with dendrite and spine morphology and the resulting
annotations from each were cross-checked by the other.



Figure 1 Examples of cell imaging results. This figure shows example images from each DIV (in
order from top to bottom: DIV7, DIV14, DIV21) along with corresponding close-up images of dendritic
segments where spines were clearly visible. Scale bars are shown in red in panelsA-C and the yellow
rectangular boxes in panels A-C show the region of interest which has been zoomed in on in panelsD-F
respectively. Panels D-F are all at the same resolution.

Relevant spine attributes output from the NeuronStudio software include branch order (BO), type
(stubby, mushroom or thin), distance to soma along dendrite(SD), length (tip of spine to dendrite) and
width at widest point (head diameter or HD). However since NeuronStudio uses the length and width
of the spines to determine the spine type, we chose to make useof spine type and discard the other 2
measurements. NeuronStudio uses centrifugal labeling forbranch orders, meaning it starts at 1 at the
cell body and moves outwards, incrementing at every y-shaped bifurcation regardless of the diameter
of the daughter branches. Note that the entire image stack with z-dimension information was loaded
into NeuronStudio for the spine classification, and that thesoftware has interpolation algorithms to
estimate the spine type in 3D. For spine detection the default cut-offs were used, i.e. a required spine
height between 0.2–3µm, a maximum spine width of3 µm, a minimum stubby size of10 voxels (at
the imaging resolution given above), a minimum non-stubby size of 5 voxels, and automatic z-smear
compensation. For spine classification, the default settings were also used, i.e. a head-to-neck ratio
threshold of1.1 µm, an aspect ratio (spine height-to-width) threshold of2.5 µm and a minimum
mushroom head size of0.35 µm. NeuronStudio delineates spine types by these 3 thresholds. It is
generally known that mushroom spines have a large head and a narrow neck, thin spines have a small
head and a narrow neck, and stubby spines display no obvious subdivision in head and neck. If the
head-to-neck ratio is above the threshold and the minimum mushroom head size is met, the spine is
considered mushroom. If both the head-to-neck and aspect ratios are lower than the respective
thresholds then the spine is considered stubby. The remaining cases result in thin spines. For further
information on NeuronStudio reconstruction, detection, and spine classification algorithms please refer
to [22,23]. In addition to the spine information, a trace fileis output which labels the cell body, branch
points and end points of the dendrites. The trace provides a skeletonization, or centerline, of the
dendrite which we used to compute the linear network distances in the following analyses.

Log-linear model as a tool for exploring important featuresand their dependencies

To find the most influential attributes with regard to prediction and spatio-temporal modeling of spines
we fit a log-linear model to the feature data, which is a type ofgeneralized linear model [26]. The co-
occurrence frequencies of the features in question are essentially a large multidimensional contingency
table of counts. The standard linear models assume that datais normally distributed around a certain
mean, which means that the observations can take any real value, positive, negative, integer or fractional.
Log-linear models, on the other hand, assume that data is intrinsically non-negative, typically counts
that could be Poisson distributed, and allow us to model the association and interaction patterns among
categorical variables. The attributes under consideration are BO, Type, SD and DIV. Again, since the
type of spine was quite directly dependent on the length and the head diameter of the spine, we left these
latter variables out of the modeling.

In order to analyze the data using a log-linear model, the various features must be in a categorical
form or discretized. In an exploratory analysis such as this, one does not know what dependencies
among features to expect; however we would like to note that these dependencies were not lost in the
discretization process since trends in increasing and decreasing feature values would be preserved. To
ensure that there were a reasonable number of observations at the higher branch orders, we pooled BO
values of5 or higher into a single category called “higher-order branches”. We created a categorical
variable to represent the continuous variable soma distance (SD) where categories were determined



using the4 quartiles of the SD spine data pooled over all3 experiments. Specifically, SD values of less
than65.65 µm were classified into the first group, from this value to less than108.99 µm the second,
from this to less than157.04 µm the third, and the rest (less than the most distal spine whichlay at
413.25 µm from the cell body) fell in the fourth group. Binning the observed data for the continuous
variables is the best way to get a general feel for how these quantities relate to each other. After this
post-processing of the data we arrived at5 categories of branch order,4 categories of soma distance,3
spine types (mushroom, stubby, and thin), and3 DIVs (7, 14, and 21 days).

Using the observed frequencies for the aforementioned attributes, we created a four-way contingency
table and fit the model using the ‘glm’ function in the R package ‘stats’. The table of the frequency of
occurrences of the four attributes was modeled as Poisson with each entry being a simple count of the
co-occurrences of that bin. We called this countfijkl with each of the subscriptsi, j, k, l corresponding
to a different attribute. The method uses the link functionyijkl = log(fijkl), and treats the model as a
regular linear model. Each entryyijkl is modeled by a combination of coefficients: the intercept, plus
main effects, plus every combination of interactions between these four attributes, as shown below.

yijkl = µ+ αi + βj + γk + δl + (αβ)ij + (αγ)ik + (αδ)il + . . .+ error. (1)

We estimated this full interaction model using the least-squares maximum-likelihood approach. We also
used a stepwise fit algorithm, which begins with a model that includes only the constant term, and at
each step chooses whether or not to add one additional term. The algorithm begins with the main effects
then tries each possible 2-way interaction, aiming to minimize the Akaike Information Criterion (AIC).
The AIC is defined as

AIC = 2k − 2ln(L(θ|y,x)) (2)

wherek is the number of parameters i.e the total number of coefficients being estimated, and

L(θ|y,x) = max
θ

N∏

n=1

eynθ
′
xne−eθ

′
xn

yn!
(3)

is the maximized value of the likelihood function for the estimated Poisson model. In the above
equationsx = x1, . . . , xN ∈ R

4 are the input vectors,θ = θ1 . . . θk are the parameter values (one per
term in eqn. 1), andy = y1, . . . , yN ∈ R is the output. The AIC is a commonly used goodness-of-fit
measure for a model given the observed data. Adding or subtracting terms, whether they be main
effects, pairwise interactions, or up to 3-way interactions between attributes, will change the AIC value
for the model. A lower AIC criterion indicates a better fit to the data and therefore a better model. To
compute the stepwise fit we used the R function ‘step’. For more information on the stepwise fit
algorithm as well as the AIC criterion we ask that the readersrefer to the ‘step’ function reference
( [27], Chapter 6). We ran both of these LLM fitting proceduresfor all 3 experiments separately
expecting to find general agreement between coefficients of the corresponding models created.

Multinomial logistic regression to predict spine type from neighbor types

In order to predict spine type we first determined which attributes contributed most to spine type
prediction. Given the complexity of the multidimensional LLM and the various interactions and
conditional frequencies that would impinge on this issue, we decided to determine these attributes by
analyzing 2-way contingency tables for spine type vs. SD, BO, DIV, as well as the spine types of the 3
nearest neighbors. This analysis helped us pick attributesthat would be useful as the predictors in the
multinomial logistic regression (MLR) [28] explained below.

When the response variable of a regression takes binary values “Logistic Regression” is used. This
is an approach which uses a linear combination of the predictor variables to predict the log-odds of



a success (the “logit” of the probability). Since our response variable was spine type and it can take 3
values (mushroom, stubby or thin), we needed to use a “Multinomial Logistic Regression” (MLR) which
attempts to model the probability of any of multiple possible outcomes. We did not use the attributes
SD or BO as predictors variables since the results of both theLLM analysis and 2-way contingency
tables mentioned above told us that these quantities were not as relevant for spine type prediction.
Therefore our model consisted of spine type as the output variable and the DIV, 1st, 2nd and 3rd nearest
neighbor type along the dendrite as the predictor variables. We tried using only 1 or 2 nearest neighbors,
however the results proved inconclusive because the prediction probabilities for each of the 3 types
were predominantly close to1/3. If we used more than the 3 nearest neighbors we sometimes ended up
spanning a segment of dendrite which we did not consider to be“local”, so we decided that 3 nearest
neighbors provide the most useful information in the case ofthis study.

The MLR analysis we performed in this paper does disregard the actual inter-spine distances, meaning
that if the 3 nearest neighbors are very close or very far apart we still treat them the same. We did
this partially because adding the distance variables wouldcomplicate the model significantly, but also
because we believe that over a large population of spines such as the one we have, these differences in
distance will average out and we will still get a general picture of the trends between neighboring spine
types. To verify that this was true we computed a histogram showing the distribution of 3rd nearest
neighbor distances for each spine, shown in Figure 2. Although the maximum distance to any 3rd
nearest neighbor is extremely high (248.31 µm) we can see from the histogram as well as the fact that
the median 3rd nearest neighbor distance was5.34 µm that this distance is clearly an outlier case and
that the majority of 3rd nearest neighbor distances lie below 25 µm.

Figure 2 Histogram of 3rd nearest neighbor distances. This figure shows the distribution of 3rd
nearest neighbor distances in order to get an idea of the physical neighborhood of spine types used for
the MLR. It shows that although the maximum distance to any 3rd nearest neighbor was extremely high
(248.31 µm) this distance was clearly an outlier case.

Suppose the output variable categories are denoted by0, 1, 2 corresponding to mushroom, stubby or
thin spines, with0 being the reference category. Ifyi denotes the observed outcome of the output
variable (spine type), andXi is the corresponding vector of the 3 neighbor types and DIV for the ith
observation, one regression is run for the logit probability of each categoryk, with βk representing the
vector of regression coefficients in thekth regression (eqns. 4,5). This is done for all but the reference
category, whose probability is then obtained by subtracting all other probabilities from one (eqn. 6).
Note that because the predictor variables were spine types,which were nominal as opposed to ordinal
variables, the predictor variablesXi must be represented with a “dummy coding”. This means each
neighbor type was represented by 2 predictor variables, where (1, 0) corresponded to mushroom type,
(0, 1) corresponded to stubby type and(0, 0) corresponded to thin type. This does not need to be done
for the output variabley. With the addition of the DIV, which does not have to be dummy coded since it
is an ordinal variable, this made eachXi vector of length 7.

The regressions are then written as:

P (yi = 1) =
exp(β1Xi)

1 + exp(β1Xi) + exp(β2Xi)
(4)

P (yi = 2) =
exp(β2Xi)

1 + exp(β1Xi) + exp(β2Xi)
(5)

and

P (yi = 0) = 1− P (yi = 1)− P (yi = 2) =
1

1 + exp(β1Xi) + exp(β2Xi)
(6)



The parameters are estimated typically by using an iterative procedure such as “iteratively re-weighted
least squares” (IRLS) or, more commonly by a numerical approach (a quasi-Newton method) such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. In our case we create an MLR using the command
multinomin the R package nnet [29] which uses BFGS by calling the R function optim. It can be seen
that

log(
P (yi = 1)

P (yi = 0)
) = β1Xi (7)

log(
P (yi = 2)

P (yi = 0)
) = β2Xi (8)

so that the beta coefficients represent the change in the log odds of the dependent variable being in a
particular category with respect to the reference categoryi.e. the thin type, for a unit change of the
corresponding independent variable. To check if the modelscreated from all three experiments were in
agreement, we ran the MLR separately for each experiment.

To satisfy one of the major assumptions of this analysis, namely that the data must be a set of independent
observations, we took200 randomly sampled spines of each type from each experiment (600 spines per
experiment total) to use for the parameter estimation. We chose to select equal proportions of each spine
type in order to remove any bias in the model towards the less frequent thin spines, and200 was the
largest number we could justify using since there were only649 thin spines in experiment3. We verified
that these randomly sampled spines did not lie within10 µm of the image border so that we were fairly
certain their nearest neighbors did not fall outside of the image plane. Note that due to the tortuosity of
the dendritic structure this did not mean that our sample wasnecessarily biased towards spines which
were proximal to the soma. We did not verify explicitly that the sampled spines were not neighbors
of each other, since we assumed that the variation captured by the random sampling was enough to
ensure some level of independence. The idea was to aim for an independent set of observations which
represented the entire “population” of spines in that experiment.To be clear we used all30, 285 spines
for the LLM model and K-function analysis, only the MLR modelrequired random sampling since we
were using neighbor information which would have been redundant if we considered every spine.

To verify that the prediction of spine type provided by the MLR was better than what we would get purely
by their relative abundance i.e. without neighboring spinetype information, we computed something
similar to a “Bayes Factor” [30]. Bayes factor is a method of choosing between two models on the
basis of the observed data. In our case, the first prediction model was simply the prior global probability
of finding a given spine type based on its frequency in the particular experiment under consideration.
The second model was the MLR prediction model using the neighbor type information. We computed
P (Y = i|X)/P (Y = i) and reasoned that values considerably larger than one indicated the neighboring
spine type information was helpful in the prediction of the central spine type.

Linear network K-function as a tool for testing spatial point patterns

Originally proposed by Ripley in 1981 [31], the purpose of the K-function is to estimate whether or not
there is clustering or repulsion present in a given spatial point process. The common null hypothesis is
that the points within the observation window are distributed as a homogeneous Poisson process, which
is also termed “completely spatially random” or CSR. This means that the density of points does not
vary depending on the spatial parameters i.e. x and y in the 2DEuclidean case, or the location along
the dendritic network in our case. In order to determine if this is a valid null hypothesis for our data,
we created Q-Q plots [32] for individual dendrites which compared the quantiles of the SD values of
observed spines to the theoretical quantiles for the CSR case. If the two distributions (observed and CSR)
being compared were similar, the points in the Q-Q plot wouldapproximately lie on the liney = x. In
order to create the theoretical quantiles it is necessary toknow the values of SD at any location on the
given network, not just at the spine locations. Once we have this we can partition the network into



epsilon small segments and assign each segment a value1 if it contains a spine and0 otherwise based
on the CSR assumptions. We did this using code provided to us by Adrian Baddeley and Gopal Nair at
the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia.

The K-function computes the expected number of points within a distancet of an arbitrary pointp,
therefore the empirical value in 2D Euclidean space for the CSR case will be proportional to the circular
area,λπt2. The proportionality constantλ represents the density of points in the homogeneous Poisson
case, and can be estimated by finding the total number of points N divided by the total area of the
observation windowA. Ripley’s K-function, which is a function oft, is a very useful tool because it
describes the2nd order characteristics of the point process at several scales t. If we ignore the edge
effects due to the observation window, the observedK̂(t) can be written as:

K̂(t) =
|A|

N2

∑

i

∑

j 6=i

I(dij < t) (9)

whereI stands for the indicator function, anddij stands for the Euclidean distance between two points
pi andpj. In the above equation, we see that the expectation is normalized by1/λ sinceλ = N

|A| , so

we infer that theoreticallyK(t) = πt2 implies spatial independence of points, or a CSR point process.
Therefore, ifK(t) is the theoretical CSR value of the function andK̂(t) is the observed function, then
K̂(t) > K(t) implies clustering between points and̂K(t) < K(t) implies repulsion. It is possible to
extend this function to multi-type point patterns (i.e. to find clustering or repulsion between specific
spine types) or to higher dimensional data (i.e. space-time, or 3D Euclidean space).

Since our particular point process consists of spines whichlie along the “linear network” of the
dendritic tree we were primarily concerned with inter-spine distances along the dendrite as opposed to
in Euclidean space. Therefore we used a version of the K-function developed recently for linear
networks by Okabe and Yamada [15]. This modified version of the K-function takes into account the
structure of the linear network on which the point process resides and imitates the Euclidean space
K-function described above. The linear network K-functionis calculated as follows:

K̂(t) =
`T
N2

N∑

i=1

∑

j 6=i

I(dij < t) (10)

where`T is the length of the total networkLT . The theoretical CSR for this case is described as follows:

K(t) =
1

`T

∫

p∈LT

`p(t)dp (11)

wherep is a point belonging to the set of all pointsP = {p1, ..., pN}, and`p(t) is the length of the
subset of the networkLp(t) where the distance between p and any other point is≤ t. Note that here
the distancedij stands for the linear network distance along the dendrite. Accounting for variability in
the length`p(t) means the formula takes into account the edge effects due to the observation window
(in our case the image plane) inherently, but at the cost of added complexity. The computation of the
theoretical linear network K-function requires us to findLpi(t), the subset ofLT where the network
distance between a specific pointpi and any other point is≤ t, and`pi(t), the length of that subset, for
every pointpi. A visualization of the quantitiesdij , LT , `T , Lpi(t), and`pi(t) is shown in Figure 3.

Note that although many biological applications of point processes treat individual observations as
replicate patterns coming from the same underlying distribution, we cannot do that using the above
definition of the network linear K-function due to the changein linear network structure from dendrite
to dendrite. The term “dendrite” here refers to the entire dendritic tree resulting from a single root
branch of a neuron. Other in-vivo studies [33,34] focus on clustering of spines which lie on the same
unbranched section of the dendrite, however we focus on the entire dendritic tree under the hypothesis



Figure 3 Visualization of the linear network K-function. This figure clarifies what is meant by the
quantitiesdij , LT , `T , Lpi(t), and`pi(t) which were used to compute the linear network K-function.
Heredij is the linear network distance shown by the gray line betweenpointspi andpj. LT (in black) is
the entirety of the single dendritic network and`T is the length ofLT . Similarly,Lpi(t) (in blue dashed
lines) is subset of the network where the distance between a point pi and any other point is≤ t and
`pi(t) is the length ofLpi(t). In this particular example there are2 spines which fall withinLpi(t) and
would be counted in determining the empirical function value K̂(t), however pointpj falls outside this
radius and would therefore not be counted.

that it follows rule-based distributions of spines due to anatomical constraints and integration of the a
signal over the entire dendrite. One can infer from Figure 3 that since the geometry of the linear
network changes from dendrite to dendrite, so do the total lengths of the networks̀T , the ranges of
possible t-values and the amount of dendritic length that ispresent within a given distance of any point.
We did not simply normalize the lengths of the networks to a[0, 1] scale because it is desirable for the
t-axis to retain its real physical values in order to make conclusions about the scale (inµm) of
clustering or repulsion among spines. However, we did desire to compare the linear network
K-functions of various dendrites in a meaningful way. For this reason we used a corrected version of
the network K-function that intrinsically compensates forthe geometry of the network called Ang’s
correction [35]. The observed K-function then becomes:

K̂(t) =
`T

N(N − 1)

N∑

i=1

∑

j 6=i

I(dij ≤ t)

m(i, dij)
(12)

wherem(i, dij) is the number of points ofL lying at the exact distancet away from the pointi measured
by the shortest path. That is, the contribution to the function from each pair of points(i, j) is weighted
by the reciprocal of the number of points that are situated atthe same distance fromi asj is. As a result,
the theoretical CSR case is simplyK(t) = t for all 0 ≤ t < T . This enables direct comparison of
t-values across dendrites, as we will see in the results section.

Simulations and q-values

To test the null hypothesis that the locations of spines on the dendrites were indeed CSR, we created
a summary statistic which encompasses the difference between the empiricalK̂(t) and the theoretical
K(t) under CSR. The summary or “test statistic” we used, is the maxabsolute difference (MAD) over
t, viz.

d = max
t

|K(t)− K̂(t)|.

One method for obtaining a distribution ofd proposed by Diggle [36] is to bootstrap the residuals, or
differences between the observed and theoretical values. However a more heuristic and intuitive way is
to simulate the CSR case for each dendrite, compute the K-function for each of these simulations, and
find the simulated distribution of our test statistic. We then found the p-value of the observed difference
d from this simulated distribution.

Specifically, we carried out1000 CSR simulations for each dendrite by placing uniform pointson a line
[0, `T ], and mapping them to that specific dendrite’s linear networkstructure. The number of points
simulated per dendrite equaled the number of observed spines for that dendrite, thus preserving the
overall densityλ. This means the same number of spines that existed on each dendrite were randomly
placed along the linear network specific to that dendrite. Weused these simulations to obtain1000
values of the summary statistic, sayd[i]. Then the p-value for each dendrite was simply the proportion



of simulated values that fell above the observed or experimental value ofd, i.e. the rank of thisd within
the1000 values ofd[i], ornrank/(nsim+ 1).

This p-value approach is similar to the test which rejects the null hypothesis if the graph of the observed
K-function lies outside the “point-wise simulation envelope” at any value of t. A simulation envelope
is essentially a graphical measure of how far a function can deviate from the theoretical value without
being considered significant at a given level. As mentioned above in our case the envelope is calculated
by first creating the1000 CSR simulations of a point pattern on a given dendritic network with the same
observed network intensity, then calculating the linear K-function for each of these1000 simulations. To
perform a two-sided significance test at the10% level, the5% and95% percentiles are then calculated
based off the50 lowest and50 highest linear K-function valuesper t-value, hence the term “point-wise”.
Plotting these values as a function of t gives one a visual idea of the spread that is produced by chance
mechanisms alone. If the observed K-function for a given t-value does not fall outside these percentiles,
it is considered insignificant for that t-value at the10% significance level. We make use of the R package
‘spatstat’ [18] for obtaining the point-wise simulation envelope.

Because we have a multitude of hypothesis tests and p-values(one for each dendrite), to reach a
conclusion about the general trend for each DIV and experiment, we used the concept of False
Discovery Rate (FDR) [37]. The FDR is defined as

π0 =
# true null tests

# total tests
(13)

Controlling the overall FDR, or expected proportion of incorrectly rejected null hypotheses termed “false
discoveries”, is a statistical method commonly used in multiple hypothesis testing which increases the
statistical power of each test. What is more general and useful however, is a test-specific FDR measure.
This essentially allows us to look at all possible significance thresholds at once, as well as provide each
test with a measure of significance that can be easily interpreted. This is accomplished by calculating
an analogue of the p-value for each test called a “q-value” [38]. A p-value of0.05 implies that5% of
all tests will result in false positives, whereas a q-value of 0.05 implies that5% of significanttests will
result in false positives. Since the latter is clearly a far smaller quantity, q-values generally indicate
fewer significant tests than p-values for a given significance threshold and provide a far more accurate
indication of the level of false positives in the case of multiple hypothesis testing. For q-value estimation
we used the qvalue package available from [39].

Results and discussion

Data analyzed

We performed three biological replicate experiments resulting in a total of 75 neurons from the following
time points: DIV 7, DIV 14, and DIV 21 (Table 1). This provideda rich and complete data set resulting
in 485 dendritic branches and 30,285 spines. Example imagesfrom each DIV along with zoomed in
dendritic segments where spines and annotations are visible are shown in Figure 1. Scale bars are
shown in red in panels A-C and the yellow rectangular boxes inpanels A-C show the region of interest
which has been zoomed in on in panels D-F respectively. Panels D-F are all at the same resolution.

Table 1 Number of neurons collected per experiment and DIV
EXP DIV7 DIV14 DIV21

1 8 9 7
2 10 10 10
3 7 7 7



The number of spines perµm, orλ, for each dendrite in different experiments and time pointsis shown in
Figure 4. We chose to include this in order to help the reader compare these neuronal culture results with
other experimental paradigms with which they may be more familiar. It is clear from the histograms that
the distribution of spine density for DIV7 is skewed toward lower values as compared to the density for
DIV21, as expected. The image data as well as spine and trace annotations are made publicly available
through the BISQUE system [40] and the URL is given in the section titled “Availability of Supporting
Data”. We chose BISQUE over other databases like NeuroMorpho.Org [41] because it allows us to
upload multiple layers of annotations as opposed to only thedigital reconstruction files.

Figure 4 Histograms of spine density per dendrite for each experiment and DIV. This figure shows
histograms of the number of spines perµm, or λ, for each dendrite in different experiments and time
points.

We calculated a 2-way contingency table over all experiments and spine types and obtained Table 2.
From this table we note the high frequency of mushroom and stubby spines as compared to thin spines,
and also the fact that the ratio of types does not remain the same per experiment even though they were
indeed biological replicates. In fact, a Pearson’s Chi-Squared test on Table 2 shows dependence between
the spine type counts and experiment number,χ2(df = 4, N = 30285) = 659.87, p < 0.0001.

Table 2 Number of each type of spine per experiment
EXP Mushroom Stubby Thin

1 4035 3224 1915
2 5400 6619 2570
3 2388 3485 649

We believe that the large experimental variation between spine type proportions and counts in each
experiment was a positive result because this meant that statistical agreement across all 3 experiments
relating to spine type clustering and density estimation carries heavier weight than if the 3 experiments
were more uniform in these quantities, or if we had pooled data from all 3 experiments together. Also,
if all 3 experiments were unusually homogeneous there couldbe a possibility that it is a result of our
specific culturing, imaging or spine extraction methods rather than a true representation of the
underlying biological process. The various biological systems to which these techniques will be
applied will certainly have this type of variability.

Spine type is independent of distance from soma

As described in the Methods section, we calculated a stepwise-fit of the log-linear model starting with
just a constant term, and at each step choosing to add the maineffects (div, type, bo and sd) and possible
2-way interactions between main effects one-by-one if theydecreased the corresponding AIC value. The
captions above Tables 3, 4 and 5 show the final models arrived at for each of the 3 experiments as well
as their corresponding AIC values. The tables indicate the change in the AIC value that would occur
from adding or omitting each of the terms in the first column. This gives us an idea of how important
that term was to the model. The rows of the table are ordered bytheir overall contribution to the model,
i.e. the term in the first column of the first row of each table had the lowest AIC value and was therefore
the most important to the overall model. If the reader requires further information on the AIC criterion
or how to interpret this table we ask them to refer to Chapter 6of [27].

Despite the fact that they were included in the final stepwisefit model for experiments 1 and 3, the
AIC values in Tables 3, 4 and 5 show that in all 3 experiments the interaction between spine type and
soma distance (“type·sd”) as well as spine type and branch order (“type·bo”) were the least important



Table 3 EXP 1 stepwise final model: freq∼ div + type + bo + sd + bo·sd + div·bo + div·type +
div·sd + type·bo + type·sd, AIC = 1557.05

Df Deviance AIC
None 530.4 1557.1

Omit type·sd term 6 545.0 1559.6
Omit type·bo term 8 558.8 1569.4
Omit div·sd term 6 569.6 1584.2

Omit div·type term 4 648.0 1666.6
Omit div·bo term 8 1324.1 2334.7
Omit bo·sd term 12 4142.4 5145.0

Table 4 EXP 2 stepwise final model: freq∼ div + type + bo + sd + bo·sd + div·bo + div·sd + div·type,
AIC = 1243.13

Df Deviance AIC
None 470.2 1243.1

Add type·sd term 6 461.3 1246.3
Add type·bo term 8 465.5 1254.4

Omit div·type term 4 610.4 1375.3
Omit div·sd term 6 696.0 1456.9
Omit div·bo term 8 906.5 1663.5
Omit bo·sd term 12 5208.2 5957.1

Table 5 EXP 3 stepwise final model: freq∼ div + type + bo + sd + bo·sd + div·sd + div·type +
div·bo + type·sd + type·bo, AIC = 1441.29

Df Deviance AIC
None 482.24 1441.3

Omit type·bo term 8 522.95 1466.0
Omit type·sd term 6 542.08 1489.1
Omit div·bo term 8 606.34 1549.4

Omit div·type term 4 630.62 1581.7
Omit div·sd term 6 715.38 1662.4
Omit bo·sd term 12 2825.69 3760.7

in modeling the overall frequency table of occurrences. This implies that the correlation between these
quantities was not very high, therefore we reason that it wasnot necessary to use either SD or BO to
predict the spine type in the MLR created in the following section. We also noticed that the term marking
the interaction between BO and SD was the most important pairwise term in all stepwise fit models. It
is expected that BO and SD are correlated because both necessarily increase as we move away from the
cell body. Indeed, running a 2-way Chi-square test on the contingency table of the discretized versions
of these variables showed us high dependence,χ2(df = 12, N = 30285) = 11635.19, p < 0.0001. We
also saw a high level of dependence between DIV and SD (χ2(df = 6, N = 30285) = 681.76, p <
0.0001) and between DIV and BO (χ2(df = 8, N = 30285) = 1604.75, p < 0.0001). This was
intuitive as well since we expect both BO and SD to generally increase with DIV.

It is possible that the Type vs. SD relationship could have also been estimated using a Sholl-type analysis
( [42]) where we count the number of each type occurring within concentric circles from the soma and
verify that it is constant, however this would not necessarily produce the same results. The crucial
difference between our approach and the Sholl approach is that in our approach the “distance from soma



measures” the actual distance along the centerline of the dendrite instead of the radial distance from the
cell center. This is especially important for dendrites with high tortuosity (which we find prevalent in
our data), since the radial distance in those cases will not correspond to the dendritic distance from the
cell body. Many studies of cultured neurons use Sholl analysis, however they use it in its original form
for counting dendritic intersections and do not comment on the relation to spine density or type. To our
knowledge this is the first study to quantify the spine density vs. distance to the soma in dissociated
neuronal cultures.

Three-way and 4-way interactions are generally known to be weak (not as explanatory as the main
effects and 2nd order interactions) and difficult to interpret, however in the interest of exploring all
possibilities we computed the maximum likelihood fit using all 4 attributes as well as a stepwise fit
model which allows for 3-way interactions between attributes. The table presented in Additional file
1 results from the LLM which models all possible interactions of all 4 attributes, i.e. up to the fourth
order. The coefficients presented in the table are those which were significant at the0.1% level, and
the corresponding p-values are shown in the last column. Thetable contains the interactions which
were more important to the model, and shows that of these interactions only one (highlighted in green)
between type and either BO or SD, was shown as being significant over all experiments. This verifies
once again that neither BO nor SD were highly correlated withthe spine type. In addition to this, the
stepwise fit models in Additional file 2 show that if we did allow 3rd order interactions, the strongest 3rd
order correlation over all experiments was that of DIV, SD and BO, again affirming that all 3 of these
quantities should intuitively increase together.

Spines tend to cluster with other spines of the same type

In creating a regression model, we first ascertain that the predictor variables used are not only useful
in predicting the output variable, but also that they do not provide redundant information as this can
throw off the model fitting process. Using all spines in the dataset, we performed a Chi-square test
on the 2-way contingency tables of spine type versus binned SD and BO, DIV, and the types of the
3 nearest neighbors (N1, N2, N3) as described in the Log-Linear Model section above. Due to the
aforementioned dependence between the type and experimentnumber we performed the test separately
for each experiment and the results are shown in Table 6. Fromthe table we can see that the DIV and
the 3 nearest neighbors showed clear dependency with spine type in all experiments, whereas SD and
BO showed independence at the5% significance level in experiments1 and2 respectively. Since we
expected SD and BO to have a similar relationship with type due to the high correlation mentioned
above, and we had found this was not a very strong relationship, we chose to use only DIV, N1, N2 and
N3 as predictors for spine type in the MLR model.

Table 6 Chi-square results for spine type vs. other attributes
EXP1,N = 9174 EXP2,N = 14589 EXP3,N = 6522

Type·SD,df = 6 χ2 = 9.13, p = 0.1665 χ2 = 33.64, p < 0.0001 χ2 = 25.08, p = 0.0003302

Type·BO, df = 8 χ2 = 29.02, p = 0.0003147 χ2 = 12.39, p = 0.1348 χ2 = 26.53, p = 0.0008516

Type·DIV, df = 4 χ2 = 119.78, p < 0.0001 χ2 = 358.25, p < 0.0001 χ2 = 139.28, p < 0.0001

Type·N1, df = 4 χ2 = 225.93, p < 0.0001 χ2 = 212.87, p < 0.0001 χ2 = 246.74, p < 0.0001

Type·N2, df = 4 χ2 = 163.67, p < 0.0001 χ2 = 226.31, p < 0.0001 χ2 = 127.91, p < 0.0001

Type·N3, df = 4 χ2 = 90.33, p < 0.0001 χ2 = 153.11, p < 0.0001 χ2 = 131.96, p < 0.0001

The resulting beta coefficients for each of the predictor variables are shown in Table 7. Here “N1-Var1”
refers to the beta coefficent of the first dummy variable for the type of the first nearest neighbor;
“N1-Var2” refers to the second dummy variable, and so on. The“mushroom” row is omitted because it
is the reference category and its probability is obtained asshown in eqn. 6. We computed the prediction
probabilities for each spine type given each combination ofneighbor types for each experiment



separately to determine the agreement between experiments. A selected set of results are shown below
in Tables 8, 9 and 10. The highest probability for each row is marked by an asterisk. Note that in these
tables all DIVs in all experiments predicted the spine type to be mushroom when its 3 nearest
neighbors were mushroom type, and stubby when the 3 nearest neighbors were stubby type. Thin types
were the most probable when the three nearest neighbors werethin type in all but experiment 2 DIV14
and DIV21. The probabilities for cases where all 3 of the nearest neighbors were not of the same type
have been omitted for brevity and because they did not show any clear trends.

Table 7 MLR beta coefficients for all 3 experiments
EXP1 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV
Stubby 0.06 0.04 0.47 -0.52 0.10 0.09 0.25 -0.01
Thin 1.05 -0.57 -0.34 -0.84 -0.57 -0.23 -0.32 0.00

EXP2 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV
Stubby 0.08 0.03 0.67 -0.14 0.05 -0.20 -0.09 -0.02
Thin 0.25 -0.76 -0.17 -0.61 -0.37 -0.06 -0.05 -0.02

EXP3 (Intercept) N1-Var1 N1-Var2 N2-Var1 N2-Var2 N3-Var1 N3-Var2 DIV
Stubby -0.36 -0.24 0.33 -0.14 0.19 -0.03 0.30 0.01
Thin 0.35 -0.66 -0.58 -0.33 -0.28 -0.25 -0.33 -0.02

Table 8 Prediction Probabilities: N1 = mushroom, N2 = mushroom, N3 = mushroom
DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.45* 0.30 0.25
2 0.51* 0.35 0.13
3 0.54* 0.27 0.20

DIV14 EXP P(mushroom) P(stubby) P(thin)
1 0.45* 0.28 0.26
2 0.55* 0.33 0.12
3 0.54* 0.28 0.18

DIV21 EXP P(mushroom) P(stubby) P(thin)
1 0.46* 0.27 0.27
2 0.59* 0.30 0.11
3 0.54* 0.30 0.16

* denotes the highest probability per row.

Table 9 Prediction probabilities: N1 = stubby, N2 = stubby, N3 = stubby
DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.24 0.55* 0.21
2 0.30 0.52* 0.18
3 0.32 0.55* 0.12

DIV14 EXP P(mushroom) P(stubby) P(thin)
1 0.25 0.53* 0.22
2 0.33 0.50* 0.17
3 0.32 0.58* 0.11

DIV21 EXP P(mushroom) P(stubby) P(thin)
1 0.26 0.51* 0.23
2 0.37 0.47* 0.16
3 0.31 0.60* 0.09

* denotes the highest probability per row.



Table 10 Prediction Probabilities: N1 = thin, N2 = thin, N3 = thin
DIV7 EXP P(mushroom) P(stubby) P(thin)

1 0.20 0.20 0.60*
2 0.33 0.31 0.36*
3 0.33 0.25 0.42*

DIV14 EXP P(mushroom) P(stubby) P(thin)
1 0.20 0.19 0.61*
2 0.37* 0.30 0.34
3 0.34 0.27 0.39*

DIV21 EXP P(mushroom) P(stubby) P(thin)
1 0.20 0.17 0.62*
2 0.41* 0.28 0.32
3 0.34 0.30 0.36*

* denotes the highest probability per row.

The Bayes factor results in Table 11 show that the proportional gain in information for the spine type
in question was always greater than one for the prediction ofa particular type when the neighborhood
types were all of that same type. Due to the low frequency of thin spines, their corresponding Bayes
factors were higher than that of other types, meaning that their prediction probabilities benefit more than
other types from neighborhood type information.

Table 11 Bayes factors
BF(mushroom): N1 = mushroom, N2 = mushroom, N3 = mushroom

EXP DIV7 DIV14 DIV21
1 1.02 1.03 1.05
2 1.39 1.49 1.60
3 1.47 1.47 1.47

BF(stubby): N1 = stubby, N2 = stubby, N3 = stubby
EXP DIV7 DIV14 DIV21
1 1.56 1.50 1.44
2 1.15 1.10 1.05
3 1.03 1.08 1.12

BF(thin): N1 = thin, N2 = thin, N3 = thin
EXP DIV7 DIV14 DIV21
1 2.85 2.91 2.98
2 2.04 1.92 1.79
3 4.22 3.87 3.54

Dendritic spine densities are completely spatially random

We created Q-Q plots as described above based on the quantiles of spine counts vs. distance from the
soma and found that upon visual inspection almost all dendrites follow the theoretical uniform
distribution closely enough to assume that the density of the spines was homogeneous and therefore the
CSR case was a viable null hypothesis. We selected 9 (out of 485) example dendrites and their Q-Q
plots are shown in Figure 5. We randomly selected 1 dendrite from each DIV and each biological
replicate (experiment) to ensure the diversity of the set. The y = x line is marked in red, and the
observed Q-Q values are marked as black circles. Note that because this is a graphical method for
comparing two probability distributions there was no p-value or significance level associated.



Figure 5 Q-Q Plots of spine density vs. soma distance for a setof 9 example dendrites. This figure
presents the Q-Q plots of spine density vs. distance from soma for 9 (of the 485) example dendrites. We
randomly selected 1 dendrite from each DIV and each biological replicate (experiment) to ensure the
diversity of the set. They = x line is marked in red, and the observed Q-Q values are marked as black
circles. Visual inspection of these plots show that they follow the liney = x closely enough to assume
that the spine locations being CSR was a viable null hypothesis.

Of all the 485 dendrites analyzed, only three of them (Exp. 1 DIV 21, Exp. 2 DIV 14, and Exp. 2 DIV
21) were considered non-CSR at the5% significance level. Figure 6 shows histograms of the p-values of
all 485 dendrites separated into each DIV and experiment number. The5% significance level is shown
by the red vertical line in each case. We then computed the q-values for each dendrite and found that
they are all equal to1. This is not surprising according to the explanation of the q-value above. Recall
that q-values equal to1 imply that100% of the significant tests resulted in false positives, i.e. there were
no significant tests. We therefore conclude that regardlessof the maturity of the neuron, or the variation
over biological replicate experiments, the locations of spines along all of the dendrites we analyzed were
completely spatially random.

Figure 6 P-values of linear network K-function MAD statistic for each experiment and DIV. This
figure shows histograms of all dendrite p-values per experiment and DIV before FDR was applied. In
each case the5% significance level is marked by a red vertical line. Q-valueswere not included as a
separate figure because they were all zero.

As mentioned above, the K-function is a function of the inter-point distance,t, that we consider around
each observed point. The range of t-values is determined by the total length of the network̀T , therefore
because each dendrite has a different network length it alsohas a different range of t-values. Our chosen
summary statistic throws away this information by computing the maximum absolute deviation (MAD)
over allt in order to determine whether that value deviates significantly from the spatially random case.
However it may be of interest to determine whether clustering or repulsion between spines occured at
specific inter-point distancest. Ang’s correction normalizes the K-function such that the theoretical
K(t) = t for all t, so we can easily use this as a reference point. Figure 7 showsthe K-function for
the same 9 example dendrites used for the Q-Q plots of Figure 5. Each graph shows the observedK̂(t)
function (black), the theoreticalK(t) function (red) as well as the two-sided5% and95% point-wise
simulation envelopes as a function of the radiust. Following the description of the point-wise simulation
envelope above we calculated these lower and upper envelopes at the5% and95% percentiles per t-value
in the interest of checking ifany t-value fell outside of this range. Since the black curves donot leave
the gray shaded area for any value of t, the deviation from spatially random was insignificant at the
10% level for every t-value and is in agreement with our previousconclusion using the MAD statistic.
This observation holds for almost all of the 485 dendrites weinspected visually, with no specific t-value
evidencing either repulsion or clustering.

Figure 7 Theoretical and observed K-functions and simulation envelopes for a set of 9 example
dendrites. This figure shows the K-function for the same 9 (of 485) example dendrites used for the
QQ-plots of Figure 5. We randomly selected 1 dendrite from each DIV and each biological replicate
(experiment) to ensure the diversity of the set. Each graph shows the observed̂K(t) function (black), the
theoreticalK(t) function (red) as well as the two-sided5% and95% point-wise simulation envelopes
as a function of the radiust. We see here that the black curves do not leave the gray shadedarea for
any value of t, which means that the deviation from spatiallyrandom is insignificant at the10% level for
every t-value.



Conclusions

The models used in this work allow spatial prediction of spine types, which has not previously been
studied. The conclusions presented here relate to qualities of neurons in dissociated culture. We
acknowledge that some of these results will most likely not hold for in vivo settings due to neuronal
interactions not modeled here, but maintain that the statistical methods used here will be useful and
easily applicable. Specifically, we found here that spine type and density are not dependent on the
distance from the cell body, and these observations are likely to change for in vitro slices or
micro-injection of fixed brain tissue.

We also note that we chose not to deconvolve our data because of its high contrast. We acknowledge that
this choice may have precluded the image analysis software from detecting some stubby spines among
the halo of the bright dendrites, but we do not feel this significantly impacted our results. As a partial
compensation for this effect we used NeuronStudio’s in-built automatic z-smear compensation, and for
more details on this we refer the reader to [22,23].

Although in this study the spine distributions seemed to be completely spatially random it is possible
that we will find studies using different neuronal types and treatments where this is not true. In these
cases, where spine density may vary with distance from the cell body, it would be interesting to test for
inhomogeneous patterns of points such as the hard core Strauss Process used in [43]. We could also
place an exponentially decaying function to model the interaction between spine types within a certain
radius or experiment with other pairwise interaction functions such as those used by Diggle, Gates and
Stibbard [44] or Diggle and Gratton in [45].

We find it an interesting result that spines were not spatially clustered when type was disregarded, as
shown by the linear network K-function analysis, however spine types do tend to group together as
shown by the MLR analysis. We would like to note that these results are not contradictory because they
are in fact measuring different quantities. The MLR resultstells us that, regardless of their densities
along the dendrite, if we have a spine which is of a given type,its 3 nearest neighbors are likely to be of
the same type. The K-function, on the other hand, tells us that regardless of type the spines’ locations
along the dendritic network are spatially random. These tworesults provide complementary information
and together could aid us in future modeling tasks such as simulation of neuronal growth. For example,
we could first place spines uniformly along the dendritic network, and then decide the types of those
spines based on the type of information given by the MLR model. As future work we plan to analyze the
network cross K-function [15] of the dendritic network, which models the spine distribution as a multi-
type point process and therefore provides information about repulsion and clustering of each spine type
with each other spine type, modeling both density and type simultaneously.

Generally previous studies such as [46-49] have relied on physiology or biochemical markers to validate
their neuronal properties. The quantitative morphological features described here provide an additional
phenotypic dimension for these analyses. Likewise these approaches can be applied to phenotypic
analyses of neuronal cultures following over-expression or suppression of specific genes to capture their
effect on a complex phenotype. As mentioned in the Introduction section, the only other study we are
aware of which analyzes clustering of dendritic spines in monkey brains is [14]. The authors of this
work study the number of “clustered spines” on each dendritic segment, where a cluster is defined as a
group of 3 or more spines. The method used here defines clustering as a statistically significant positive
deviation in the linear K-function from the theoretical value of the spatially random linear K-function.
We believe our method to be more principled and our results easier to interpret than those of [14] due to
the more formal statistical definition of clustering.



We chose to use dissociated hippocampal cultures because they are widely used and they allow us to
perform an in-depth and automated analysis with larger spine populations than most previous studies.
These approaches will be important in assessing features ofneurons derived from human induced
pluripotent stem cells which have so far not been characterized by detailed morphological features. Our
paper utilized a highly simplified neuronal culture system to develop the statistical and computational
tools for more advanced in vivo studies needed to address theaforementioned bigger biological
questions. Our overall hypothesis was that we can utilize imaging and statistical analyses to capture
features of spine distributions that can be used for testinghypotheses in in-vivo settings. Indeed, we
have been conservative about hypotheses and findings concerning spine type clustering because any
conclusions we might reach on the specifics of spine distribution would be limited to the neuronal
culture system we studied.

Availability of supporting data

All the image stacks and NeuronStudio annotation files supporting the results of this article are
available in the BISQUE repository, http://bisque.ece.ucsb.edu/client_service/view?resource=http:
//bisque.ece.ucsb.edu/data_service/dataset/2653471.
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Additional files

Additional_file_1 as PDF
Additional file 1: Table of 4-way LLM coefficients. This table shows the 4-way interaction LLM
coefficients which are significant at the0.1% level. Note that only one interaction between type and
either branch order or soma distance (highlighted in green)is significant in the entire table. This further
proves the result that these interactions are not very important to the overall model of frequencies.

Additional_file_2 as PDF
Additional file 2: AIC Stepwise models for 3-way LLM. This table shows the results of the AIC
stepwise algorithm using an LLM with up to 3-way interactions. The models arrived at by this method
are shown in the caption above the table. From this table we can see that if we do allow 3rd order
interactions, the strongest 3rd order correlation over allexperiments is that of DIV, SD and BO, which
makes sense because all three of these quantities should intuitively increase together.
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