Model based dynamics analysis in live cell microtubule images
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ABSTRACT

Background: The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played
by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking
individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate,
and often offers limited analytical capability in extracting potentially valuable information from the data.

Results: In this work, we present computer vision and machine-learning based methods for extracting novel dynamics
information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that
are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior.

Conclusion: Computational methods provide powerful analytical capabilities in addition to traditional analysis methods
for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases,
are introduced to quantify and analyze microtubule dynamic behavior.



Background in diameter and up to severaim in length, consisting of
non-covalently bound tubulin protein subunits. MTs are con-
Microtubules (MTs) are filamentous cytoskeletal structurestantly assembled and disassembled, making the cytoskeleton
composed of tubulin protein subunits. These subunits caa dynamic system. MTs are critically involved in a number
associate with, or dissociate from, existing tubulin polymersof essential cellular functions, such as chromosome segrega-
rapidly, making MTs highly dynamic. Through these dy-tion at mitosis and intracellular cargo transport. Additional
namic behaviors, MTs are critically involved in many essen-background information on MT structure and function can be
tial cellular functions. MT dynamics are finely regulated infound in [1].
the cell, [1]. It has been hypothesized that inadequate regu- The growing and shortening dynamics of MTs are finely
lation of neuronal MT dynamics may underlie neuronal cellregulated, for example, by the action MfT-associated pro-
death in Alzheimer’s and related dementias, [2]. Addition-teins (MAP) and MT-targeted druggMTD). A large body
ally, drug induced modulation of MT dynamics underlies theof evidence, reviewed by Feinstein and Wilson [2], suggest
effectiveness of various anti-cancer drugs, such as Taxol, [3{hat cell viability requires that MT dynamics be properly reg-
For these and a host of basic biology issues, the regulation alated within a narrow range. Common conjecture is that
MT dynamics is a very active area of research in modern celtertain diseases such as Alzheimers and cancer are at least
biology. correlated with the regulatory abnormalities in MT dynam-
A key tool of MT dynamics research is to track the grow-ics, [6—8]. Consequently, gaining a detailed mechanistic un-
ing and shortening behaviors of individual MT tips from time- derstanding of the regulatory activities of MAPs, [5, 6, 9],
lapse images (Fig. 1), and quantitatively describe MT beand MTDs, [3, 10], is a major focus of current research. A
havior under different experimental conditions. Traditionalmajor challenge is assessing the activities of the large num-
MT dynamics parameters consist of statistics derived from theer of MAPs and their many isoforms, as well as the large
growthandshorteningevents between consecutive frames. Innumber of MTDs and their many derivatives. For instance,
general, tracking is a largely manual and laborious task, [4the MAP tau consists of 441 amino acids, more than 25 of
Furthermore, it is approximate (Fig. 2), variable betweerwhich can be phosphorylated in various combinatorial pat-
users and labs, and potentially biased for more dynamic MTderns. Whereas phosphorylation normally serves to regulate
[5]. The resulting quantification and analysis capabilities ar¢au activity, excessive and abnormal phosphorylation corre-
limited with manual feasibility. For example, while MT de- lates with cell death and dementia. Thus, to fully understand
formations may contain valuable information in studying neu-normal and pathological tau action, the regulatory effects of
ronal growth-cone path finding, it is impractical to manuallythe many different combinational phosphorylation patterns of
collect relevant data, e.g. curvature or orientation, from manyau must be understood.
MTs. Additionally, due to the laborious nature of manual data
collection, a limited sample for each experimental condition )
must represent all MTs collected in that condition. While dif- Current analysis method

ferent subsets of MTs undertake distinct tasks in the cell, angh+¢ 4re polar structures, possessing biochemically distinct
therefore can exhibit distinct dynamic characteristics, geners inusandplusends. Conventionallghe minus enaf a MT

ally there are limited means of observing such dynamics ify assumed to be fixed at the MT organizing center near the

isolation through manual methods. Analysis of dynamic be'nucleus and the other endhe plus endor the tip- is the

havior is further limited by pairwise comparisons of behav'dynamic end that is observed in most MT dynamics studies.

ioral features between control and treated conditions. There\'ypically in live cell studies. minus ends of the MTs are not

fore, computational methods could make an immediate CoNgip|e pecause of the high density of MTs converging on the

tribution to MT dynamics research. organizing center. Thus, in calculating the MT length, a point
In this work, we propose a powerful approach for ana-,,'the MT body is selected as a reference pairigin, after

lyzing MT dynamic behavior. Briefly, we use an automatedy, injtial observation of all frames in the time-lapse images,
tracking method for measuring MT dynamics, which are theru:ig_ 2).

modeled a#/T behavior patternby Hidden Markov Models. Traditionally, time-lapse images of MT populations are

The proposed methods go beyond the traditional analysis Cggyjected following treatment with MTDs or MAPSs. Dynam-
pabilities and offer new insights in investigating MT dynamic ;¢ parameters are then manually calculated from image se-

behavior. quences as follows. The positions of MT plus ends are man-
ually tracked individually across all frames, (Fig. 1). MT
lengths are approximated as the (Euclidean) distance between
tracked tip positions and the origin, producing Mfg histo-

The cytoskeleton of a eukaryotic cell consists of a networkies or tracks (Fig. 2). The change in MT length is com-

of fibers. MTs are one of the three principal types of cy-puted between consecutive frames, and growth and shorten-
toskeletal fibers. They are hollow cylindrical structures, 25nning statistics are tabulated. Length changes below a threshold

Microtubule structure and function



are marked asttenuationor pause signifying undetectable Results
change. Other biologically significant events are the conver-
sion of a MT from a growing state to rapid disassembly, desWe present statistical models of MT behavior that are esti-
ignated as &atastropheand a subsequent potential recoverymated using automatically tracked MT dynamics data. As a
from shortening to attenuation or growth, calledcue To  comparison, we provide models of manually collected MT
estimate the effects of a regulatory agent upon MT dynamicdracks. We describe the results of automated tracking using
these statistics are aggregated over a number of MTs frowisual samples and associated errors.
the same experimental condition. Resulting statistics of each
condition are compared with the control behavior to quantify o . . ,
the effects of the examined agent on dynamics parameters. Quantifying microtubule dynamics by automated tracking
In this fashion, regulatory effects of each individual agentor quantifying MT growth and shortening, we used the track-
are studied through a laborious set of tasks. Quantifying suing method proposed in [13]. In the spatiotemporal graph
ficient image data to achieve statistical significance and limmatching (see Methods), up to three missing frames between
ited comparative capabilities in the presence of innumeroutips of the same MT track were allowed. The computation of
possible agents pose an enormous challenge to researcheh geodesics, the distances for the weights on the graph, and
Example studies are [3,5,9-12]. the selection of a fixed point on the MT body were carried
Statistics obtained from the growth and shortening eventgut using the Fast Marching algorithm, [14]. Visual tracking
treat these events independently, rather than as being partf@sults are shown in (Fig. 3 - 7).
a behavior pattern. For instance, a certain growth measure- Quantitative results of MT tracking were given in [13].
ment is counted as the same event regardless of where it oevaluations against manually tracked data shows that the mean
curs in relation to preceding or subsequent events. Furtheand the standard deviation of tracking error are 2.85 and 4.36
more, studying event correlations between neighboring MTpixels, respectively. This error level is acceptable for biolog-
are generally infeasible, despite potential biological signifiical studies. Recall that the MT width is 25nm (see Back-
cance. ground), which appears as curves that are 3 pixels in width.
There are no established non-manual methods for exanfhus, a growth or shortening event that is less than 3 pixels
ining the similarities and differences in particular dynamicwould correspond to an event that is too small to quantify re-
behaviors imposed by various agents. Furthermore, studyiably, and is considered agtenuation
ing combined effects of multiple regulatory agents is difficult, ~ We note that the tracking performance is sensitive to the
due to the limitations imposed by the pairwise comparisongccuracy of initial tip detection step. Furthermore, the pro-
between experimental conditions. For example, consider posed approach requires multiple tips to be detected for re-
hypothetical MTD AB, derived from MTDsA and B. In  liable extraction of MT tracks by design. In other words,
order to understand the contributions 4fand B, multiple  the tracking performance may be adversely affected in track-
individual experiments must be conducted. Therefore, quaring MTs individually, which may limit the ability to track a
tifying behavioral similarities across experimental conditionsparticular MT in a cell. Finally, intersecting MTs mayeal
may provide essential guidance in constructing hypotheses.the body trace, as the geodesic distance will favor higher in-
In this work, we propose an automated tracking and ana|y1;ensity levels, (Fig. 3d — 3f). This issue could be addressed
sis method to address the limitations mentioned above. Th#ith further constraints on the MT orientation and curvature.
tracking component provides behavioral features for subsddowever, in this work, we limit the behavioral features to the
quent analysis. We define thdT dynamic behavioas a se- observed change of length in the MT plus end, which only
guence of changes in MT length over equal time intervalsi@quires consistent estimation of the MT body.
Experimental conditions may exhibit a number of behavioral ~ While tracking performance may be improved as a conse-
patterns, which are estimated in parametric form by a mixturéuence of higherimage quality and suitable algorithms target-
of Hidden Markov Models. By using a model-based clus-ing frequent intersections, deformations, and intensity varia-
tering technique, we propose to analyze the constituent paﬁi@ns. In its current state, automated tracking can track and
of MT behavior in each experimental condition. Thus, eactiuantify 10 times more MT tracks per image sequence than
experimental condition can be described as a mixture of beénanual methods. With this increase in analyzable data vol-
haviors exhibited by different MT populations. Through es-ume, we are able to estimate behavior models for different
timated average behavior patterns, we introduce a probabi“gxperimental conditions. Estimated statistical models of MT
tic behavioral distance measure between experimental cofynamic behaviors are presented in the next section.
ditions. Furthermore, parameters of individual models may
preseqt significqnt information about thg properties of correg, . vtioal models of microtubule behavior
sponding behavioral patterns. We describe how model-based
analysis can be effective in addressing the above limitationk this work, we used MT time-lapse live cell images from
(see Discussion). [10]. The authors of [10] investigate the hypothesis that re-



sistance to Taxol may involve altered sensitivity to different2. Similar classification rates with the automatically tracked
tubulin isotypes. Chinese hamster ovary (CHO) cells werexperiments confirm the automated tracking as well as the ap-
microinjected with rhodamine-labeled tubulin. A total of 111 plicability of model based analysis.
sequences were acquired using fluorescence microscopy with Ultimately, statistics collected by the model parameters
a 100< objective lens (1009 magnification). 25 frames per are more significant in biological studies than the classifica-
sequence were captured at 4 second intervals, from five difion scores. To that end, we examine the models of &ach
ferent conditions. Table 4 shows emission distributions of selected component
Growth and shortening rates were computed as the difnodels used in EX:A. The models were estimated by using
ferences of a MT lengths between consecutive frames, meautomatically tracked MTs. Table 5 shows the corresponding
sured in pixels. Thus, each track consists of an observatiomodels estimated with manual tracks. The first rows in each
sequence composed of 25 points in time. Resulting obsemodel correspond to the mean length change captured by that
vation sequences were in the rangel3.03,11.22] pixels, model stateq;), where negatives indicate shortening. Nearly
where ) and () denoting shortening and growth rates, re-all states of\, show stable distributions, while statesp
spectively. show significantly more dynamic behavior. Both models have
Our HMM implementation was derived from [15]. Ex- states exhibiting stable growth and shortening, indicating that
perimentation with both left-right and fully connected HMMs the main discriminating factor between the two behavior pat-
revealed that fully connected models were better suited foterns are the large growth and shortening events occurring oc-
the modeling task, in line with biological input. Growth and casionally. Naturally, the average growth and shortening rates
shortening rates were assumed to be drawn from Gaussiaaptured in model states are direct results of the observations,
emissions. It should be noted that the number of larger growthnd they confirm that Taxol-treated MTs show suppressed dy-
and shortening events decrease exponentially as the lengtmics withsl-tubulin than non-treated MTs.
of the event increases. Therefore, using exponential emis-
sion distributions may be appropriate. However, detection
of events measuring less than 3 pixels may be unreliable chiSCUSSiOﬂ
both manual and automated tracking (see Current analysis

method). Estimated models can provide more descriptive information

Since good initialization values are essential with Cont'n'about the behavior patterns than what is available through

UOL.JS emission d|s_tr|_b_ut|_o_n S, we _de_r ived stat|st!c_s from Obserr’nanual methods(:) typical growth and shortening states of
vation vectors for initializing emissions. Transition and stat

€he modified behavior, andi) the transition probabilities be-

priors were .|n|t|aI|zed randomly, and the number of CIuSJer%ween these states. For example, as a direct comparison with
was determined experimentally, Table 3.

- . manual methods, besides the traditiocatastropheandres-
The study in [10] analyzes the potential for Taxol (@ can- e frequencies, transitions from small to larger events of the

cer therapeutic) resistance in cells expressing different tubuligy e tyne can be quantified. In essence, characteristics of be-
isoforms. Five experimental conditions were recorded, Tablgior patterns are parametrically encoded in models, which
1. Results in [10] show that two groups B exhibit differ- -5 then be used in generating these behaviors. We describe

ent dynamics{ EC,, ECy, ECq} vs. {EC3, EC5}, Where g iher model-based analysis capabilities in the next section.
the MTs in the first group are more dynamic than the ones in

the second group. It is also reported ti#&d’; is more dy-

namic thanE_C5. In this work,. we evaluated our modeling Novel analytical capabilities

approach using both automatically (3068 tracks) and manu-

ally (210 tracks) tracked MTs, Table 1. The proposed approach provides a number of novel analyti-
The first experiment was designed to confirm biologicalcal capabilities (see Background). The most important aspect

results. A classification score betweéit’, and ECs, de-  of this approach is using entire MT life histories as opposed

noted by EX:A, and between condition group8C's, EC5}  to parsing the events into predefined categories. Therefore,

and {EC,, ECy, EC4}, denoted by EX:B, were computed events are evaluated for their contribution in different behav-

with a 3-way cross-validation, Table 2. Well defined separaior patterns. With the introduction of this method, it becomes

tions between the two groups and between Taxol-treated argbssible to compare effects of regulatory agents at different

control tracks agree with established biological findings. Aevels: (i) the constituent parts of behavioral characteristics

third test, denoted by EX:C, was aimed to sepafadg from  through examining representative model parameters(ihnd

ECs. Biological results indicate that these experimental conby quantifying the overall behavioral dissimilarity. Distance

ditions exhibit highly similar dynamics. A maximum separa-measures between behavior patteinsand between exper-

tion of much less than EX:A and EX:B verify this finding.  imental conditionsEC, can be defined as model distances.
The same set of experiments were repeated with manne possible measure between modglsand),,,, for a set

ally tracked MT data. Separation results are shown in Tablef observation®,,, andO,,, can be defined as



and analysis capabilities based on computer vision and ma-

1 . . -
D(wy,wy) = §[L(w1, wa) + L(wa, wy)] (1) chine learning tools. Wlth t'he .proposed methods, researchers
can study MT dynamics with improved spatial and temporal
whereL (w1, ws) is given by guantification.

The most notable contribution of the proposed method

is the novel analysis capabilities that are beyond the current

l[log P(Ou, [Aw,) — log P(Ou, | A, )] (2) state-of-the-art. Other contributions are the improvements
T over the manual data collection methods, such as higher accu-

By quantifying behavioral comparisons between regula 2%y (length along the MT vs Euclidean es_timgte), incrgased
ya fying P g umber of analyzable MT tracks, and objective considera-

tory agents, studying combined effects of multiple regulatoryn X .
agents may be guided with enhanced predictions. We envisigl?" of all MT tracks at a fraction of the normally required

arepository of MT dynamics data that can be probabilisticall)?m de'- Our %relrllmln?hrytrestults ?ugportlmgnu? lly ?.stlablldslged

queried for behavioral similarities for a new regulatory agent,In 'Tgs’t?n S (;fW a au.om? € art1ta_y5|z|o spa ﬁtanMen;-

an isotype, or a combination. This can be done by evaluatinﬁOra patterns ofiers previously unatiainabie insights. Vios
otably, the standardization of data collection and analysis fa-

p(O|EC) for an experimental conditio®C, or evaluating . : . .
p(Olw) for behavioral patterm. Assuming that the tracking cilitates a comparative platform for future biological research.
' As the volume and number of dynamics datasets has in-

and modeling tasks were undertaken, a MT image database , T .
would contain a collection of individual MT tracks and model f:reased in recent years, similarities betw_een the behavioral
parameters representing in addition to original image se- mflgt_ance of MATS _and 'fVITDT upon (;I]ynz_amms have er_nerge((jj,
guences. Model based content retrieval provides additiondfading t? SF.)l?CU at;]on orsimi ?r mec ar1||sms.| Dygamms m% i
advantages in query design. Hypothesized behaviors can Gis may facilitate the union of previously isolate MAP an
created and queried by manually selecting model parameteM.TD datasets, furthering our understanding of regulatory mech-

Alternatively, query models can be estimated from a subset Anisms O_f MTs. o ) ) )
MT tracks in the database. Despite the difficulties inherent in fluorescence imaging,

To study spatial relationships between MTs behaviorally:[he proposed approach confirms manual findings in both track

tracks can be grouped and visualized based on their behagoMPutation and in analysis. For example, due to photo-
ior characteristics. For example, (Fig. 8) shows frames fronpleachmg, observation durations were generally limited to only

ECs, with overlaid tracks. All tracks were evaluated for their & fEW minutes with very low signal-to-noise ratios in images.
similarity to conditionsEC, and ECs. In (Fig. 8), values of With emerging techniques in microscopy and probes, such as

pltrack|ECs) were quantized into four categories, indicated!n® tiP-binding proteins (EB1), much longer acquisition times

by four different shades of red channel, and were superim?!ll b€ possible with superior image quality. Our goal is to

posed on MTs for illustration purposes. Darker shades indiU_aCk all MTs in live cell images at longer durations. In this

cate lower probability, e.g. behavioral association betweeffi'€ction, the tracking method can be improved by reliably
the condition and the track. identifying all MTs individually. The nature of live cell MT

This analysis provides the researcher with visual cues abbrﬂf’.lgfs requwes.th?t ‘;\r/leﬁzegt mte&sfe ctions, gbrupt mterj[sliw
regional dynamics within a cell. This may be especially im-variations on a singie ody, and focusing Issues must be

portant in studies of polarized cell types, such as neuron?,ddress’ed adequately.
where specific regional regulation of dynamics is critical to

processes such as outgrowth and transport. Behavioral corwI thod

parisons in adjacent populations may provide insight to the in* ethods

ner workings of flux between the soluble and polymeric tubu-

lin fractions within the cytoplasm. The ratio between these! '€ Proposed analysis system evaluates MT dynamic behav-

two functionally distinct, but co-dependent phases may indilor asa function of entire MT life _histories through estimating

cate cell-autonomous or drug-influenced regulation. statistical _models from.gbsgrvatlons. A numbe_r of MT tracks
per experimental condition is necessary for reliable estimates
of model parameters. Thus, an automated tracking procedure

Conclusion was used in data collection.

L(wl,wg) =

MT dynamics resegrch seeks to understand the complex me%'tomated tracking

anisms that underlie cytoskeletal responses to changes in en-

vironmental conditions. A clear understanding of the regulaTo achieve reliable models of MT behavior, numerous obser-
tion of MT dynamic behavior may elucidate causal factors invations (MT tracks) are needed. Automated MT tracking pro-
various diseases and may reveal new therapeutic targets avides a significant increase in analyzable data volume. The
strategies. In this work, we introduce novel data collectiorMT tracking problem has a short history in the literature,



since live cell MT imaging has only been a mainstream rewidth. The maximum filter responsé/ (z, ), is then bina-
search tool for about a decade. However, similar problemsijzed to generate a mask showing MT polymer mass. The
such as the tracing of curvilinear structures in images, werbinary mask is used for determining tip candidates in each
previously addressed on neurons, blood vessels, roads, andfsame. Example tip detection results from consecutive frames
on. The most notable difference in MT images is the use oére shown in (Fig. 10).
fluorescence, which presents additional difficulties in image Once the tip candidates are located in each frame, corre-
analysis. For example, photobleaching, the gradual decay spondences are established between frames by using a multi-
fluorescence, causes illumination variations. Another issue isame graph matching algorithm. The reasoning behind for-
the additive nature of fluorescence. Overlapping MTs resulinulating the correspondence as a graph optimization problem
in brighter regions in images, causing frequent over saturds that by matching multiple tips at once, occasional spuri-
tion. In (Fig. 10), such saturation is visible in lower regionsous tips are removed. Furthermore, the graph matching algo-
of frames. Additionally, sample fluorescence exacerbates offithm provides the flexibility of skipping frames, which han-
focus blur, which produces great challenges in detecting MTles missing tips between frames.
tips moving in and out of focus.

Previous work on automated MT detection and trackingExtracting microtubule tip tracks
include [16-18]. In [13, 19], we described our tracking ap- ) ) _
proach for live cell images and introduced the idea of modef-onsider aMT time-lapse image sequence Wiframes. Let
based analysis. In [16], the authors extract MT plus ends ugY: denote the number of tip candidates detected in frafoe
ing a MT body and a tip model in a multi-scale operation.! < i gT Then, detected tips over the entire sequence can
In [17] and [18], MTs are traced in segments from initially _be mdmdual[y Qenoted by’ whereh denotes the tip number
selected points and subsequently tracked. In [17], MTs ar® frameq, within the rangel < h < N;. We construct a
searched in a constrained space for tracking in subsequedfiePhG = (V, E)) whose vertices are the detected tip posi-
frames. tions in framesl..T', and the edgeg& represent the similarity

In this work, we used the tracking method from [13]. Con-Of tip p(_)sitior)s between frames.. Thus, we represent tracks
ceptually, the proposed approach consists of three comp@f MT tips with paths overy, (Fig. 11). Edges between
nents, (Fig. 9). First, MT tip candidates are extracted in everslé‘;rt'ces in non-consecutive frames are allowed, representing
frame of the image sequence. Then, tip correspondences JEACKS with occasional missing tips. o
tween frames are established into MT tip tracks. Finally, the 10 compute the similarity between tip positions in differ-

MT bodies are traced from the tips to extract dynamics infor€Nt frames, edge weights i we use the distance between
mation. tip positions constrained on a MT body. Note that the Euclid-

An automated MT tracking method should address th&an distance cannot be used since different tips tend to move
within close proximity of each other. Consider two tifjsand

following: () highly variable tubule shapes;) accurate es- = ! L .
timation of the MT length considering the nonlinear shape!; In two different framesf; andf;. The main idea is to check

(i4i) frequent occlusions and intersections from surroundingf i @ndt; share a MT body betweef) and f;. If ¢} andt;
MTs, and (v) low signal-to-noise ratios with spatial and tem- do not belong to the same MT, then their similarity is insignif-
poral variations in illumination. icant. If ¢/ andt; belong to the same MT, then both growing
To address these issues, we consider MTs as flexible op&@hd shortening cases should be considered betyyesrd f;.
curves in the image plane, with a fixed minus end near thi) the case of a growing MT, we project the positiontpf
nucleus and a dynamic plus end. Formally, a single MT i€ fi to the same position offi; and computehthe distance,
modeled by the open curvé(s), wheres € [0, 1] isthe curve (%', 1}). We compute the shortening casg(t;', 77), in the
parameter. The goal of the MT tracking task is to estimate théame way. Then, the weight @ between vertices! andt;
MT length by locating the tip and tracing the deformation ofis computed as
the MT body, in every frame.

Sim(t, t]) = e m(dorde), (4)
Estimating microtubule tip positions OnceG is constructed, we compute a maximum weight

matching ofG where paths correspond to MT tracks. In graph
To address noise and illumination variations, we process thgeory, avertex disjoint path covef' is a covering of3 where
MT images with a line filter. Lef denote the intensity func- each vertex of? is in one and only one path 6f. The weight

tion in a frame, then the filter output is given by of a path cover is defined as the sum of weights on its edges.
Using the notion of path cover, the problem of finding the best
I(z,y) = max (I(z,y) * G, o(x,y)) (3)  MT tracks corresponds to finding timeaximum weight path

coverof GG with the weights defined by the similarity in (4).
where the derivative of the Gaussian is taken along orientd=ormally, a maximum weight path covél(G) is a path cover
tionsé at position(z, y), ando is chosen as the average MT which satisfies



amount of time. The bottom chart shows two different short-
C(G) = argmax W (C;) (5) ening MT groups for visual comparison of behavior patterns.
i Automated tracking is sufficient to quantify traditional dy-
whereW (C4) = ¥, cc, Sim(ey,) andu, v are two vertices namics parameters. We propose an analysis approach target-
in G for which the similarity is computed as in Eq.(4). Note ing behavioral information beyond what is provided by the
that between two frames the best tracks can be computed tigditional parameters. We begin with including contextual
the maximum match of a bipartite graph. However, for mul-information in time. In other words, as opposed to parsing
tiple frames, the problem becomes NP-hard. Here, we adojpie growth and shortening events out of MT tracks (life histo-
the approximation proposed in [20]. ries), we keep the MT tracks intact. Therefore, each MT track
The described method is sufficient to track MT tips be-is treated as an observation from sob&havior pattern For
tween different frames. However, without tracing the MT example, the tracks in (Fig. 12, top row and middle row) are
body, the best estimates of MT growth and shortening woul@bservation instances from different behavior patterns. Thus,
be limited to Euclidean approximations between tip positionsif g denotes a small, ar@ denotes a large growth events, then
(see Current analysis method). Since in live cell images, théhe observed trackggggGGGG andggGGggGG should be
MT body is typically non-linear, this approximation is a rough treated as different behaviors even if the average growth rates
one in practice. Instead, we determine the MT body length ifinay be equal. This definition of a Mdehavior patterdeads
all frames. to new analysis capabilities. Each behavior pattern can be de-
scribed by a model. Subsequently, estimated models are used
in analyzing MT dynamic behavior; for instance, in evaluat-
ing dynamic similarities between MT populations.
In essence, we compute the MT body length along the body in  In modeling the MT dynamic behavior, biological insights
each frame and determine the growth and shortening as coprovide essential guidance. Similar behavior patterns are known
secutive length differences. Given the tip positions in eacfto be shared between different experimental conditions, while
frame, we estimate the deformable curve constituting the MT populations within a cell may exhibit dissimilar patterns.
body between these tips and a fixed point along the MT bodylhus, modeling design should handle expected variations of
Note that the fixed point does not have to lie on the body obehavior within each experimental condition, and similarities
a specific MT for the purposes of computing the growth andetween different experimental conditions.
shortening. In cases where the fixed point lies on another MT  Formally, we denote each experimental conditionfy,
rather than the MT being measured, the resulting change ionsisting of groups of behavior patteras,All experimental
length is still a better estimate than the Euclidean case, seonditions have a known label, while patterns making up a
long as the fixed point taken consistently across frames. De&ondition are unknown. The problem is to estimate a model
tails of fixing this point can be found in [13]. Due to the con- A for each patternw, such that differences betweérC; and
stant deformations, the fixed point location may exhibit smallEC}, i # j, are emphasized, while each pattern may occur in
variations, (Fig. 5d — 5f). This is the major contributor of different experimental conditions; € EC; andw € EC;.
errors in length estimation between frames. Finally, based oNote that our formulation calls for a discriminative approach
the estimated plus and minus ends of the MT, the MT body ietweenzC, while descriptive models af is the goal across
extracted using active contours with ridge features. different EC’s.
A well known class of models used in representing ac-
tivity is the Hidden Markov Models (HMMs). In the past,
they have been used in numerous applications, most notably

A number of studies examined physical models for MT struci" SPeech recognition, [24], and in genomic sequence analy-
ture and dynamics. We refer the interested reader to [21-233S: [25-28]. Particularly in activity context, HMMs were
and the references therein, for a review of previous models dfS€d in activity recognition [29], abnormal activity detection,
MT dynamic instability. For example, in [23], the authors usedesture recognition, and American Sign Language recogni-
a simulation model to investigate the fluctuations in tubulintion. In the next section we review the essentials of HMMs,
concentration in relation to MT dynamics. In contrast to pre-While referring the reader to [24] for further details.

vious dynamics models, we propose using machine learning

methods for modeling variouslT behavior pattern®ccur-
ring in different experimental conditions.

MT behavior can be considered as a random process thetMMs are probabilistic generative models estimating the sta-
evolves in time. For example, (Fig. 12) shows different bedistics of a process from observation sequences generated by
haviors of hypothetical MTs from different MT populations. that process. The modeled process is assumed to be not di-
MTs in the middle row exhibit a growth tendency, while MTs rectly observable, thus hidden states capture statistics of the
in the top row show several length excursions within the samprocess, subject to stochastic constraints. In practice, hid-

Estimating microtubule body

Model based analysis

Hidden Markov models



den states generally correspond to certain physical charac- In each iteration of the algorithm, observationis as-
teristics of the process. Detailed information on modelingsigned to maximally likely cluste€,,, whose centen,, is
with HMMs can be found in [24, 28]. Concisely, HMMs, re-estimated using the new memberggf. The iterations are
denoted by, are described by parametexs= (w, A, B), terminated when no significant increase in the overall likeli-
wherer is the state priorsA is the transition, and3 is the  hood is observed.

emission probabilities. Given an observation sequénce

(01,02, ...,0r), wheret = 1..T denotes time, and a model \gdel evaluation

A = (m, A, B), the quantityP(O|\) can be computed effi-

ciently. Given a set of observation sequences, estimating tHdS mentioned, we utilize the classification accuracy between
parameters of is generally performed using maximum like- EC as our measure for overall model reliability. We compute
lihood methods, while discriminative techniques were sugthe probabilityp(o| EC') by

gested in classification tasks, [30, 31].

w
p(o|EC) = p(o|Aw.zc) Py @)
Modeling microtubule dynamics by HMMs w=1

From the biological perspective, classification of tracks to reyvherePw is the relative number of cluster members, and esti-

spectiveEC is not the end goal for dynamics analysis sincemate the separation .by counting t.he number of correctly clas-

labels of EC' are known a priori. However, estimated be- sified tracks> € O using the decision rule

havior models\, provide novel analytical capabilities. Fur- «

thermore, model parameters may reveal further insights into EC” = argmax[P(o| EC;)]. (®)

MT dynamic behavior. Our formulation qf the prot_)lem. aims Note that the decision is conditional o, 5o

to extract behavior patterns through estimatingvhile dis- '

criminating between differenE’C. In doing so, we employ

the classification score as our measure of model reliability.

The problem description motivates us to use a model basguthors’ contributions

clustering approach to estimate\dor eachw. HMM based

clustering methods are discussed in [32]. AA carried out the quantification and modeling of dynamics.
After parameter estimation, eadC' is represented by a AJP and EK performed data collection and manual tracking

mixture of A where dynamics variations within eaétC' are  of MTs. LW, SCF, BSM, KR participated in the design and

modeled by the components of the mixture. In this sense, eadoordination of the study, as well as critical reading of the

A models the (pseudo-)center oftathe component behavior manuscript. The authors declare that they have no competing

patterns contributing to the resulting behavior in respectivénterests.

EC. The estimation of\ is primarily a modeling task, while

discrimination betweew is handled by clustering the obser-

vations, MT tracks, into behavior patterns represented by th@\CknOWIEdgementS

respectivew.

representing
contributions of each membey, of EC.

We would like to thank to Motaz EI-Saban and Emre Sargin
for their contributions in the automated tracking of micro-
tubules. This study was funded by Center for Bioimage Infor-
We define the quantity?(O|)) as the similarity measure be- matics under grants NSF-ITR 0331697(BSM,KR,LW,SCF),
tween the observation sequenceand the cluster center,, ~ NIH-ROI'NS35010(SCF), NIH-ROI NS13560(LW).

of dynamics category. Expected overall likelihood

L=Y > logP(O|\y) (6)

w o0€Cy,

Model estimation

is maximized through

e Repartition

— assigro to clusterC,, such that
w = arg max,, log p(o|Ay)

e Reestimate models

— trainA, onCy, w =1..W
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(b)

Fig. 1. Consecutive time-lapse images of MTs taken at 4 sec. intervals. Examples of growing (G) and shortening (S) MTs are
marked. Tip locations of these MTs are manually tracked over time by marking on consecutive frames to calculate the growth
and shortening statistics.
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Fig. 2. In each frame, length of a MT is estimated by the Euclidean distance between a fixed point on the MThealtégin,
and the MT tip, (a). Shortening length between two consecutive frames is calculated as the difference of respective lengths.
This estimate may not reflect the actual shortening as shown in (b).
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Fig. 3. Example tracking results. Original frames are shown in (a — ¢). Computed MT bodies in corresponding frames are
superimposed in (d —f). While the MT body trace was swayed by an intersecting MT, consistent estimation of the body trace is
sufficient for quantifying the growth or shortening at the MT tip.
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Fig. 4. Example tracking results. Original frames are shown in (a — ¢). Computed MT bodies in corresponding frames are
superimposed in (d - f).
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Fig. 5. Example tracking results. Original frames are shown in (a — ¢). Computed MT bodies in corresponding frames are
superimposed in (d —f). This example displays the small variations on the estionified As a consequence of tineinus end
estimation procedure, this variation is the main component of the errors in length computation.
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Fig. 6. Example tracking results. Original frames are shown in (a — c). Computed MT bodies in corresponding frames are
superimposed in (d - f).
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Fig. 7. Example tracking results. Original frames are shown in (a — ¢). Computed MT bodies in corresponding frames are
superimposed in (d - f).



() (b)

Fig. 8. Tracked MTs superimposed on selected cells floffy. Tracks were evaluated for their behavioral association to models
representingC; by calculatingp(track|EC5). Resulting probabilities were quantized to four categories to aid visibility.
Darker tracks exhibit lower association wifC's, while brighter tracks are indicative of typical behaviors captured by models.
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Fig. 9. Conceptual overview of MT tracking procedure.
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Fig. 10. Example tip detection results in consecutive MT frames. Tip detection algorithm is sensitive to the proximity of the
neighboring MTs. For example, tips that are close to MT intersections are eliminated due to uncertainty.
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Fig. 11 Example diagram of constructed gragh= (V, E), across frames;, is shown in (a). A sample solution is shown in
(b), where each path corresponds to a MT track.



] | Experimental condition | AT [ MT |
EC, | pll-tubulin expressed, no Taxol 897 | 58
EC, | plll-tubulin expressed, plus Taxol 614 | 33
ECs5 | Blll-tubulin not expressed, plus Taxol 414 | 17
EC, | pl-tubulin expressed, no Taxol 370 | 30
EC5 | pl-tubulin expressed, plus Taxol 773 | 72

Table 1. Experimental conditions and number of tracks collected, automatically (AT) and manually (MT).
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Fig. 12 Example life history plots from hypothetical MTs showing different behaviors. Life histories were inspired by [33].
Individual MTs in the top undergo several length excursions, while the MTs in the middle row exhibit an overall growth
tendency. The bottom chart shows individual MTs, distinguished by filled and open circles, which are superimposed on the
time axis for visual comparison. While both groups of MTs display shortening, the group indicated by the open circles shorten
gradually as compared with the rest of the MTs.



] \ EX:A \ EX:B \ EX:C \
Correct AT (%) | 95.91 | 94.27 | 62.67
Correct MT (%) | 92.16 | 86.96 | 66.67

Table 2. Correct classification rates for EX:A,B,C. First row shows results from automatically tracked MTs, second row shows
results from manually tracked MTs.



. w | 1 ][ 2 ] 3 [ 4] 5 ]
| Correct (%)]| 62.11] 76.28] 94.27 | 72.33[ 57.44]

Table 3. Change in correct classification rates vs. the number of models from EX:B. Separation péaks at



(AT [ o] @ | | a]
4.03| -2.42 048] 0.01

A | p
o | 217| 259 | 0.91| 8.08
Ao | w| 0.58] 0.32 | 0.56 | 0.22
o | 061 3.32 | 0.65| 8.32

Table 4. Example emission distributions &f from EC,, and); from EC5. Models were trained using automatically extracted
tracks.



(MT] | & | @ [ a5 | au |

N | 4| 329 0.74 [ -2.38] 0.01
o | 420 0.02 | 252 | 0.01
Xo | | -035]|-162| 1.89 | 3.55
o | 1.31| 801 | 1.59 | 12.17

Table 5. Example emission distributions af from ECy, and ), from EC5. Models were trained using manually extracted
tracks.



